DOES THE MODEL THINK AS WE EXPECT?

EXPLORING ML MODEL LOGIC THROUGH

DECISION RULES

Natalia Andrienko, Gennady Andrienko, Bahavathy Kathirgamanathan

Fraunhofer Institute IAIS (Intelligent Analysis and Information Systems), Germany

Lamarr Institute for Machine Learning and Artificial Intelligence, Germany

Research Area: Human-Centred Al

INTRODUCTION

- Key question: ML models can be accurate, but do they reason as we expect?
- Why This Matters:
 - Trust in ML models is not just about accuracy it's about understanding *why* they make decisions.
 - A model may produce correct predictions while relying on reasoning that differs from human logic.
 - This misalignment can affect model adoption, interpretation, and decision-making in critical applications.
- Additional question: Can we use a ML model to understand the data and phenomena it captures?
- Our goal: support exploring model's internal workings and logic.
 - We consider models represented by systems of decision rules.

INTERPRETABILITY OF ML MODELS

- A model is **interpretable** if a person can understand its internal mechanics and capture relevant knowledge concerning relationships between inputs and outputs.
- Interpretability is essential for trust, transparency, debugging, and domain insight.

Inherently Interpretable Models (contrasted with "black box" models):

- Linear Models simple mathematical expressions with coefficients showing direct feature influence.
- **Decision Trees** visualize decisions as a sequence of understandable splits.
- Rule-Based Models express decisions as explicit IF–THEN rules.
 - Decision trees can be transformed to equivalent rule-based models.
- A common approach to explain black-box models is to approximate their behaviour with an interpretable surrogate, such as a decision tree or rule set.

VISUALISATION OF A RULE-BASED MODEL: RULEMATRIX

Fig. 2. The pipeline for creating a rule-based explanation interface. The rule induction step (1) takes (A) the training data and (B) the model to be explained as input, and produces (C) a rule list that approximates the original model. Then the rule list is filtered (2) according to user-specified thresholds of support and confidence. The rule list is visualized as RuleMatrix (3) to help users navigate and analyze the rules.

Ming, Y., Qu, H., & Bertini, E. (2018). RuleMatrix:Visualizing and Understanding Classifiers with Rules. IEEE Transactions on Visualization and Computer Graphics, 25, 342-352.

RULEMATRIX

Our previous work:

EXPLAINING RULE-BASED MODEL'S LOGIC USING A

SIMPLIFIED DESCRIPTIVE MODEL

Adilova, L., Kamp, M., Andrienko, G. and Andrienko, N. "Re-interpreting rules interpretability". *International Journal of Data Science and Analytics* (2023). doi:10.1007/s41060-023-00398-5.

PROBLEM STATEMENT

- Given: a rule-based model with a large number of decision rules
- Task: facilitate human's comprehension of the logic of the entire model
 - Challenge: although decision rules and decision trees are considered "inherently interpretable", comprehension of a large system of rules or decision tree may be beyond human perceptual and cognitive capacity.
 - Aspects of complexity:
 - Number of rules
 - Number of conditions in a rule

APPROACH: AGGREGATE – GENERALISE – CREATE A SIMPLER DESCRIPTIVE MODEL

Q minmax	N right co	Ν	Rule	percent_at	alpha	ecn_bon	С	b_c	ecn_bond	percent_a	percent_ato
0.0000.322	133	1	\downarrow	_							
0.0100.315	46	4	$\Box \Box \downarrow \downarrow \downarrow $								
0.0210.364	61	3									
0.0560.361	62	4	00000								
0.0820.159	6	5	01140000								
0.1030.103	1	5	07791171								
.1370.282	19	6	0TT6 T 6								
0.1560.479	49	5	0TT9 0	_							
0.2530.398	17	3		_							
0.6120.612	1	6	0 T T 6 T 0								
0.7680.768	1	3	0 T Ó								

Aggregated rules (9), N conditions (40), Total uses (138); obtained with coherence threshold 1.000 and max Q difference 0.15000

Q minmax	N right c	Ν			Rul	e		percent_ato	. а	gamma	percent_ato	a_c	ecn_bond	vol_per_atom	
0.0000.115	57	3	1	4			Ó								
0.0000.109	10	3	+	P 9				-							
0.0820.202	24	2	+	.				-							
0.0820.082	1	- 7	1	0 6	Q (10	<u> </u>	-							
0900.147	5	6		0 0				-							
0.1510.294	15	7	1	0 0	Q (10	φ								
0.181.0.286	10	5	1	0 0	Ū,										
0.1990.318	10	4	1	0 6	1										
0.3220.322	1	3	1				ΙT								

a_b

Aggregated rules (9), N conditions (42), Total uses (81); obtained with coherence threshold 1.000 and max Q difference 0.07500

Q minmax	N right	N	Rule	percen	а	gamma	a_c	С	a_b	Natoms	perce	ecn_b	vol_pe	ecn_b	alpha	ecn_b.
0.0000.044	15	4	_a a0													
0.0000.039	7	4	1097.													
0.0380.091	21	4	19000000000000000000000000000000000000													
0.0720.115	21	4	1													
0.082 <mark>0.1</mark> 01	6	3	46 0	1												
0.0820.082	1	7	↑090 0 0†													
0.0890.109	3	4	1090													
0.0900.096	2	7	1940 QT 0													
0.1140.114	1	5	44 7 00	1												

KEY IDEA: AGGREGATE AND GENERALISE SIMILAR RULES

- Problem: practical incomprehensibility of theoretically interpretable models due to large size and complexity
- Goal: facilitate comprehension by creating a smaller and simpler descriptive model
- Approach: iterative aggregation and generalisation
 - Rough rules with exceptions
 - Approximate rules for representing regression models
- Limited degree of simplification for models optimised for compactness
- Required: domain semantics-based grouping and aggregation of features

Our current work:

SEEKING MORE SCALABLE APPROACHES TO SUPPORTING

INTERACTIVE VISUAL EXPLORATION OF LARGE RULE-BASED

ML MODELS

Such as rules extracted from Random Forest models

RANDOM FOREST

- Ensemble learning method that creates many decision trees.
- Based on the principle of "wisdom of the crowd" *multiple weak learners* form a strong predictor.
 <u>How it works</u>:
- Each tree is trained on a random subset of the data (bagging).
- At each split, a random subset of features is considered.
- Final prediction is made by majority vote (classification) or average (regression).
 Key features:
- Interstation Handles non-linear relationships and high-dimensional data well.
- lacktrianglesize lacktr
- Still a **black-box model** hard to interpret due to large size, redundancy, and possible inconsistencies.

RUNNING EXAMPLE: VESSEL MOVEMENT PATTERN RECOGNITION

- Goal: Classify vessel movement segments into behavior types (class 1 Forward movement, class 2 Trawling, class 3 – Port enter/exit, class 4 – Anchoring)
- **Data:** Segments of vessel trajectories derived from AIS (Automatic Identification System) records and described by engineered *time interval-based* **features**:
 - SpeedMinimum, SpeedQ1, SpeedMedian, SpeedQ3 represent speed distribution over time interval.
 - Log I OCurvature logarithm of the curvature of the time series of the vessel's distance from the starting point computed as the ratio between the sum of absolute consecutive changes and the amplitude of values.
 - DistStartTrendAngle, LogIODistStartTrendDevAmplitude angle of the linear trend fitted to the time series of the vessel's distance from the starting point and logarithm of the amplitude of deviations from the trend line.
 - *MaxDistPort, Log I 0MinDistPort –*maximum and log-transformed minimum distance from the nearest port.
- Model: Random Forest classifier transformed into a rule-based model for interpretability
 - 100 decision trees transformed to 9,939 rules with 56,838 conditions in total

Tree Id	Class N co	nditions	Rule	SpeedMinimum	SpeedQ1	SpeedMedian	SpeedQ3	Log10Curvature	DistStartTrend	Log10DistStar	MaxDistPort	Log10MinDistP
0	3	6										
0	4	6										
19	3	6										
19	2											
35	2											
35	3	6										
0	3	7					1					
35	3	6										
81	2	8										
3	3	5				[
80	3	8										
3	2	5										
3	3	5									Contradio	tory rules
19	3			+								
35	3	7		1								
81	3	8	┋┋┋╧╧╺┷┍╧┊┶			<u> </u>					<u></u>	
35	3	6										ant rules
81	3	6									Reduiid	anciues
81	2	5										
0	4	5										
81	3	5										
0	2	6										
0	2	7										
6	3	6				1						
26	3	5		1								
26	3	7		1								
28	2											
15	3	6		-								
15	2	7										
15 15	2	7		1				1				
15	3	7						1				
15	3	7						1				
15	3	7 <u>_</u>										
6	3	6	<u> </u>									
6	3											
15	2	6						-				
15	2			J								

AN EXAMPLE OF A CONTRADICTORY RULE

Tree Id	Class	N conditions	Rule	SpeedMinimum	SpeedQ1	SpeedMedian	SpeedQ3	Log10Curvat	DistStartTrendA	Log10DistSta	MaxDistPort	Log10MinDistPort
2	3	2										
2	3	2										
91	3	3										
39		3										
47		3						-				
89		3						_				
84	3	4						-				
91	4	4						-				
1	3	5										
1	4	5										
21	3	6						-				
21	4	- 6	<u> + + + _ P</u>					-				
23		6						-				
67		5										
91		4										
67	4	5										

The combination of the conditions of the topmost rule is more general than in the remaining rules shown. Some of the remaining rules predict another class than the topmost rule.

INITIAL CLEANING

- Automatically detect and remove contradictory rules 113 rules removed
- Automatically detect and remove redundant rules (either same as or fully covered by other rules) 311 rules removed

DISTRIBUTIONS OF FEATURES AND THEIR VALUE INTERVALS

feature values

feature values

feature values

feature values

HOW DOES THE MODEL USE THE FEATURES?

DO THE DISTRIBUTIONS ALIGN WITH OUR EXPECTATIONS?

Controls for interactive filtering

There are rules allowing high curvature for forward movement patterns (class I)

There are rules allowing high minimal speed for anchoring patterns (class 4)

There are rules ignoring the speed distribution features

Further filtering: rules with negative trend angle of the distances from the start

INTERACTIVE CLEANING THROUGH FILTERING AND TESTING ON LABELLED DATA

- 2 rules for class I (forward movement) ignoring speed distribution and allowing negative distance trend
- 7 rules for class 2 (trawling) that allow high values of SpeedMinimum
- 144 rules for class 3 (port entering or exiting) ignoring both MaxDistPort and Log10MinDistPort
- 353 rules for class 3 (port entering or exiting) not restricting Log I 0 Min DistPort
- 53 rules for class 4 (anchoring) that do not limit SpeedMinimum

Result:

• 8,956 rules, no loss of accuracy

2D PROJECTION OF THE RULES BASED ON CONDITIONS SIMILARITY Exploring subsets of similar rules predicting distinct classes

SUMMARY: INTERACTIVE RULE EXPLORATION

What we saw:

- Filtering and testing rules reveals inconsistencies that can be removed to improve model logic
- Better alignment with domain knowledge can be achieved without hurting accuracy But ...
- Interpretability gains come at the cost of expert time and effort

Possible future research direction:

- Develop a smart expert UI to:
 - Define domain constraints
 - Automatically flag rule violations
 - Support semi-automated model refinement

TOPIC MODELLING TO REVEAL FEATURE INTERACTIONS

	•			
Encod	ling	the	ru	les:

	Attribute	Min	Max	Count o	Count o	Mode	Number o	Class Intervals
	SpeedMinimum	0.005	15.395	586	7049	Quantiles	3	[2.0549998, 6.7825003]
S:	SpeedQ1	0.015	17.775	594	5906	Quantiles	3	[5.255, 13.21]
	SpeedMedian	0.035	18.51	636	5619	Quantiles	3	[7.9925003, 14.327499]
	SpeedQ3	0.05	19.785	586	5712	Quantiles	3	[11.24, 15.03]
	Log10Curvature	0.002	1.178	320	7551	Quantiles	3	[0.08400001, 0.212]
	DistStartTrendAngle	-0.085	0.325	80	6780	Quantiles	3	[0.075, 0.19749999]
	Log10DistStartTrendDevAmplitude	-2.545	1.645	411	5705	Quantiles	3	[0.125, 0.78499997]
	MaxDistPort	0.165	82.97	809	8150	Quantiles	3	[15.842501, 24.9225]
	Log10MinDistPort	-1.845	1.815	590	10193	Quantiles	3	[-0.5675, 0.1425]

ruleAsText conditionsAsMasks
SpeedMedian:[7.184999942779541Inf] Log10Curvature:[-Inf0.04300001263618469] DistStartTrendAngle:[SpeedMedian_111Log10Curvature_100 DistStartTrendAngle_011Log10MinDistPort_1000
SpeedMedian:[7.184999942779541Inf] Log10Curvature:[-Inf0.014999997802078724] Log10MinDistPort:[1SpeedMedian_111 Log10Curvature_100 Log10MinDistPort_0001
Log10Curvature:[1.003999948501587Inf] => 4 Log10Curvature_001
Log10Curvature:[-Inf0.24549999833106995] MaxDistPort:[-Inf0.5699994564056396] Log10MinDistPort:[-(Log10Curvature_111 MaxDistPort_100 Log10MinDistPort_0111
Log10Curvature:[0.24549999833106995Inf] Log10DistStartTrendDevAmplitude:[-2.5450000762939453Inf Log10Curvature_001 Log10DistStartTrendDevAmplitude_111 MaxDistPort_100 Log10MinDistPort_1100
Log10Curvature:[-Inf0.25] MaxDistPort:[-Inf0.3000001907348633] => 4 Log10Curvature_111 MaxDistPort_100
Log10DistStartTrendDevAmplitude:[-Inf0.7750000357627869] MaxDistPort:[-Inf0.170000359416008] => 3 Log10DistStartTrendDevAmplitude_100 MaxDistPort_100
SpeedMinimum:[-Inf0.2800000309944153] SpeedQ1:[5.90500020980835Inf] Log10Curvature:[-Inf0.001 SpeedMinimum_100 SpeedQ1_011 Log10Curvature_100 MaxDistPort_111
Log10Curvature:[0.001999996602535248Inf] DistStartTrendAngle:[0.10499999672174454Inf] MaxDistPort Log10Curvature_111 DistStartTrendAngle_011 MaxDistPort_111 Log10MinDistPort_1000
SpeedQ1:[5.90500020980835Inf] Log10Curvature:[0.010500003583729267Inf] DistStartTrendAngle:[0.15: SpeedQ1_011 Log10Curvature_111 DistStartTrendAngle_011 Log10DistStartTrendDevAmplitude_001 MaxDistPort_
SpeedMedian:[-Inf0.07500005513429642] Log10Curvature:[-Inf0.24549999833106995] DistStartTrendAngSpeedMedian_100 Log10Curvature_111 DistStartTrendAngle_110 MaxDistPort_100
SpeedQ3:[-Inf0.6550000905990601] Log10Curvature:[-Inf0.17299999296665192] DistStartTrendAngle:[0.1SpeedQ3_100 Log10Curvature_110 DistStartTrendAngle_111
SpeedQ3:[-Inf0.6550000905990601] Log10Curvature:[0.172999999296665192Inf] Log10MinDistPort:[-Inf·SpeedQ3_100 Log10Curvature_011 Log10MinDistPort_1000
SpeedQ3:[-Inf0.6550000905990601] Log10Curvature:[0.172999999296665192Inf] Log10MinDistPort:[-1.61 SpeedQ3_100 Log10Curvature_011 Log10MinDistPort_1000
SpeedMinimum:[3.190000057220459Inf] SpeedQ1:[15.854999542236328Inf] SpeedQ3:[18.39999961853 SpeedMinimum_011 SpeedQ1_001 SpeedQ3_001 Log10Curvature_110 Log10MinDistPort_1100
SpeedMinimum:[3.190000057220459Inf] SpeedQ3:[14.1899995803833Inf] Log10Curvature:[0.068000003 SpeedMinimum_011 SpeedQ3_011 Log10Curvature_111 Log10MinDistPort_0011
SpeedMinimum:[-Inf9.529999732971191] DistStartTrendAngle:[-Inf0.044999998062849045] MaxDistPort:[SpeedMinimum_111 DistStartTrendAngle_100 MaxDistPort_111 Log10MinDistPort_0011
SpeedMedian:[0.08499997109174728Inf] SpeedQ3:[-Inf2.0949997901916504] Log10Curvature:[0.256999 SpeedMedian_111 SpeedQ3_100 Log10Curvature_001 MaxDistPort_100
SpeedQ1:[5.755000114440918Inf] SpeedMedian:[-Inf6.994999885559082] Log10MinDistPort:[1.0449999] SpeedQ1_011 SpeedMedian_100 Log10MinDistPort_0001
SpeedMinimum: [0.6450000405311584Inf] Log10Curvature: [0.027000000700354576Inf] DistStartTrendAnt SpeedMinimum_111 Log10Curvature_111 DistStartTrendAngle_011 Log10MinDistPort_0111
MaxDistPort:[-Inf0.46999967098236084] Log10MinDistPort:[-Inf0.8700000047683716] => 3 MaxDistPort_100 Log10MinDistPort_1000
SpeedQ1:[-Inf0.07499993592500687] Log10Curvature:[-Inf0.172999999296665192] MaxDistPort:[-Inf0.46 SpeedQ1_100 Log10Curvature_110 MaxDistPort_100
SpeedQ1:[5.90500020980835Inf] Log10Curvature:[0.17000000178813934Inf] MaxDistPort:[0.469999670: SpeedQ1_011 Log10Curvature_011 MaxDistPort_111 Log10MinDistPort_1000
Log10Curvature:[0.09150000661611557Inf] DistStartTrendAngle:[0.10499999672174454Inf] MaxDistPort: Log10Curvature_011 DistStartTrendAngle_011 MaxDistPort_111 Log10MinDistPort_0111
MaxDistPort:[-Inf0.1650005728006363] => 3 MaxDistPort_100 28
SpeedQ3:[-Inf0.5400001406669617] Log10Curvature:[-Inf0.24549999833106995] DistStartTrendAngle:[0. SpeedQ3_100 Log10Curvature_111 DistStartTrendAngle_111

TOPICS

Term-prefix 🗢	Term-suffix	topic=0: Topic	topic=1: Topic	topic=2: Topic	topic=3: Topic	topic=4: Topi	topic=5: Topi
DistStartTrendAngle							1
DistStartTrendAngle							
Log10Curvature							
Log10Curvature							1
Log10Curvature							
Log10Curvature							
Log10DistStartTrendDevAmplitude							
Log10DistStartTrendDevAmplitude							
Log10DistStartTrendDevAmplitude							
Log10DistStartTrendDevAmplitude							
Log10MinDistPort							
Log10MinDistPort							
Log10MinDistPort							
Log10MinDistPort							
MaxDistPort							
MaxDistPort							
MaxDistPort							
MaxDistPort							
SpeedMedian							
SpeedMedian							
SpeedMinimum							
SpeedMinimum							
SpeedMinimum							
SpeedMinimum							
SpeedMinimum							
SpeedQ1							
SpeedQ1							
SpeedQ1							
SpeedQ1							
SpeedQ3							
SpeedQ3							

Most significant "terms" defining the topics:

	0	1	2	3	4	5
	0			3	4	0
SpeedMinimum						
SpeedQ1						
SpeedMedian						
SpeedQ3						
Log10Curvature						
DistStartTrendAngle						
Log10DistStartTrendDevAmplitude						
MaxDistPort						
Log10MinDistPort						
Minimal weight:					0.0	451

Topics represent re-occurring combinations of similar conditions

Topics defined as vectors of weights of the "terms", i.e., encoded conditions

APPLYING DIMENSIONALITY REDUCTION TO VECTORS OF TOPIC WEIGHTS

outcome

- Each rule receives a multidimensional vector of topic weights.
- We apply dimensionality reduction (e.g., UMAP) to obtain a 2D projection.
- Each rule is represented by a point in the projection space.
- We represent the rule outcomes (predicted classes) by colours of dot marks.
- We see that the classes are not separated by the topic weights.

- Pie charts represent compositions of topics characterizing the rules.
- In the projection map we see areas (= groups of rules) dominated by specific topics.

	0	1	2	3	4	5
SpeedMinimum						
SpeedQ1						
SpeedMedian						
SpeedQ3						
Log10Curvature						
DistStartTrendAngle						
Log10DistStartTrendDevAmplitude						
MaxDistPort						
Log10MinDistPort						
Minimal weight:					0.0	451
					31	

Topic association tendencies:

- Topic 0: forward movement and trawling
- Topic 1: high association with anchoring, weak association with trawling and port-related
- Topic 2: forward movement and port-related
- Topic 3: medium association with trawling but also co-occurs with the other classes
- Topic 4: medium association with trawling but co-occurs with the others
- Topic 5: medium association with port-related and forward movement, less with trawling

	0	1	2	3	4	5
SpeedMinimum						
SpeedQ1						_
SpeedMedian						
SpeedQ3						
Log10Curvature						
DistStartTrendAngle						
Log10DistStartTrendDevAmplitude						
MaxDistPort						
Log10MinDistPort						
Minimal weight:			-		0.0	451

SUMMARY: TOPIC MODELING FOR RULE ANALYSIS

- No simple pattern: Except for Class 4, classes are not defined by distinct recurring rule conditions
 - Random forests lack interpretable, consistent class definitions
- What Topic Modelling Adds:
 - Reveals feature interdependencies and co-occurring conditions
 - Helps to see key feature interactions in rule subsets
 - Provides a common space for comparing all rules enabling 2D projections, clustering, and identification of subgroups
- Takeaway:
 - Topic modelling complements visual filtering and rule inspection
 - Supports higher-level understanding beyond individual rules

CONCLUSIONS: KEY INSIGHTS & CONTRIBUTIONS

- Focus on logical consistency of rule-based models with respect to human reasoning and domain knowledge, not just accuracy or performance.
- Exposing model's internal workings: synoptic and detailed views for navigating complex rule sets.
- Feature interdependency analysis: topic modelling and similarity metrics reveal collective effects.
- Logic-focused refinement: tools for detecting and testing rule inconsistencies and model cleaning.
- **Domain knowledge integration**: supporting expert-driven improvements that enhance model transparency and reasoning.
- Main limitation: high reliance on expert judgment manual and time-intensive.
- **Direction for future work**: automation of domain constraint enforcement.

CLOSING REFLECTIONS & OPEN QUESTIONS

- Trustworthiness is not just about accuracy—it's about *understanding why* the model makes decisions.
- How can we *incorporate human logic* into the interpretation and explanation of data-driven models?
- Should ML models be adjusted to better *reflect human reasoning*, even if accuracy slightly decreases?
- Can domain knowledge be integrated during model development, rather than only in post hoc analysis?
 Can visual analytics help to achieve this?
- How can we scale interpretability work via semi-automated expert-guided interfaces?