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Synch is an old problem in physics: The sympathetic clocks of Huyghens

The clocks were coupled Christiaan Huyghens

,/' (1629-1695)

ppreypr—— discovered what he

"'::. called "an odd kind
!1'
The clocks were similar

of sympathy” between
the clocks: regardless

Huygens correctly attributed the synchrony to tiny forces

transmitted by the wooden beam from which they were suspended.

of their initial state,
both adopted the
same rhythm




Synchronization in networked dynamical systems

Synchronization of networked dynamical units is the collective behavior
characterizing the functioning of most natural....
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and man-made systems..
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The transition to synchronization

Synchronization corresponds to a transition from a fully disordered,
gaseous-like, phase to a gull ordered, solid-like, state
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GLOBAL SYNCHRONIZATION IN NETWORKS

N
).(,' = f()(,') +0 21: ay[h(xj) — h(X,’)]
j=

» N identical oscillators x; € R™ with vector flow f
» Oscillators coupled diffusively through the coupling function h
, , 1 ifiand jconnected
> Adjacency matrix a; = .
0 otherwise

» o global coupling parameter

N
x; = f(x;) — o ) Lih(x;)
j=1

> Laplacian matrix £; symmetric and zero row sum Z}L Li=0



MASTER STABILITY FUNCTION

» Existence and invariance of the synchronization solution
X1(t) =x2(t) =--- =xn(t) = s(t) obeying s = f(s) is warranted by
the zero-row-sum property of L.

> To study the stability of s, one considers the perturbations
ox;(t) = x;(t) — s(t) and write by the following linear (yet time
dependent) equations

N
(5).(,' = Jf(S)(SX,' -0 Z ﬁ,’th(S)éXj
j=1

being Jf and Jh the corresponding Jacobian matrices of f and h.

» In block form, one has 6x = [Iy ® J(s) - oL ® Jh(s)] 6x, where
0X is the following m- N x 1 vector

0X = (0X11 ... 0Xm1,0X12.. .. 0Xm2, . .. ... OXIN - - - OXmN)



MASTER STABILITY FUNCTION

» As L is zero-row sum and symmetric, it is diagonalizable, and if
one orders by size its N eigenvalues A\; (0 = A1 < X2 <--- < Ap),
one has that A1 = 0 with associated eigenvector

Vi = ﬁﬂ ,1,1,....,1)T which defines the synchronization
manifold!

> All other eigenvectors v; of £ form a basis of the space tangent to
the synchronization manifold!

» The perturbation vector 0x can be expanded on the orthonormal
basis formed by {v;} as

N
0X = Z Vi ® 5,'.
i=1

» Substituting the expansion in the linearized equation, and applying
vi ® I, to the left side of each term, one obtains equations:

& = [JE(s) - oAiJh(s)]¢;.



MASTER STABILITY FUNCTION

> The previous equation can be rewritten as a parametric equation

(v =0)):

£ = [Jh(s) -

vJdh(s) ¢

» The maximum Lyapunov exponent (MLE (v)) defines the Master
Stability Function and its negativity implies that the synchronization

manifold is stable.

MLE
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Complex networks: Structure and dynamics, S. Boccaletti et al

» Class |I: MLE <0 for v > vy, and s is
stable for o > vm/ A2

» Class Il: MLE < O for v € [vm, vm]
and s is stable if An/A2 < 0 < vm/vm

» Class lll: MLE > 0 Vv, the
synchronous solution is never stable

., Phys Rep 424, 175-308 (2006)



Unveiling the path to synchrony (I)

t A(v)

Class Il

Class I

In Class II systems d A, > v* warrants stability of synchronization.

In Class ITI systems, the entire spectrum of Laplacian eigenvalues
must fall (when multiplied by d) in between v*; and v*,.

The two conditions d Ay< v*, and d A, > v*;must be verified.

The former condition gives a bound for the coupling strength

the latter provides once again the threshold for synchronization.



Has "synchronizability” any sense?

Unfortunately, the attention concentrated on a quantity that was called
synchronizability, given by the ratio
Ay

R=—
A'2

between the max and the second smallest eigenvalue of the Laplacian.
Does it make any sense?
For Class I systemsit is just senseless.

For Class IT systems it is even wrong... (the range of coupling strength for
which  synchronization is stable is unbounded), and the threshold only
depends on A; .

Counterexample: take two graphs G; and G, such that A, (61) = 1, Ay (6y) =2
and A, (6,)= 10% , Ay (6,)= 10 .| According to R, G;is more synchronizable
than G, , but the threshold for synch of G;is 45 orders of magnitude (!I!)
smaller than that of G;.

Only for Class III systems, there is some sense to R, but ONLY to indicate
the range of coupling strength for which synch persistsin the stable region,
since the threshold is still depending only on A,



Unveiling the path to synchrony (IT)
There are three conceptual steps that need to be made.

First step (unfolding the trasverse space)

« As d progressively increases, the eigenvalues A, cross the
critical point sequentially.
All eigenvalues will cross the critical point one by one (if
not degenerate) in the reverse order of their size.

« At each value of d one can consider the subspace T (d)
having as orthonomal basis the set of eigenvectors {v;}
whose corresponding A; (multiplied by d) have already
crossed the stability threshold.

Therefore, T (d) will ALWAYS (i.e., at all values of d)
contain only contracting directions.



Unveiling the path to synchrony (ITIT)

The second step (examining eigenvector componentwisel!)

If one constructs the matrix V having as columns the eigenvectors

v1,1 v2,1 cee vN,l
yooo—|V1z V22 " Una
NXN — . . . .
_vl,N vZ,N cee vN,N_

then the rows of V provide an orthonormal basis as well!l

This is because the columns of V are an orthonormal basis, implying that
V VT =T or, equivalently, that VT = V-1. Therefore, I=V1V=VTV,

The relevant consequence is that one can now examine the
eigenvectors componentwiselll



Unveiling the path to synchrony (IV)
The E;. and Sy matrices

In particular, for each 4;,one can consider

V = [vr,l Via vi*N]T
(Vi1 — vi,l)z (Vi2 — Ui,l)z o (Ui — Ui,l)Z_
E, = (in —vi2)* Wiz —vi2)* " (Viy — Vi2)?
i . . :
2 2
(Vi1 —vin)® Wiz —vin)® o (v —vin)?l

These matrices are symmetric, and the diagonal elements are equal to zero.

Then, initialize Sy+,with a zero matrix, and, for i = N: —1:1,
do
51 = Si+1 T Ey,

At the end of this step, one has Sy, Sy_1, ... S1



Unveiling the path to synchrony (V)

The properties of the Sy matrices.

As vy is aligned with the synchronization manifold M, all its
components are equal, and therefore E;, =0 and $;=5,.

All diagonal elements of all S matrices are zero.

The off diagonal (ij) elements of the matrix S, (n=1,..N) are
nothing but the square of the norm of the vector obtained as
the difference between the two 1-norm vectors defined by
rows i and j of matrix V, limited to their n last components.

As so, the maximum value that any entry (ij) may have in matrices
S, is 2, which corresponds to the case in which such two vectors
are orthogonal.

For what said above, all off-diagonal entries of S, are equal to 2.



Unveiling the path to synchrony (VI)

Third step (localized spectral blocks)

The third step consists in considering the fact that the Laplacian
matrix L uniquely defines 6, and as so any clustering property of G
should be reflected into a corresponding spectral feature of L.

Definition
A subset S  ;y consisting of k-1 eigenvectors forms a spectral
block localized at nodes (i, . . . , i) if
« each eigenvector belonging to the subset has all entries (except

iy, . . ., i) equal to O;
* for each other eigenvector not belonging to the subset, the
entries iy, . . . , i, are all equal

Moreover, all eigenvectors (v, v3 vy ) are orthogonal to v;, and
therefore the sum of all their entries must be equal to O.



Unveiling the path to synchrony (VIT)

This allows to demonstrate the Theorem stated below:

Theorem. The 2 following statements are equivalent:

1.

. There is a spectral block S

All k nodes belonging to a cluster defined by the indices (i;, . .
. , i) have the same connections with the same weights with all
other nodes not belonging to the cluster i.e., for any (p, q) €

(iy, .. ..i)and j¥& (iy, . . ., i) one has L= L.

,,,,, iy made of k-1 Laplacian's
eigenvectors localized at nodes (i;, . . . , i)



Unveiling the path to synchrony (VIII)

Consequences of the theorem

The matrices S, may have entries equal to 2 also for n >2 (when a
subset of eigenvectors unfolding T forms a localized spectral
block).

Conceptually, the nodes belonging to a given cluster are
indistinguishable to the eyes of any other node of the network,
they receive an equal input from the rest of the network, and
therefore (for the principle that a same input will eventually - i.e.,
at sufficiently large coupling -imply a same output) they may
synchronize independently on the synchronization properties of
the rest of the graph.



Unveiling the path to synchrony (IX)

The theorem puts no constraints on the way nodes are connected
within the cluster. Therefore, fulfillment of the theorem is
realized by (but is not limited to) the network’'s symmetry orbits.

The situation is therefore that:

a) all symmetry orbits in graph G give rise to clusters that
may synchronize during the transition;

b) the condition for clusters to synchronize is more general
than constituting a symmetry orbit: the only requirement
is that they receive an equal input from the rest of the
network;

c) clusters that are being formed in the transition constitute
specific (external) equitable partitions of &6

Therefore, our study clarifies once forever that the
intermediate structured states in the path to synchrony of a
network are more general than the graph's symmetry orbit, but
more specific than the graph's equitable partitions.



Unveiling the path to synchrony (X)

Finally, we can ...cook the cakel

The algorithm to completely describe the path to synchronization
consists in the following steps:

given a network G, one considers the Laplacian matrix L, and
extracts its N eigenvalues A (ordered in size) and the corresponding
eigenvectors v,. One then calculates the matrices E;;and S,;

one inspects the matrices S, in the same order with which the
Laplacian's eigenvalues (when multiplied by d) crosses the critical
point (N, N-1, N-2, ..., 2, 1), and looks for entries which are equal to 2;
when, for the first time in the sequence (say, for index p) an entry in
matrix S, is (or multiple entries are) found equal to 2, a prediction is
made ‘rha‘r an event will occur in the transition: ’rhe cluster (or
clusters) formed by the nodes with labels equal to those of the found
entry (entries) will synchronize at the coupling strength value v*/A,.
The inspection of matrices S, then continues, focusing only on the
entries different from those already found to be 2 at level S

once having inspected all S, matrices, one obtains ’rherefore the
complete description of the sequence of events occurring in the
transition, with the exact indication of all the values of the critical
coupling strengths at which each of such events is occurring.



An lllustration: Fully connected weighted network

N=10 Sy
Clusters: ‘
£10,0,8.7) . i
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Node

A_, =4.003
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The predicted path to synchrony
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The perfectly verified (and universal) path to synchronylll

Lorenz system

| (coupling on the x variable)

v*=7.322

Roessler system
(coupling on the y variable)

v*=0.179



Large size synthetic networks

0.5

e, JGY ® | N=1,000

Two symmetry orbits leading
to two distinct clusters:

20 nodes (Cluster 1)

10 nodes (Cluster 2).

o g
0.05 ¢, 0.15 0.25 0.35 0.45
d
0.75 -
: b N=10,000
0-5 Four symmetry orbits leading
Es to four distinct clusters:
0.25 1,000 nodes (Cluster 1)

300 nodes (Cluster 2)
100 nodes (Cluster 3)
d. 035 30 nodes (Cluster 4)




The Power6Grid network of the USA

o7l aEN 2 N=4,941 with 6594 links

381 clusters found
involving 871 nodes

We selected 6 clusters.
The expected critical
Values of d = v*/A are

. ) & . CUN d, = 0.179 x 0.25 = 0.04475
' d, = 0.179 x 0.333 = 0.0596
e O° d, =0.179 x 0.5 = 0.0895
° d,=0.179 x 0.723 = 0.1294
0.25 d.=0.179 x 1 =0.179

d;=0.179 x 1.707 = 0.3056
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