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Network controllability, in a nutshell

dynamic units
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Network controllability, in a nutshell

u(t)
kY O\
[x,- = (%, Sjen; X u,(t))rg G=(¢)

sparsely interacting, dynamic units + sparse actuation

when and how easily can we enforce a desired configuration of {x;}?

how this depends on the structure and size of G?

(this talk)
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Network controllability: standard setting

g= (Vu 8): |V| =n . X¢ = target state

\ controllability =

Ju(t), T: x(0) = xo, x(T) = xr, Vx0, X
x(t) = Ax(t) + Bu(t) ﬂ
n—1 —
A = adjacency matrix of G rank [B AB A™1B] =n

B selects a subset of control nodes L C V Kalman rank condition



Network controllability: structural approach

Gg=W.8), [VI=n

structural controllability =
l]‘ J edge weights s.t. network is controllable
u(t)

B O\ I

controllability for almost all choices of weights!

\ v captures the role of network topology

v~ can be checked via graphical conditions

X(t) - AX(t) * Bu(t) v efficient algorithms to find smallest set K

. . ensuring structural controllabilit
A = adjacency matrix of G & y

B selects a subset of control nodes K C V [Lin, 1974], [Liu et al., 2011],...



Network controllability: practical approach

Gg=W,¢&), V|=n
u(t) N

‘7\() O\<
R

x(t) = Ax(t) + Bu(t)

A = adjacency matrix of G
B selects a subset of control nodes L C V

X2*X3

How much energy is needed?




Network controllability: practical approach

Controllability Gramian in [0, T]:

g=0W,€), |V|=n T
V.. VI WT:/ eMBB ' eAtdt
0

u(t) N

‘7\ O\< Minimum-energy control input:

w(t) =B A T-OW ly teo,T]

x(t) = Ax(t) + Bu(t)

Energy needed to reach x:

-
| e (@)1de = s wrtx
A = adjacency matrix of G

B selects a subset of control nodes L C V



Network controllability: practical approach

[Kalman, Ho, Narendra, 1963]

Energy needed to reach x:

TIONS TO DIFFERENTIAL EQUATIONS, VOL. I, NO. 2

T
/ || U*(t) ||2dt = XfTW;le Controllability of Linear
0

Dynamical Systems

R. E. KALMAN, Y. C. HO*
and K. S. NARENDRA*




Network controllability: practical approach

[Kalman, Ho, Narendra, 1963]
Energy needed to reach x:

CONTRIBUTIONS Finally, we introduce figures of merit based on minimal control
T energy, which serve as a numerical measure of the controllability of a
* 2d I W= 1 given systen.
u(t t= Xf T Xf Contrc .
i LINEAR DYNAMICAL SYSTEMS 209
R|
replace the function || x|/~ by a scalar “figure of merit” o.

There are two obvious candidates for w: (i) the trace of W™ and

(ii) the determinant of W™'. What is the significanice of these quanti-
ties?

Control energy metrics:

-1 . : .
AminOWVT) = worst-case control energy for unit norm x¢ ) solynomially

%tr(W}l) = average control energy for unit norm x¢ equivalent in n

| det(W}l) = volume of reachable set with unit input energy

Amax(WT) = best-case control energy for unit norm x¢ ) solynomially

tr(Wr) = (Ha system norm)2, no direct link to control energy * cdulalentinn



Network controllability: practical approach

[Kalman, Ho, Narendra, 1963]

Energy needed to reach x:

coNTRIBUTIONS Finally, we introduce figures of merit based on minimal control

given system.

T 5 T 1 energy, which serve as a numerical measure of the controllability of a
* —
/ ||u (t)” dt = Xf WT Xf Contr
0 D
209

LINEAR DYNAMICAL SYSTEMS
R|
replace the function || x|/~ by a scalar “figure of merit” o.

There are two obvious candidates for w: (i) the trace of W™ and
T— (ii) the determinant of W™'. What is the significance of these quanti-
ties?

For a given control energy metric:

1. How the control energy depends on the structure and size of A? hi Ik
[Pasqualetti et al., 2014], [Olshevsky, 2016], [Lindmark and Altafini, 2018],... this ta

2. How to select K so as to minimize the control energy?
[Summers et al., 2015], [Tzoumas et al., 2016], [Nozari et al., 2019]...
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Difficult- and easy-to-control networks

standing assumption: {(A,, B,)}nen, An € R™" stable, || < m indep. of n

 Antp RT AT
Wn::/ Mt B, BT &M tdt
0

Def: The growing network with adjacency matrix A, and input matrix B, is

> difficult-to-control if 3k, ky > 0 indep. of n s.t. Anin(W,) < ke Fen

> easy-to-control if Aki, ky, > 0 indep. of n s.t. Apin(W,) < kye k2"

o> difficult-to-control = worst-case control energy grows exponentially or faster in n

I> easy-to-control = worst-case control energy grows less than exponentially in n

11



Toy example

5 0 - -0 1
1\ N a -6 0 0 0
O ‘o *o .7 o A,=10 a -6 , B, = , 0,a>0
1 2 3 n :
0 0 «a —9§ 0

W, linked to symmetric Pascal matrix,
closed-form expressions for W,

l

25 —2n -
AminWn) < kg [1+ — ky > 0 indep. of n
a

l

difficult-to-control Va,d >0

12



A (large) class of difficult-to-control networks

Def: The sequence {A,},en is quasi-normal if A, is diagonalizable with eigen-
vector matrix V,, and

ki, ky > 0 indep. of n s.t. k(V,) = || Vo[V, || < kun®

A, quasi-normal ~ A, close to be normal (A,A] = A,A])

Theorem: If the following hold:
i) {A,} is quasi-normal
ii) the eigenvalues of A, belong to a compact set of {s € C, Re(s) < 0}

Then, the growing network with adjacency matrix A, and input matrix B, is
difficult-to-control.

13
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How difficult is it to control a difficult-to-control network?

For difficult-to-control nets with control energy that grows exponentially in n
the exponential growth rate can be used as a quantifier of control difficulty

Def: The (worst-case) control energy exponent of the growing network de-
scribed by {(An, Bn)}nen is

1
pw = limsup —=In Apin(W,).

n—o00 n

The larger p,,, the more difficult to control the network

How to evaluate p,,?

15



Ingredients

i) {An} quasi-normal
ii) the eigenvalues of A, belong to a compact set of {s € C, Re(s) < 0}
i) {(An, B,)} robustly controllable

Def:" The sequence {(A,, B,)}nen is robustly controllable if

1
Jki, ko > 0 indep. of n s.t. dync(An, Bn) > kl—k2
n

where dync(An, By) = infaans||[AA A B]|| s.t. (A+ AA, B+ AB) uncontrollable.

robustly controllable = control energy grows exactly exponentially in n

*[Tsiamis and Pappas, 2022]
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Control energy exponents for single-input networks

[Chli = _W {)\,- } eigenvalues of A,
i y

> i)-ii) = Amin(Wh) = Amin(C), C, Cauchy matrix with closed-form C;l

Theorem: If || = 1, i)-iii) hold and {A,} admits a (sufficiently regular)
asymptotic eigenvalue density ¢(-). Then,

)\+u‘¢

w =2 max /Io
s A€supp(e) JC g

17



Symmetric line network

5 o e -0 1
,\ o a -6 a --- 0 0
o 20 A=[0 o 8= || s>
1 @ 2 3 n D«
0 0 a —0 0
§=3a=1 )
(A,, B,) robustly controllable
_ | R
_5 -1 0

1520, —s5+420](N)
\) =
w0 /42 — (A + 0)2

H O ON W A~ G
L L L

18



Complete symmetric random network

1

0

- 1 - ATy a1. 2 — |-
AWT\/E(A#A") 51, [Anj ~N(0,0%), B,= | 0>0

0

P(X)

(A,, B,) robustly controllable

(asymptotically almost surely)

40 = V202 — (A +0)2

To2

L 5 o530 (N)

=N W A~ o

(asymptotically almost surely)
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Complete random network

1

0

_ L~ A 2 I
A,,_ﬁA,,—cSI, [Ali ~ N(0,62), B,= :,5>o

0

Im(X)

— Re(\)

(A,, B,) quasi normal (?)
(A,, B,) robustly controllable (?)

o

o(\) = Lizaiz) (V)

e

=N W A~ G
R
|
Sim
5
>
3
EY
~
S
N

(asymptotically almost surely)
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Take aways

> Practical controllability examines the energy needed to control a system
> In (almost) symmetric nets, control energy grows exponentially in the size

> For single input nets, closed-form expressions for the exponential rate
Ongoing work

> Theory: control energy exponents in the multi-input case?

> Applications I: real nets — estimates of eigenvalues density?

> Applications Il: quantify (dis)advantage of adding memory to nodes

22
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