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Huygens correctly attributed the synchrony to tiny forces 
transmitted by the wooden beam from which they were suspended.

Synch is an old problem in physics: The sympathetic clocks of Huyghens    

Christiaan Huyghens
(1629-1695)
discovered what he 
called “an  odd kind 
of sympathy” between 
the clocks: regardless 
of their initial state,  
both adopted the 
same rhythm 

The clocks were coupled

The clocks were similar



Synchronization in networked dynamical systems
Synchronization of networked dynamical units is the collective behavior
characterizing the functioning of most natural….

Brain dynamics

World clima ?

Heart beating

Animal behaviourin

http://www.google.es/imgres?espv=210&es_sm=122&biw=1280&bih=670&tbm=isch&tbnid=6PmdtPW4iuILFM:&imgrefurl=http://iopscience.iop.org/0295-5075/87/4/48007/fulltext/&docid=fgeU1MXTG9U11M&imgurl=http://ej.iop.org/images/0295-5075/87/4/48007/Full/epl12071fig2.jpg&w=372&h=260&ei=FgtsUvyFCePy7AaXuYC4CQ&zoom=1&ved=1t:3588,r:22,s:0,i:154


and man-made systems..

Human behaviour

Internet
Financial markets !?

Power grids



The transition to synchronization
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Second order-like 
transition (presence 
of intermediate 
phases)

Hysteresis

First order-like transition 
(no intermediate phases)
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Synchronization corresponds to a transition from a fully disordered, 
gaseous-like, phase to a fully ordered, solid-like, state











In Class II systems d λ2 > ν* warrants stability of synchronization.    

In Class III systems, the entire spectrum of Laplacian eigenvalues 
must fall (when multiplied by d) in between ν*1 and ν*2. 
The two conditions d λN < ν*2   and   d λ2 > ν*1 must be verified.
The former condition gives a bound for the coupling strength 
the latter provides once again the threshold for synchronization.

Class I systems defy 
synchronization. 
Neither the synchronized 
solution nor any other 
cluster-synchronized 
state will ever be stable

Unveiling the path to synchrony (I)



Has “synchronizability”  any sense?



Unveiling the path to synchrony (II)
There are three conceptual steps that need to be made.

First step (unfolding the trasverse space)

• As d progressively increases, the eigenvalues λi cross the
critical point sequentially.
All eigenvalues will cross the critical point one by one (if
not degenerate) in the reverse order of their size.

• At each value of d one can consider the subspace T (d)
having as orthonomal basis the set of eigenvectors {vi}
whose corresponding λi (multiplied by d) have already
crossed the stability threshold.
Therefore, T (d) will ALWAYS (i.e., at all values of d)
contain only contracting directions.



Unveiling the path to synchrony (III)

The second step (examining eigenvector componentwise!) 

If one constructs the matrix V having as columns the eigenvectors 

then the rows of V provide an orthonormal basis as well!!

This is because the columns of V are an orthonormal basis, implying that 
V VT = I or, equivalently, that VT = V-1.  Therefore,  I = V-1 V = VT V.

The relevant consequence is that one can now examine the
eigenvectors componentwise!!!



Unveiling the path to synchrony (IV)



Unveiling the path to synchrony (V)



Third step (localized spectral blocks)

The third step consists in considering the fact that the Laplacian
matrix L uniquely defines G, and as so any clustering property of G
should be reflected into a corresponding spectral feature of L.

Definition
A subset S(i1,...,ik) consisting of k-1 eigenvectors forms a spectral
block localized at nodes (i1, . . . , ik) if
• each eigenvector belonging to the subset has all entries (except

i1, . . . , ik ) equal to 0;
• for each other eigenvector not belonging to the subset, the

entries i1, . . . , ik are all equal

Moreover, all eigenvectors (v2, v3, …, vN ) are orthogonal to v1, and
therefore the sum of all their entries must be equal to 0.

Unveiling the path to synchrony (VI)



Unveiling the path to synchrony (VII)



Consequences of the theorem 

• The matrices Sn may have entries equal to 2 also for n >2 (when a
subset of eigenvectors unfolding T forms a localized spectral
block).

• Conceptually, the nodes belonging to a given cluster are
indistinguishable to the eyes of any other node of the network,
they receive an equal input from the rest of the network, and
therefore (for the principle that a same input will eventually - i.e.,
at sufficiently large coupling -imply a same output) they may
synchronize independently on the synchronization properties of
the rest of the graph.

Unveiling the path to synchrony (VIII)



• The theorem puts no constraints on the way nodes are connected
within the cluster. Therefore, fulfillment of the theorem is
realized by (but is not limited to) the network's symmetry orbits.

• The situation is therefore that:
a) all symmetry orbits in graph G give rise to clusters that

may synchronize during the transition;
b) the condition for clusters to synchronize is more general

than constituting a symmetry orbit: the only requirement
is that they receive an equal input from the rest of the
network;

c) clusters that are being formed in the transition constitute
specific (external) equitable partitions of G

• Therefore, our study clarifies once forever that the
intermediate structured states in the path to synchrony of a
network are more general than the graph's symmetry orbit, but
more specific than the graph's equitable partitions.

Unveiling the path to synchrony (IX)



Unveiling the path to synchrony (X)
Finally, we can …cook the cake!

The algorithm to completely describe the path to synchronization
consists in the following steps:
• given a network G, one considers the Laplacian matrix L, and

extracts its N eigenvalues λi (ordered in size) and the corresponding
eigenvectors vi. One then calculates the matrices Eλi and Sn;

• one inspects the matrices Sn in the same order with which the
Laplacian's eigenvalues (when multiplied by d) crosses the critical
point (N, N-1, N-2, ..., 2, 1), and looks for entries which are equal to 2;

• when, for the first time in the sequence (say, for index p) an entry in
matrix Sp is (or multiple entries are) found equal to 2, a prediction is
made that an event will occur in the transition: the cluster (or
clusters) formed by the nodes with labels equal to those of the found
entry (entries) will synchronize at the coupling strength value ν*/λp .
The inspection of matrices Sn then continues, focusing only on the
entries different from those already found to be 2 at level Sp;

• once having inspected all Sn matrices, one obtains therefore the
complete description of the sequence of events occurring in the
transition, with the exact indication of all the values of the critical
coupling strengths at which each of such events is occurring.



An Illustration: Fully connected weighted network
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• {10,9,8,7} • {6,5,4} 
joins 
{10,9,8,7}

• All 
clusters 
join

The predicted path to synchrony 



The perfectly verified (and universal) path to synchrony!!! 

Lorenz system
(coupling on the x variable)

ν*= 7.322

Roessler system
(coupling on the y variable)

ν*= 0.179



Large size synthetic networks

N=1,000

Two symmetry orbits leading
to two distinct clusters:
20 nodes (Cluster 1) 
10 nodes (Cluster 2).

N=10,000

Four symmetry orbits leading
to four distinct clusters:
1,000 nodes (Cluster 1) 
300 nodes (Cluster 2)
100 nodes (Cluster 3) 
30 nodes (Cluster 4)



The PowerGrid network of the USA

N=4,941 with 6594 links

381 clusters found
involving 871 nodes

We selected 6 clusters.
The expected critical
Values of d = ν*/λ are

d1 = 0.179 x 0.25 = 0.04475
d2 = 0.179 x 0.333 = 0.0596
d3 = 0.179 x 0.5 = 0.0895
d4 = 0.179 x 0.723 = 0.1294
d5 = 0.179 x 1 = 0.179
d6 = 0.179 x 1.707 = 0.3056

Homogeneous case

Heterogeneous case
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