

Network GPS: Navigating network dynamics

Baruch Barzel Bar-Ilan University www.barzellab.com

tional Cyber Directorate - Prime Minis

Ministry of Science, Technology and Space

Going beyond mapping

Going beyond mapping

Network dynamics

UNDERSTAND

PREDICT

INFLUENCE

Dynamics layer

 A_{ii} Weighted, directed topology

 M_0, M_1, M_2 Intrinsic nonlinear interaction mechanisms

Gao, Barzel, Barabási. Nature 530, 307 (2016) • Barzel, Barabási. Nature Physics 9, 673 (2013)

Dynamics layer

Gao, Barzel, Barabási. Nature 530, 307 (2016) • Barzel, Barabási. Nature Physics 9, 673 (2013)

Dynamics layer

Gao, Barzel, Barabási. Nature 530, 307 (2016) • Barzel, Barabási. Nature Physics 9, 673 (2013)

Bringing networks to life

patterns of information spread

Information flow in complex networks

Information flow in complex networks

- When (τ_i)
- Where (l_{ij})
- How strongly (Δx_i)
- How $(\mathcal{F}_i, \mathcal{F}_{ij})$

Identical networks yield visibly distinct propagation patterns

Interaction mechanisms

Interaction mechanisms

Taming the zoo of propagation patterns

$$au_i \sim k_i^{ heta}$$

A node's intrinsic response time scales with its weighted degree

Why should you care?

Universal $au_i \sim k_i^{ heta}$ heta=0 $\theta = 0$ 10¹ \dot{F}_{10} Ti. 10 10 10⁰ 10¹ 10^{2} 10⁰ 10^1 10^{2} k_i k_i $\theta = 1$ 10 10³ $+ \frac{i}{\mathcal{L}}^{10^3}$ ₩ 10² 10 10 10 $\frac{10^{1}}{k_{i}}$ $k_{i}^{10^{1}}k_{i}^{10^{2}}$ 10⁰ 10^{2} 10^{0} heta=-1 $\theta = -1$ 10 10 ₩ 10⁻¹ °≈ 10⁻¹ 10 10-2 10 10 10⁰ 10^1 10² 10² 10⁰ 10^1 k_i k_i

Dynamic insight

Different interpretations of scale-freeness. All boils down to a single analytically predictable parameter θ

Dictionary of network dynamics

Microscopic Diversity condenses into a discrete set of Universality classes that determine how Topology translates into observable Dynamics

Understand

B. Barzel et al. Nature Communications **7186** (2015), Nature Biotechnology **31** (2013).

Information flow

each link, pathway?

The zoo of information flow patterns

Taming the zoo of information flow patterns

 $\mathcal{F}_i \sim k_{i,\text{out}} k_{i,\text{in}}^{\omega-1}$

$$\mathcal{F}_{ij} \sim A_{ij} k_{i,out} k_{i,in}^{\xi-1} k_{j,in}^{\xi}$$

The zoo universal information flow patterns

Universal classes of information flow patterns

 $\mathcal{F}_i \sim k_{i,\text{out}} k_{i,\text{in}}^{\omega-1}$

Hub centric

Egalitarian

Peripheral

Glycolysis: do cells prefer traffic jams?

Control

H. Sanhedrai, J. Gao, M. Schwartz, S. Havlin and B. Barzel. Nature Physics 18, 338 (2022)

Inaugural meeting on network dynamics & networks of networks

January 29 – February 1, 2024 | Yehuda Hotel, Jerusalem

Control

H. Sanhedrai, J. Gao, M. Schwartz, S. Havlin and B. Barzel. Nature Physics 18, 338 (2022)

Dynamic transitions - irreversible

Dynamic transitions - irreversible

Dynamic transitions - irreversible

Reigniting the network activity

Can you reignite a failed system by controlling just one node?

Single node reigniting – reviving the failed system by activating one node

Theory of network dynamics was brought to you by

See more at: https://www.barzellab.com/