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Network controllability, in a nutshell

dynamic units

ẋi = f (xi ,
∑

j∈Ni xj , ui(t)) G = (V , E)

u(t)

sparsely interacting, + sparse actuation

when and how easily can we enforce a desired configuration of {xi}?

how this depends on the structure and size of G?

(this talk)

when and how easily can we enforce a desired configuration of {xi}?

how this depends on the structure and size of G?
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A multidisciplinary interest

12 May, 2011

...
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Network controllability: standard setting

u(t)

G = (V , E), |V| = n

A = adjacency matrix of G

ẋ(t) = Ax(t) + Bu(t)

B selects a subset of control nodes K ⊆ V

xn

x2 x3

x1

x0

xf = target state

xn

x2 x3

x1

xf

x0

u ?

controllability =
∃ u(t),T : x(0) = x0, x(T ) = xf, ∀x0, xf

xn
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xf = target state

xn

x2 x3

x1

xf

x0

u ?

controllability =
∃ u(t),T : x(0) = x0, x(T ) = xf, ∀x0, xf

⇐
⇒

rank
[
B AB · · · An−1B

]
= n

Kalman rank condition
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Network controllability: structural approach

u(t)

G = (V , E), |V| = n

A = adjacency matrix of G

ẋ(t) = Ax(t) + Bu(t)

B selects a subset of control nodes K ⊆ V

structural controllability =
∃ edge weights s.t. network is controllable

=⇒
controllability for almost all choices of weights!

captures the role of network topology

can be checked via graphical conditions

efficient algorithms to find smallest set K
ensuring structural controllability

[Lin, 1974], [Liu et al., 2011],...
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Network controllability: practical approach

u(t)

G = (V , E), |V| = n

A = adjacency matrix of G

ẋ(t) = Ax(t) + Bu(t)

B selects a subset of control nodes K ⊆ V

xn

x2 x3

x1

x0 = 0

xf∃ u

How much energy is needed?
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Network controllability: practical approach

u(t)

G = (V , E), |V| = n

A = adjacency matrix of G

ẋ(t) = Ax(t) + Bu(t)

B selects a subset of control nodes K ⊆ V

Energy needed to reach xf:∫ T

0
‖u?(t)‖2dt = x>f W−1

T xf

WT =
∫ T

0
eAtBB>eAtdt

Controllability Gramian in [0,T ]:

Minimum-energy control input:

u?(t) = B>eA>(T−t)W−1
T xf, t ∈ [0,T ]
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Network controllability: practical approach

Energy needed to reach xf:∫ T

0
‖u?(t)‖2dt = x>f W−1

T xf

[Kalman, Ho, Narendra, 1963]
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Network controllability: practical approach

Energy needed to reach xf:∫ T

0
‖u?(t)‖2dt = x>f W−1

T xf

Control energy metrics:

λ−1
min(WT ) = worst-case control energy for unit norm xf

1
n tr(W−1

T ) = average control energy for unit norm xf

n
√

det(W−1
T ) = volume of reachable set with unit input energy

tr(WT ) = (H2 system norm)2, no direct link to control energy

λmax(WT ) = best-case control energy for unit norm xf

[Kalman, Ho, Narendra, 1963]

polynomially
equivalent in n

polynomially
equivalent in n
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Network controllability: practical approach

Energy needed to reach xf:∫ T

0
‖u?(t)‖2dt = x>f W−1

T xf

[Kalman, Ho, Narendra, 1963]

For a given control energy metric:

1. How the control energy depends on the structure and size of A?
[Pasqualetti et al., 2014], [Olshevsky, 2016], [Lindmark and Altafini, 2018],...

2. How to select K so as to minimize the control energy?
[Summers et al., 2015], [Tzoumas et al., 2016], [Nozari et al., 2019]...

this talk
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Difficult- and easy-to-control networks

standing assumption: {(An,Bn)}n∈N, An ∈ Rn×n stable, |K| ≤ m indep. of n

Wn :=
∫ ∞

0
eAntBnB>n eA>

n tdt

Def: The growing network with adjacency matrix An and input matrix Bn is

. difficult-to-control if ∃ k1, k2 > 0 indep. of n s.t. λmin(Wn) ≤ k1e−k2n

. easy-to-control if 6 ∃ k1, k2 > 0 indep. of n s.t. λmin(Wn) ≤ k1e−k2n

. difficult-to-control = worst-case control energy grows exponentially or faster in n

. easy-to-control = worst-case control energy grows less than exponentially in n
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Toy example

. . .
1 2 3 n

α

An =



−δ 0 · · · · · · 0
α −δ 0 · · · 0
0 α −δ · · · ...
... ... ... ... ...
0 · · · 0 α −δ

, Bn =



1
0
...
...
0

, δ, α > 0

5 10 15

10−15

10−12

10−9

10−6

10−3

n

α =
1

α = 2

α = 3

α = 4

λmin(Wn) (δ = 1)

Wn linked to symmetric Pascal matrix,
closed-form expressions for W−1

n

λmin(Wn) ≤ k1

(
1 + 2δ

α

)−2n

k1 > 0 indep. of n

=⇒
=⇒

difficult-to-control ∀α, δ > 0
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A (large) class of difficult-to-control networks

Def: The sequence {An}n∈N is quasi-normal if An is diagonalizable with eigen-
vector matrix Vn and

∃ k1, k2 > 0 indep. of n s.t. κ(Vn) = ‖Vn‖‖V−1
n ‖ ≤ k1nk2

An quasi-normal ≈ An close to be normal (AnA>n = AnA>n )

Theorem: If the following hold:
i) {An} is quasi-normal
ii) the eigenvalues of An belong to a compact set of {s ∈ C, Re(s) < 0}
Then, the growing network with adjacency matrix An and input matrix Bn is
difficult-to-control.
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How difficult is it to control a difficult-to-control network?

For difficult-to-control nets with control energy that grows exponentially in n
the exponential growth rate can be used as a quantifier of control difficulty

Def: The (worst-case) control energy exponent of the growing network de-
scribed by {(An,Bn)}n∈N is

ρw = lim sup
n→∞

−1
n lnλmin(Wn).

The larger ρw , the more difficult to control the network

How to evaluate ρw ?
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Ingredients

i) {An} quasi-normal

ii) the eigenvalues of An belong to a compact set of {s ∈ C, Re(s) < 0}

iii) {(An,Bn)} robustly controllable

Def:* The sequence {(An,Bn)}n∈N is robustly controllable if

∃ k1, k2 > 0 indep. of n s.t. dunc(An,Bn) ≥ k1
1

nk2

where dunc(An,Bn) = inf∆A,∆B ‖[∆A ∆ B]‖ s.t. (A + ∆A,B + ∆B) uncontrollable.

*[Tsiamis and Pappas, 2022]

robustly controllable =⇒ control energy grows exactly exponentially in n
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Control energy exponents for single-input networks

. |K| = 1 =⇒ Wn = Qn Cn Q>n , Qn = Vndiag(V−1
n Bn)

[Cn]ij = − 1
λ

(n)
i + λ

(n)
j

,
{
λ

(n)
i

}
eigenvalues of An

. i)-ii) =⇒ λmin(Wn) ≈ λmin(Cn), Cn Cauchy matrix with closed-form C−1
n

Theorem: If |K| = 1, i)-iii) hold and {An} admits a (sufficiently regular)
asymptotic eigenvalue density φ(·). Then,

ρw = 2 max
λ∈supp(φ)

∫
C

log
∣∣∣∣∣λ + µ

λ− µ

∣∣∣∣∣φ(µ) dµ.
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Symmetric line network

. . .

1 2 3 n

α

α

An =



−δ α · · · · · · 0
α −δ α · · · 0
0 α −δ · · · ...
... ... ... ... α
0 · · · 0 α −δ

, Bn =



1
0
...
...
0

, δ, α > 0

(An,Bn) robustly controllable

φ(λ) = 1[−δ−2α,−δ+2α](λ)
π
√

4α2 − (λ + δ)2

λ
0

φ(λ)

−5 −1

5 20 40 60 80 100
1

2

3

4

5

n

− 1
n
lnλmin(Wn)

ρw

δ = 3, α = 1

18



Complete symmetric random network

..
.

An = 1
2
√

n (Ān + Ā>n )− δI , [Ān]ij ∼ N (0, σ2), Bn =



1
0
...
...
0

, δ > 0

(An,Bn) robustly controllable
(asymptotically almost surely)

φ(λ) =

√
2σ2 − (λ + δ)2

πσ2 1[−δ−
√

2σ,−δ+
√

2σ](λ)

(asymptotically almost surely)

λ
0

φ(λ)

−3−
√
2 −3 +

√
2

5 20 40 60 80 100
1

2

3

4

5

6

n

− 1
n
lnλmin(Wn)

ρw

δ = 3, σ = 1
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Complete random network

..
.

An = 1√
nĀn − δI , [Ān]ij ∼ N (0, σ2), Bn =



1
0
...
...
0

, δ > 0

(An,Bn) quasi normal (?)

(An,Bn) robustly controllable (?)

φ(λ) = 1{|z+δ|≤σ}(λ)
πσ2

(asymptotically almost surely)

Re(λ)

0

Im(λ)

5 20 40 60 80 100
1

2

3

4

5

n

− 1
n
lnλmin(Wn)

ρw

δ = 3, σ = 1

φ(λ)

1/π

0

3
|
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Take aways

. Practical controllability examines the energy needed to control a system

. In (almost) symmetric nets, control energy grows exponentially in the size

. For single input nets, closed-form expressions for the exponential rate

Ongoing work

. Theory: control energy exponents in the multi-input case?

. Applications I: real nets → estimates of eigenvalues density?

. Applications II: quantify (dis)advantage of adding memory to nodes
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