Contration Theory for Network Systems

Francesco Bullo

Center for Control,
Dynamical Systems & Computation

University of California at Santa Barbara
https:/ /fbullo.github.io/ctds

Elliit Focus Period Symposium on Network Dynamics and Control
Linkoping, Sweden, Sep 20, 2023

1/51


https://fbullo.github.io/ctds

nowledgments

Veronica Centorrino

Scuola Sup
Meridionale

Giulia De Pasquale
ETH

l,_a &)
[

Anton Proskurnikov
Politecnico Torino

Lily Cothren

UC Boulder UC Boulder

o

Anand Gokhale
UC Santa Barbara

Robin Delabays
HES-SO Sion

Xiaoming Duan
Shanghai Jiao Tong

John W.
Simpson-Porco
University of Toronto

Kevin D. Smith
Utilidata

Giovanni Russo
Univ Salerno

Emiliano Dall'Anese

Alex Davydov
UC Santa Barbara

Saber Jafarpour
GeorgiaTech

Elena Valcher
Universita di Padova

2/51



contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior, no anonymous constants/functions:
@ unique globally exponential stable equilibrium
& two natural Lyapunov functions
@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics
periodic input, periodic output
modularity and interconnection properties
accurate numerical integration and equilibrium point computation

000

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux &
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. €

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. /zvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972. d

@ Systems and control:
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):

683-696, 1998. ¢
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http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

o Incomplete list of scientists who influenced me
Aminzare, Arcak, Chung, Coogan, Corless, Di Bernardo, Manchester, Margaliot, Martins,
Pavel, Pavlov, Pham, Proskurnikov, Russo, Sepulchre, Slotine, Sontag, ...

e Surveys:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In IEEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014b. ¢

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of

complex networks via contraction theory. In Complex Systems and Networks. Springer, 2016. @

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. ¢

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction

metrics. Journal of Computational Dynamics, 10(1):1-47, 2023. @
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http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
http://dx.doi.org/10.1016/j.arcontrol.2021.10.001
http://dx.doi.org/10.3934/jcd.2022018

Our work up to 2022
© contraction theory on non-Euclidean norms ¢ /(..
network contraction theorem

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. IEEE
Transactions on Automatic Control, 67(12):6667—-6681, 2022a. L

S. Jafarpour, A. Davydov, and F. Bullo. Non-Euclidean contraction theory for monotone and positive systems.
IEEE Transactions on Automatic Control, 68(9):5653-5660, 2023. ¢

@ non-Euclidean contractivity & fixed point theory for neural networks

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021. L

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In
American Control Conference, pages 1527-1534, Atlanta, USA, May 2022b. €
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http://dx.doi.org/10.1109/TAC.2022.3183966
http://dx.doi.org/10.1109/TAC.2022.3224094
http://dx.doi.org/10.48550/arXiv.2106.03194
http://dx.doi.org/10.23919/ACC53348.2022.9867357

Recent and ongoing work
@ theory: equilibrium propagation

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex
optimization. |EEE Transactions on Automatic Control, June 2023. 4. Submitted

Q examples

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with
symmetric weights. IEEE Control Systems Letters, 7:1724—1729, 2023b. 4

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics.
IEEE Control Systems Letters, Sept. 2023. 4. Submitted

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Contractivity of competitive neural networks
for sparse reconstruction. Technical Report, Sept. 2023a

© extensions

G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual seminorms, ergodic coefficients, and semicon-
traction theory. IEEE Transactions on Automatic Control, 69(5), 2024. 4. To appear

R. Delabays, S. Jafarpour, and F. Bullo. Multistabilities and anomalies in oscillator models of lossy power grids.
Nature Communications, 13:5238, 2022. @
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http://dx.doi.org/10.48550/arXiv.2305.15595
http://dx.doi.org/10.1109/LCSYS.2023.3278250
http://dx.doi.org/10.48550/arXiv.2309.05873
http://dx.doi.org/10.1109/TAC.2023.3302788
http://dx.doi.org/10.1038/s41467-022-32931-8

Contraction Theory
for Dynamical Systems

Francesco Bullo

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.1 edition, 2023, ISBN 979-8336646806

o

(2}

Textbook with exercises and answers. Format: textbook, slides,
and paperbook

Content:

Fixed point theory

Theory of contracting dynamics on vector spaces

Applications to nonlinear and interconnected systems

Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4

PDF Freely available at
https://fbullo.github.io/ctds

10h minicourse on youtube:
https://youtu.be/RvR47ZbqJjc

Future version to include: systems on Riemannian manifolds,
homogeneous spaces, and solid cones

" Continuous improvement is better than delayed perfection”
Mark Twain
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https://www.amazon.com/dp/B0B4K1BTF4
https://fbullo.github.io/ctds
https://youtu.be/RvR47ZbqJjc

§2. Basic contractivity concepts
@ Basic notions
@ Properties of induced matrix norms and Lipschitz constants
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Induced matrix norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
el =3 lail
n
— 2
lzll2 = Zizl i

l2llee = . |zl

{1}

Al = max a;
Al = max 377 o

= max column “absolute sum” of A

HAH2 = /\maX(ATA)

4o = i, 370l

= max row “absolute sum” of A

m(4) = Je?faxn} (aJJ + Z, L |‘1m|)
absolute value only off-diagonal

o) = A (EA)

2
n
A) = max (a--+ a--)
,Uoo( ) el ii Zj:l,j#il z]|
absolute value only off-diagonal
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Continuous-time dynamics and one-sided Lipschitz constants

& = F(z) on R™ with norm || - || and induced log norm ()

One-sided Lipschitz constant

osLip(F) = inf{b € R such that [F(z) — F(y),z — y] < bllz —y||> for all z,y}
= sup, p(DF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a
= AP+ AP = 2P

= i+ Y laijlni/n; < £
i

IN

osLipy p(Fa) = pa,p(A)

14
OSLipoo,n(FA) = MOO,W(A) ¢

IN
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Banach contraction theorem for continuous-time dynamics:
If —c := osLip(F) < 0, then
@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

ct
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For all matrices A, B € R™*", Lipschitz maps F,G: R®" =+ R"™ and a € R

“the modulus properties”

matrix norms Lipschitz constants
(positive definiteness) Al >0and ||[A] =0 < A=0,x, Lip(F)>0andLip(F)=0 <= F is constant
(homogeneity) ladll = [a 4] Lip(aF) = [a] Lip(F)
(subadditivity) |A+ B|| < ||A| + Bl Lip(F + G) < Lip(F) + Lip(G)
(sub-multiplicativity) |AB| < [JA|||IB Lip(F o G) < Lip(F) Lip(G)

“the real part properties”

matrix log norms one-sided Lipschitz constants
(positive homogeneity)  u(aA) = |a| u(sign(a)A) osLip(aF) = |a| osLip(sign(a)F)
(subadditivity) w(A+ B) < u(A) + p(B) osLip(F + G) < osLip(F) + osLip(G)
(translation property) w(A+al,) =p(A) +a osLip(F + ald) = osLip(F) + a
(uniform monotonicity)  p(A) <0 osLip(F) <0

= A invertible,

[A7L] < —1/u(4) = F injective, Lip(F~!) < —1/osLip(F)

F. Bullo. Contraction Theory for Dynamical Systems. Kindle Direct Publishing, 1.1 edition, 2023. ISBN 979-8836646806. URL https://fbullo.github.io/ctds
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Advantages of non-Euclidean approaches

© well suited for certain class of systems
¢1 for monotone flow systems

© computational advantages
01/l constraints lead to LPs, whereas /5 constraints leads to LMls

© robustness to structural perturbations
{1/l contractions are connectively robust (i.e., edge removal)

© adversarial input-output analysis
lo better suited for the analysis of adversarial examples than ¢

© asynchronous distributed computation
{+ contractions converge under fully asynchronous distributed execution

NonEuclidean contractions: biological transcriptional systems (Russo, Di Bernardo, and Sontag, 2010), Hopfield
neural networks (Fang and Kincaid, 1996; Qiao, Peng, and Xu, 2001), chemical reaction networks (Al-Radhawi,
Angeli, and Sontag, 2020), traffic networks (Coogan and Arcak, 2015; Como, Lovisari, and Savla, 2015;
Coogan, 2019), multi-vehicle systems (Monteil, Russo, and Shorten, 2019), and coupled oscillators (Russo,

Di Bernardo, and Sontag, 2013; Aminzare and Sontag, 2014a)
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Practical stability problem and the counter-intuitive nature of R"

Boris Polyak (1935-2023) used to say “R™ countradicts our intuition”

@ Aim: compute settling time inside a desired set

@ since norms on R™ are equivalent, no formal difference in the choice of norm
@ assume: can tolerate +1 error in each coordinate
— desired set is hypercube = /-ball
e assume: Lyapunov function is V(z) = ||z|3
— need to wait until solution enters unit fy-ball C unit {,.-ball
@ but n-sphere inscribed in n-hypercube is very small fraction!

as n — oo, the ratio of volumes decreases faster than any exponential function

for large n, quadratic Lyap fnctns may provide exponentially conservative estimates

Courtesy of Anton Proskurnikov, Politecnico di Torino
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§3. Example systems
@ Continuous-time recurrent neural networks
@ Constrained, distributed and proximal gradient dynamics

@ Gradient dynamics and Nash equilibria in games
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§1. Introduction

§2. Basic contractivity concepts

§3. Example systems
@ Continuous-time recurrent neural networks

§4. Equilibrium tracking

§5. Conclusions
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Neural network models

Feedforward NN Recurrent NN
@)
O
. 8 -y
@)
O
1 T2 T3 Tk .
zit1 = ©(Aiwi + bi), o =u, = i Ol S 2 b))
y=Cxp+d y=Cz+d

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In American Control Conference,
pages 1527-1534, Atlanta, USA, May 2022b. ¢

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. /EEE
Control Systems Letters, 7:1724-1729, 2023b. €
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http://dx.doi.org/10.23919/ACC53348.2022.9867357
http://dx.doi.org/10.1109/LCSYS.2023.3278250

Example #1: Firing-rate recurrent neural network

& = Fer(z) := —z + &(Wax + Bu)

tanh(y) ReLU(y)

sigmoid, hyperbolic tangent ' , ‘[ )
ReLU = maX{x,O} = (x)_"_ 2 —1 1 2 o A | ]
0< ®j(y) <1 ) )
Fer is infinitesimally contracting wrt || - || with rate 1 — (W), if
poo(W) < 1 (i.e., wi + Zj lwiz| < 1 for all i)

Note: clear graphical interpretation + generalization to interconnection theorem
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Example #2: Firing-rate network with symmetric synapses

0<®(y) <1 and W =W" with Ay = Amax(W)

FeRr is infinitesimally contracting:

(for \w < 0) with rate 1 wrt [ - [l5 12
(for Ay = 0) with rate 1 — e wrt || - [|2.p ., for each ¢ >0
(for 0 < A < 1) with rate 1 — Ay wrt [ - [l2,Q¢r s,

For Aw = 1, Fer is weakly infinitesimally contracting wrt || -

‘2762FR,AVV

Note: when W = W, sharper result, but no graph interpretation and hard to generalize
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§1. Introduction

§2. Basic contractivity concepts

§3. Example systems

@ Constrained, distributed and proximal gradient dynamics

§4. Equilibrium tracking

§5. Conclusions
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Example #3: Gradient dynamics for strongly convex function

Given differentiable, strongly convex f : R” — R with parameter v > 0, gradient dynamics

i = Fo(a) = —Vf(a)

Fg is infinitesimally contracting wrt || - |2 with rate v
unique globally exp stable point is global minimumJ
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Euler discretization theorem

Euler discretization theorem for contracting dynamics
Given arbitrary norm || - || and differentiable F : R* — R", equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that x;+1 = x; + aF(xy) is contracting

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in
Neural Information Processing Systems, Dec. 2021. 4
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http://dx.doi.org/10.48550/arXiv.2106.03194

Example #4: Primal-dual gradient dynamics

strongly convex function f s.t. 0 < Umindn < Hess f = VmaxIn
constraint matrix A sit. 0 < aminlm < AAT < amaxIm (independent rows)
linearly constrained optimization:

min - f()
subj. to Ax =1b

primal-dual gradient dynamics:

[ﬂ = Fppg(z,A) == [_vﬁi)_—bATA]

Fppg is infinitesimally contracting wrt || - ||, p1/2 with rate c

T 1 1 ; 1 i i
P= [In %, ] with @ = = min { —, | and e= gmin {72, D |

aA Im Vmax amax Vmax amax

25 /51



Distributed optimization

p
ou
-

R« 8

o P - s
L R ey

J

4

e

undirected, weighted and connected graph with n nodes and m edges
Laplacian L € R™*", Ay = algebraic connectivity, A2/A,, = synchronizability
oriented incidence matrix B € R™*™

v

Distributed optimization setup
cost function f is decomposable into sum of private cost function

f(z) = ZT,L_l fi(x) where each f; is private to node 7
each node i has a local estimate x[;) of global variable z and x = [z}, ..., 7},]
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Example #b5: Incidence-based distributed gradient

Assume graph is a tree
0=<Aelp-1 X B'B =2 Al

decomposable cost: mingecr ), fi(x) where each f; is v;-strongly convex

{minz[i]ER Z;‘L:l fl($[z])

subj. to  zp; —w; =0 for each edge e = (i, j)

incidence-based distributed gradient (primal-dual gradient, n + m vars):

E = =V [i(@p) = Xeig) Ae T e (ii) Ae for each node i
Ae = T — T for each edge e = (4, 7)

e e e . . 1 .
Fincidence-DistributedG 1S infinitesimally contracting with ¢ = 1% min ; J
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Example #6: Laplacian-based distributed gradient

Given II,, = I,, — 1,1, /n = orthogonal projection onto span{1,}+,
0 < NI, = LN\,
decomposable cost: min,cr >, fi(x) where each f; is v;-strongly convex

{minx[i]GR Z?:l fl(x[l])

subj. to Z?:l aij(a:i — {E]’) =0

Laplacian-based distributed gradient (primal-dual gradient, 2n vars):

iy = —=Vfi(xp) — 20y aig(hi — Aj) for each node i
\ = Sy aij(xi — ) for each node i
1 /A2\2
FLapIacian-DistributedG is infinitesimally contractingT with ¢ = Z (%) Hlin v; J
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A2 /A, = synchronizability parameter from study of oscillator networks via the MSF approach

private functions ¢;(x; — v;)2, for z; € R, v; and ¢; uniformly sampled from [0, 10]
symmetric connected Erd6s-Rényi graph with 40 nodes, 50 graphs for each probability value

Dominant Eigenvalues for saddle matrices

021 —e— Incidence Matrix )’
’ Laplacian Matrix /

g -0.4 /
s
>
5
& -0.6
M
§ 0.8
£ N
A -1.0 <

-1.2

0.2 0.4 0.6 0.8 1.0

Probability of edge

L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical Review Letters, 64(8):821-824, 1990

G. Chen. Searching for best network topologies with optimal synchronizability: A brief review. |[EEE/CAA Journal of Automatica Sinica, 9
(4):573-577, 2022. 4 29/51


http://dx.doi.org/10.1109/jas.2022.105443

Composite optimization

composite minimization (cost = sum of terms with structurally different properties):

x* = argmin f(z) + g(z)

rER”

f :R™ — R is strongly convex and strongly smooth
g : R™ — R is convex, closed, and proper (ccp)

proximal operator: for v > 0, define prox,, : R" — R™ by

. 1 2
prox.,(z) = argming(x) + —|x — 2
vg( ) oeRn ( ) 27" H2

Equivalence:

Q 2™ is minimizer for: mingern f(x) + g(x)

Q z* is fixed point for: ¥ = prox, (z — vV f(z)) for all ~

proximal gradient dynamics: i = FpoxG(T) := —z + prox,,(z — YV f(z)) J

30/51



Examples
constraint and projections:

0, ifxeC
+oo, fz gl
prox,(z) = ()

g(z) =

e.g.: saturation for box constraints

separable cost and diagonal functions:

g(z) = Zz gi(xi)

(prox,(z)), = prox,, (z;)

proximal operator
well-defined for all ccp functions,
generalized form of projection,
non-expansive

gradient algorithms/dynamics for proximal
algorithms/dynamics — nonsmooth, con-
strained, large-scale, and distributed opti-
mization

evaluation of proximal operator requires
small convex optimization,

N. Parikh and S. Boyd. Proximal algorithms. Foundations and
Trends in Optimization, 1(3):127-239, 2014. L
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http://dx.doi.org/10.1561/2400000003

Example #7: Proximal gradient dynamics

proximal gradient dynamics:

& = Fproxg(2) := —2 + prox (z — YV f(z))

© Fpoxg is infinitesimally contracting wrt || - ||2
2 .
for0 <y < 7’ with rate c¢=1—max{|1—v|, |1 —~4},
2 . . 2
for v = oyl with maximal rate ¢* = » —11—/5
@ Fproxc is infinitesimally contracting wrt || - ”2,(“/14—1”)1/2 with rate c =1
if f(z)=1zTAz+bz with A >0 and ~ > 1/Anin(A)
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§1. Introduction

§2. Basic contractivity concepts

§3. Example systems

@ Gradient dynamics and Nash equilibria in games

§4. Equilibrium tracking

§5. Conclusions
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Gradient dynamics and Nash equilibria in games

@ Nash equilibria: existence, uniqueness, computation, convergence for gradient-like
dynamics, robustness

@ games with partial information

@ aggregative games: demand-side management in the smart grid, charging control for
plug-in electric vehicles, spectrum sharing in wireless networks, and network congestion
control

S. Li and T. Basar. Distributed algorithms for the computation of noncooperative equilibria. Automatica, 23(4):523-533, 1987. ¢

M. Arcak and N. C. Martins. Dissipativity tools for convergence to Nash equilibria in population games. |[EEE Transactions on Control of

Network Systems, 8(1):39-50, 2021. ¢
L. Pavel. Dissipativity theory in game theory: On the role of dissipativity and passivity in Nash equilibrium seeking. /[EEE Control Systems,

42(3):150-164, June 2022. ¢

G. Belgioioso, P. Yi, S. Grammatico, and L. Pavel. Distributed generalized Nash equilibrium seeking: An operator-theoretic perspective.
IEEE Control Systems, 42(4):87-102, 2022. 4

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /[EEE Control Systems Letters,
Sept. 2023. 4. Submitted
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http://dx.doi.org/10.1016/0005-1098(87)90081-1
http://dx.doi.org/10.1109/tcns.2020.3029990
http://dx.doi.org/10.1109/mcs.2022.3157119
http://dx.doi.org/10.1109/mcs.2022.3171480
http://dx.doi.org/10.48550/arXiv.2309.05873

Example #8: Saddle dynamics

Assume f: R” x R™ = R
e x — f(x,y) is v,-strongly convex, uniformly in y
e y— f(x,y) is vy-strongly concave, uniformly in =
saddle dynamics (primal-descent / dual-ascent):

m = Fs(z,y) = TVY}@Zﬂ

Fs is infinitesimally contracting wrt || - |2 with rate min{v,,v,}
unique globally exp stable point is saddle point (min in 2, max in y)J
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Example #9: Pseudogradient play

Each player i aims to minimize its own cost function J;(z;, x_;) (not a potential game)

pseudogradient dynamics (aka gradient play in game theory):

& = Fpseudoc(z) = = (Vidi(z1,2-1), ..., Vi dpn (2, 1)) (stacked vector)
< T; = —ViJi(xi,x_i)

e strong convexity wrt x;: J; is u; strongly convex wrt x;, uniformly in z_;
e Lipschitz wrt z_;: Lipxj (Vidi) < 4y, uniformly in z_;
@ FpseudoG gain matrix is Hurwitz
=—>  FpseudoG is infinitesimally contracting wrt appropriate diag-weighted || - |2
if FpseudoG is infinitesimally contracting (wrt any norm)

then unique globally exp stable Nash equilibrium J;(z], z*;) < J;(y;, %) for all y;

36/51



Example #10: Best response play

Each player ¢ aims to minimize its own cost function J;(x;, x_;)
BR; : x_; — argmin, J;(x;,7_;) best response of player i wrt other decisions x_;

best response dynamics:

T = FBR(Z) = BR(ZL‘) — X
< T; = BRi(x_i) — Z;

e strong convexity wrt x;: J; is p; strongly convex wrt x;, uniformly in z_;
o Lipschitz wrt z_;: Lipmj (Vidi) < 4y, uniformly in z_;
=>  BR; is Lipschitz wrt z; with constant ¢;;//;

o Fggr gain matrix is Hurwitz <= BR is a discrete-time contraction

=  BR —Id is infinitesimally contracting wrt appropriate diag-weighted || - ||2

if FgRr is infinitesimally contracting (wrt any norm)
then unique globally exp stable Nash equilibrium (fixed point of BR)

v
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Equivalent statements:

[— ..

© Fpeeudog gain matrix: : : is Hurwitz
RS T T
[ -1 AT

@ FgRr gain matrix: 5 : is Hurwitz
Unt /oo =1
[0 .. Eln/,ul_

© discrete-time Fpr gain matrix: : : is Schur
Unt/pin - 0 |

Aggregative games: J;(z;,7_;) = fi(z;, £ > i1 T5)
assume f; is p;-strongly convex wrt x; and  ¢; = Lip,(Vz, fi(zi,y))

Wi > £; for each agent ¢ =  gain matrix is Hurwitz
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§1. Introduction

§2. Basic contractivity concepts

§3. Example systems

§4. Equilibrium tracking
@ Time-varying gradient dynamics and feedback optimization

§5. Conclusions
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Time-varying optimization

Solving optimization problems via dynamical systems

J]w(t)

" — Optimi u Plant Y
@ = Optimizer(t, u,y) b e

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)

°
°
@ optimization on manifolds (Brockett 1991)
°
°

online and dynamic feedback optimization (Dall'Anese, Dérfler, Simonetto, .. .)

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. /EEE Trans-
actions on Automatic Control, June 2023. 4. Submitted
L. Cothren, F. Bullo, and E. Dall'Anese. Singular perturbation via contraction theory. Technical Report, Sept. 2023
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http://dx.doi.org/10.48550/arXiv.2305.15595

From convex optimization to contracting dynamics — time-varying

Many convex optimization problems can be solved with contracting dynamics

& = F(z,0)

Convex Optimization

Contracting Dynamics

Unconstrained milqn f(z,0) &= —-Vyf(x,0)
rER™
min  f(x,0)
Constrained | z€R" & = —x + Projyg)(x — vV f(z,0))
st. zeX()
Composite miRn f(z,0) +g(x,0) | & = —x +prox, , (v — ¥V f(z,0))
zeR™
min  f(z,0) = —Vaf(z,0)—ATA
Equality zeR™ v f(@,9) ’
st. Az =b(0) A=Az —b(0)
. min  f(z,0) &= =V [f(2,0) = ATVM, p5)(Az + 7A),
Inequality z€R . ’
sit. Az < b(0) A=7(=A+ VM, o) (Az + )
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Equilibrium tracking

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o =+ © C R4

Assume there exist norms || - ||x and || - || s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
e Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Theorem: Incremental ISS any two soltns: x(t) with input 8, and y(t) with input 6,

Df|a(t) —y)llx < —clla(®) —y(®)llx + €0a(t) —Oy(t)]le
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Equilibrium tracking

For parameter-dependent vector field F : R” x R — R™ and differentiable 6 : R>o =+ © C R

Assume there exist norms || - ||x and || - || s.t.
e contractivity wrt z: osLip,(F) < —¢ <0, uniformly in 6
e Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Theorem: Equilibrium tracking for contracting dynamics

© for each fixed 6, there exists a unique equilbrium x*(6)

14
@ the equilibrium map z*(-) is Lipschitz with constant -
c

© Df|lz(t)—2"(0(t)llx < —cllzt)—2"(O®))lx + éllé(t)lle
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Consequences for tracking error

D|lz(t)—z*(0(t)llx < —clla(t)=2*(0@)]x + gHé(t)He

bounded input, bounded error
with asymptotic bound:

) 2 .
limsup [|z(t) — 2*(0())]|x < ) hinsup 10(t)]le
— 00

t—o00 -

bounded energy input, bounded energy error

vanishing input, vanishing error

h min{c,h}t

exponentially vanishing input ~ e~ exponentially vanishing error ~ e~

periodic input, periodic error
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Application: Dynamic feedback optimization

()
(+1ﬁ:0mm&a@ug) u Plant Yy

(stable, fast)

dynamic feedback optimization
online optimization, optimization-based feedback, input/output regulation ... J
min costy (u) + costa(y) N @ = Optimizer (¢, u, y)
subj. to y = Plant(u, w(t)) y = Plant(u, w(t))
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Example #11: Gradient controller

Fast/stable LTI plant with control input w and state/measurement disturbance w(t):

et = Az + Bu+ Fw(t) A Hurwitz
y = Cz + Dw(t)

In singular perturbation limit as ¢ — 0T, steady state map (¥, and Y,,)

y = —CA™'Bu + (D-CA'E) w
——_—— N ,
=: Y’LL = Y,w

Feedback optimization
equilibrium trajectory u*(t) is solution to
min  ¢(u) + P (y(t)) (v-strongly convex ¢, convex )
u
subj to y(t) = Yyu + Y,w(t)
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Example #11: Gradient controller

In singular perturbation limit as ¢ — 0,
E(u,w) = ¢p(u) + Y(Yyu + Yyw), (v-strongly convex in u)

Vil (u, w) = Vo (u) + Y, Voo (Yyu + Yyw)
= Vo(u) + Y, Vi(y) (no need to measure w(t) to compute u(t))

o

Hence, gradient controller is equivalently defined by

i = Foradcen (u, w) = —VE,(u,w) = =V (u) — Y, Vip(YVyu + Yyw)

Equilibrium tracking for the gradient controller

Q osLip, (Fgradctn) < —v (gradient of v-strongly convex function)
@ Lipy,(Feradctrt) = fuw := [|Y, || Lip(Ve)) || Yoo |

y4
limeup [u(t) —w@)] < 2 limsup i)
t—o00 14 t—00
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Example #12: Projected gradient controller

Constrained feedback optimization:
min E(u,w) = ¢(u) + P(Yyu + Yyw) (v strongly convex, £, strongly smooth, £,,)
u

subj. to uel (nonempty, closed, convex. P, = orthogonal projection)

Projected gradient controller (example of proximal gradient dynamics):

i = Fpoc(u,w) 1= —u+ Fy(u—VuE(u,w))
Equilibrium tracking for projected gradient controller At v = ﬁ,
2
Q osLip,(Fpeec) < —cpge := — Y (contractivity prox gradient)
v+4,
2
Lip,, (F = lpgc = 14
Q@ Lip,(Fpec) = frac st
. . lpGe . . .
imsup |lu(t) —u*(t)]| < —S— limsup ||w(t)] (eq tracking)
t—00 Cpgc t—@

v
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§2. Basic contractivity concepts
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Conclusions

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

Ongoing work

© 0 0 ©

equilibrium tracking with noise
applications to optimization-based control

non-expansive dynamics for weakly convex optimization
sparse reconstruction in biologically plausible neural networks
coupled neural-synaptic dynamics for representation learning

polyhedral norms
singular perturbation for feedback optimization, bilevel optimization, Stackelberg games
primal-dual dynamics for inequality constraints

semicontractivity for population games
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