Control Energy Exponents in Large-Scale Networks

Giacomo Baggio

Department of Information Engineering, University of Padova

Focus Period "Network Dynamics and Control" Linköping, September 6th, 2023

Outline

Structural vs. practical network controllability

- \odot Control energy scaling and network structure
- Control energy exponents
- Summary and ongoing work

dynamic units

sparsely interacting, dynamic units

sparsely interacting, dynamic units + sparse actuation

sparsely interacting, dynamic units + sparse actuation

when and how easily can we enforce a desired configuration of $\{x_i\}$?

how this depends on the structure and size of \mathcal{G} ?

(this talk)

A multidisciplinary interest

ARTICLE	1038/nature10011
Controllability of complex networks	\$
ARTICLE Received 7 Apr 2015 Accepted 19 Aug 2015 Published 1 Oct 2015 DOI: 10.1033//weemm0314 OPEN Controllability of structural brain networks	
OPEN OACCESS Freely available online	[©] PLoS one
Nodal Dynamics, Not Degree Distributions, the Structural Controllability of Complex Ne	Determine tworks
BRIEF COMMUNICATIONS ARISING	T. Bergstrom ^{3,5}
Few inputs can reprogram biological networks	

Network controllability: standard setting

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), \ |\mathcal{V}| = n$$

$$\dot{x}(t) = Ax(t) + \frac{B}{B}u(t)$$

 $A = \text{adjacency matrix of } \mathcal{G}$ B selects a subset of control nodes $\mathcal{K} \subseteq \mathcal{V}$

Kalman rank condition

Network controllability: structural approach

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), \ |\mathcal{V}| = n$$

$$\dot{x}(t) = Ax(t) + \frac{B}{B}u(t)$$

 $A = \text{adjacency matrix of } \mathcal{G}$ B selects a subset of control nodes $\mathcal{K} \subseteq \mathcal{V}$ structural controllability = \exists edge weights s.t. network is controllable \Downarrow

controllability for almost all choices of weights!

- captures the role of network topology
- \checkmark can be checked via graphical conditions
- \checkmark efficient algorithms to find smallest set ${\cal K}$ ensuring structural controllability

[Lin, 1974], [Liu et al., 2011],...

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), \ |\mathcal{V}| = n$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $A = \text{adjacency matrix of } \mathcal{G}$ B selects a subset of control nodes $\mathcal{K} \subseteq \mathcal{V}$

How much energy is needed?

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), \ |\mathcal{V}| = n$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $A = \text{adjacency matrix of } \mathcal{G}$ B selects a subset of control nodes $\mathcal{K} \subseteq \mathcal{V}$

Controllability Gramian in [0, T]: $\mathcal{W}_{\mathcal{T}} = \int_{0}^{\mathcal{T}} e^{At} B B^{\top} e^{At} \mathsf{d}t$

Minimum-energy control input:

$$u^{\star}(t) = B^{ op} e^{A^{ op}(op -t)} \mathcal{W}_{\mathcal{T}}^{-1} x_{\mathsf{f}}, \hspace{1em} t \in [0, \, \mathcal{T}]$$

Energy needed to reach $x_{\rm f}$: $\int_0^T \|u^*(t)\|^2 {\rm d}t = x_{\rm f}^\top \mathcal{W}_T^{-1} x_{\rm f}$

Energy needed to reach x_{f} : $\int_0^T \|u^\star(t)\|^2 \mathsf{d}t = x_{\mathsf{f}}^\top \mathcal{W}_T^{-1} x_{\mathsf{f}}$ [Kalman, Ho, Narendra, 1963]

CONTRIBUTIONS TO DIFFERENTIAL EQUATIONS, VOL. I, NO. 2

Controllability of Linear Dynamical Systems

> R. E. KALMAN, Y. C. HO^{*} and K. S. NARENDRA^{*}

Energy needed to reach
$$x_{f}$$
:
$$\int_{0}^{T} \|u^{*}(t)\|^{2} dt = x_{f}^{\top} \mathcal{W}_{T}^{-1} x_{f}$$

[Kalman, Ho, Narendra, 1963]

Control energy metrics:

 $\lambda_{\min}^{-1}(\mathcal{W}_{T}) = \text{worst-case control energy for unit norm } x_{f} \qquad \text{polynomially} \\ \frac{1}{n} \text{tr}(\mathcal{W}_{T}^{-1}) = \text{average control energy for unit norm } x_{f} \qquad \text{equivalent in } n \\ \sqrt[n]{\det(\mathcal{W}_{T}^{-1})} = \text{volume of reachable set with unit input energy} \\ \lambda_{\max}(\mathcal{W}_{T}) = \text{best-case control energy for unit norm } x_{f} \\ \text{tr}(\mathcal{W}_{T}) = (\mathcal{H}_{2} \text{ system norm})^{2}, \text{ no direct link to control energy} \end{cases} \qquad \text{polynomially} \\ \text{equivalent in } n \\ \text{polynomially} \\ \text{equivalent in } n \\ \text{polynomially} \\ \text{equivalent in } n \\ \text{equivalent in } n \\ \text{polynomially} \\ \text{equivalent in } n \\ \text{equivalent in } n \\ \text{polynomially} \\ \text{equivalent in } n \\ \text{polynomially} \\ \text{equivalent in } n \\ \text{equiva$

Energy needed to reach
$$x_{f}$$
:
$$\int_{0}^{T} \|u^{\star}(t)\|^{2} dt = x_{f}^{\top} \mathcal{W}_{T}^{-1} x_{f}$$

[Kalman, Ho, Narendra, 1963]

For a given control energy metric:

1. How the control energy depends on the structure and size of A? [Pasqualetti et al., 2014], [Olshevsky, 2016], [Lindmark and Altafini, 2018],...

this talk

2. How to select \mathcal{K} so as to minimize the control energy?

[Summers et al., 2015], [Tzoumas et al., 2016], [Nozari et al., 2019]...

Outline

- O Structural vs. practical network controllability
- Control energy scaling and network structure
 - Control energy exponents
 - Summary and ongoing work

Difficult- and easy-to-control networks

standing assumption: $\{(A_n, B_n)\}_{n \in \mathbb{N}}$, $A_n \in \mathbb{R}^{n \times n}$ stable, $|\mathcal{K}| \leq m$ indep. of n $\mathcal{W}_n := \int_0^\infty e^{A_n t} B_n B_n^\top e^{A_n^\top t} dt$

Def: The growing network with adjacency matrix A_n and input matrix B_n is \triangleright difficult-to-control if $\exists k_1, k_2 > 0$ indep. of n s.t. $\lambda_{\min}(\mathcal{W}_n) \leq k_1 e^{-k_2 n}$ \triangleright easy-to-control if $\nexists k_1, k_2 > 0$ indep. of n s.t. $\lambda_{\min}(\mathcal{W}_n) \leq k_1 e^{-k_2 n}$

 \triangleright difficult-to-control = worst-case control energy grows exponentially or faster in n \triangleright easy-to-control = worst-case control energy grows less than exponentially in n

Toy example

$$A_n = \begin{bmatrix} -\delta & 0 & \cdots & \cdots & 0\\ \alpha & -\delta & 0 & \cdots & 0\\ 0 & \alpha & -\delta & \cdots & \vdots\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & 0 & \alpha & -\delta \end{bmatrix}, B_n = \begin{bmatrix} 1\\ 0\\ \vdots\\ 0\\ \end{bmatrix}, \ \delta, \alpha > 0$$

$$\lambda_{\min}(\mathcal{W}_n) \quad (\delta=1)$$

 $\mathcal{W}_n \text{ linked to symmetric Pascal matrix,} \\ \text{closed-form expressions for } \mathcal{W}_n^{-1} \\ \downarrow \\ \lambda_{\min}(\mathcal{W}_n) \leq k_1 \left(1 + \frac{2\delta}{\alpha}\right)^{-2n} \quad k_1 > 0 \text{ indep. of } n \\ \downarrow \\ \text{difficult-to-control} \quad \forall \alpha, \delta > 0$

A (large) class of difficult-to-control networks

Def: The sequence $\{A_n\}_{n \in \mathbb{N}}$ is **quasi-normal** if A_n is diagonalizable with eigenvector matrix V_n and

$$\exists k_1, k_2 > 0$$
 indep. of *n* s.t. $\kappa(V_n) = \|V_n\| \|V_n^{-1}\| \le k_1 n^{k_2}$

 A_n quasi-normal $\approx A_n$ close to be normal $(A_n A_n^{\top} = A_n A_n^{\top})$

Theorem: If the following hold:

i) $\{A_n\}$ is quasi-normal

ii) the eigenvalues of A_n belong to a compact set of $\{s \in \mathbb{C}, \text{ Re}(s) < 0\}$

Then, the growing network with adjacency matrix A_n and input matrix B_n is difficult-to-control.

Outline

- O Structural vs. practical network controllability
- \odot $\;$ Control energy scaling and network structure $\;$
- Control energy exponents
 - Summary and ongoing work

How difficult is it to control a *difficult-to-control* network?

For difficult-to-control nets with control energy that grows exponentially in n the exponential growth rate can be used as a quantifier of control difficulty

Def: The (worst-case) **control energy exponent** of the growing network described by $\{(A_n, B_n)\}_{n \in \mathbb{N}}$ is

$$\omega_w = \limsup_{n \to \infty} -\frac{1}{n} \ln \lambda_{\min}(\mathcal{W}_n).$$

The larger ρ_{w} , the more difficult to control the network

How to evaluate ρ_w ?

Ingredients

i) $\{A_n\}$ quasi-normal

ii) the eigenvalues of A_n belong to a compact set of $\{s \in \mathbb{C}, \operatorname{Re}(s) < 0\}$ iii) $\{(A_n, B_n)\}$ robustly controllable

Def:^{*} The sequence $\{(A_n, B_n)\}_{n \in \mathbb{N}}$ is robustly controllable if

$$\exists k_1, k_2 > 0$$
 indep. of n s.t. $d_{unc}(A_n, B_n) \geq k_1 \frac{1}{n^{k_2}}$

where $d_{\text{unc}}(A_n, B_n) = \inf_{\Delta A, \Delta B} \|[\Delta A \ \Delta B]\|$ s.t. $(A + \Delta A, B + \Delta B)$ uncontrollable.

robustly controllable \implies control energy grows *exactly* exponentially in *n*

^{*}[Tsiamis and Pappas, 2022]

Control energy exponents for single-input networks

$$|\mathcal{K}| = 1 \implies \mathcal{W}_n = Q_n \mathcal{C}_n \overline{Q}_n^{\top}, \quad Q_n = V_n \operatorname{diag}(V_n^{-1} B_n) \\ [\mathcal{C}_n]_{ij} = -\frac{1}{\lambda_i^{(n)} + \overline{\lambda}_j^{(n)}}, \quad \left\{\lambda_i^{(n)}\right\} \text{ eigenvalues of } A_n$$

 \triangleright i)-ii) $\implies \lambda_{\min}(\mathcal{W}_n) \approx \lambda_{\min}(\mathcal{C}_n)$, \mathcal{C}_n Cauchy matrix with closed-form \mathcal{C}_n^{-1}

Theorem: If $|\mathcal{K}| = 1$, i)-iii) hold and $\{A_n\}$ admits a (sufficiently regular) asymptotic eigenvalue density $\phi(\cdot)$. Then,

$$ho_{\mathsf{w}} = 2 \max_{\lambda \in \operatorname{supp}(\phi)} \int_{\mathbb{C}} \log \left| \frac{\overline{\lambda} + \mu}{\lambda - \mu} \right| \phi(\mu) \, \mathsf{d}\mu.$$

Symmetric line network

$$A_{n} = \begin{bmatrix} -\delta & \alpha & \cdots & \cdots & 0 \\ \alpha & -\delta & \alpha & \cdots & 0 \\ 0 & \alpha & -\delta & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \alpha \\ 0 & \cdots & 0 & \alpha & -\delta \end{bmatrix}, B_{n} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \delta, \alpha >$$

 (A_n, B_n) robustly controllable \checkmark

$$\phi(\lambda) = \frac{\mathbf{1}_{[-\delta-2\alpha,-\delta+2\alpha]}(\lambda)}{\pi\sqrt{4\alpha^2 - (\lambda+\delta)^2}}$$

0

Complete symmetric random network

Complete random network

$$A_n = \frac{1}{\sqrt{n}}\bar{A}_n - \delta I, \quad [\bar{A}_n]_{ij} \sim \mathcal{N}(0, \sigma^2), \quad B_n = \begin{bmatrix} 0\\ \vdots\\ \vdots\\ 0 \end{bmatrix}, \quad \delta > 0$$

 $\delta = 3, \sigma = 1$ $Im(\lambda)$ + Re(λ) $1/\pi$ 3 $\phi(\lambda)$ 0 5 4 3 $-\frac{1}{n}\ln\lambda_{\min}(W_n)$ 2 ρ_w 1 20 80 100 5 40 60

п

[1]

 (A_n, B_n) quasi normal (?) (A_n, B_n) robustly controllable (?)

$$\phi(\lambda) = rac{\mathbf{1}_{\{|m{z}+\delta| \leq \sigma\}}(\lambda)}{\pi \sigma^2}$$

(asymptotically almost surely)

Outline

- O Structural vs. practical network controllability
- \odot $\;$ Control energy scaling and network structure $\;$
- Control energy exponents

Take aways

Practical controllability examines the energy needed to control a system
 In (almost) symmetric nets, control energy grows exponentially in the size

▷ For single input nets, closed-form expressions for the exponential rate

Ongoing work

- ▷ Theory: control energy exponents in the multi-input case?
- \triangleright Applications I: real nets \rightarrow estimates of eigenvalues density?
- ▷ Applications II: quantify (dis)advantage of adding memory to nodes

- G.B., F. Pasqualetti, S. Zampieri, "Energy-Aware Controllability of Complex Networks", Annu. Rev. Control Robot. Auton. Syst. 5, 2002
- G.B., S. Zampieri, "Worst-case control energy of single-input network systems", NecSys 2022
- G.B., S. Zampieri, "Reachable Volume of Large-Scale Linear Network Systems: The Single-Input Case", CDC 2022
- G.B., S. Zampieri, "Controllability of Large-Scale Networks: The Control Energy Exponents", IEEE TCNS, 2023 (to appear)