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Control of networked coordination games
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Coordination of self-interested agents

Key difference from controlling complex engineering systems
 incentives to change rather than commands
 system dynamics co-evolve with changing environment

Biology: understanding cooperating 
behavior in social animals

Sociology & Economics: social dilemma 
in modern society
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Experimental game setting to study social diffusion

- 12 participants: 8-10 students, 2-4 computer bots
- Each participant makes a binary choice {0,1} synchronized in 

each round, using the information of how many having chosen 0s 
and 1s in the previous round

- The process finishes when all participants reach the same 
decision or after 24 rounds

- Reward: the faster the game is finished, the more $; the more 
rounds to be on the winning side, the more $

- The bots: First choose 0, then choose 1



Robotic cooperative transportation task

Carry out the task repeatedly; adjust strategies each time
 each time the task is taken as a group game
 new insight into how cooperation emerge as an evolutionary outcome



Outline

• Convergence of game dynamics

• Controlling games through “incentives”
– Uniform reward
– Targeted reward
– Budgeted targeted reward

• Controlling games through “targeted” agents
– Formulation as a Markovian decision process
– Q-learning
– Ergodic condition
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The game model
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Best-response dynamics
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The myopic best response update rule



Coordinating and anti-coordinating agents
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Threshold models



Research goal 
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When coordinator and anti-coordinators coexist
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Consider a game with only two agents, one coordinator and the other anti-
coordinator with both thresholds equal to 0.5     

(coordinator, anti-coordinator)

(A, A) (A, B) (B, B) (B, A) (A, A)



When coordinator and anti-coordinators coexist
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Consider a game with only two agents, one coordinator and the other anti-
coordinator with both thresholds equal to 0.5     

(coordinator, anti-coordinator)

This network will cycle and never reach an equilibrium!

(A, A) (A, B) (B, B) (B, A) (A, A)



When updates take place synchronously 
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Consider a game with only two anti-coordinator with both thresholds 
equal to 0.5, who update synchronously     

Again, this network may cycle and never reach an equilibrium!

When can we expect convergence to an equilibrium?



Asynchronous updating 
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Time instants:
𝑡𝑡 0 21 43 5

Asynchronous clock 

At each time, each agent updates its action with a positive 
probability which is less than 1. 

 This setup makes the decision making process probabilistic



Basic convergence results

A-coordinating: any agent who updates to Strategy A would also do so if 
some agents currently playing B were instead playing A
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Theorem: For a network of A-coordinating agents, when agents update 
asynchronously following the best response rule, the network game 
dynamics converge.



Outline

• Convergence of game dynamics

• Controlling games through “incentives”
– Uniform reward
– Targeted reward
– Budgeted targeted reward

• Controlling games through “targeted” agents
– Formulation as a Markovian decision process
– Q-learning
– Ergodic condition

18



Incentive-based control of A-coordinating networks

Suppose we can offer an incentive r for taking a particular action.
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How much would it cost to have all agents converge to A?

Cases: 
• Uniform incentives
• Targeted incentives
• Targeted incentives subject to a budget constraint 



Uniform incentive-based control
All agents receive the same incentive
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Find the minimum value of the uniform incentive such that the entire 
network converges to A?

• A-coordinating: any agent who updates to Strategy A would also do so 
if some agents currently playing B were instead playing A

• A-monotone: Offering incentives to play A will never lead to an agent to 
switch away from A

• Uniquely-convergent: Offering incentives leads to a unique equilibrium 

Theorem: Every network of A-coordinating agents is A-monotone and 
uniquely convergent.  



Uniform incentive-based control
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Proposition: 
One can construct a finite set R that contains r*

r1 r2 r3 r4 r5 r6 r7 r8 r9R :

Because of the A-monotone property, one can carry out the binary search:

Theorem: 
Within finite steps, binary search solves the uniform reward problem



Targeted incentive-based control
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Suppose it’s possible to offer different rewards to individual agents:



Targeted incentive-based control
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Computationally complex to solve exactly (conjectured to be NP) 

Algorithm: Iteratively choose agents to switch until the desired equilibrium is 
reached or the budget limit is exceeded. 



Targeted incentive-based control
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How should we choose these agents?

Several possibilities: max degree, min required incentives, etc. 

Approach: Iteratively maximize a benefit-to-cost ratio
Benefit = # of agents who switch to A, cost = incentive



Simulation results: Uniform vs. Targeted incentives
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Imitation dynamics



The payoff table (or function) of the game

where            and           

Decision-making: Strategic updating is asynchronous and guided by a 
learning process

The possible environmental states

Stochastic games: The environment changes stochastically
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Assumption: the dynamics of the the enviorenmental state form an 
irreducible and aperiodic Markov chain



Condition for the prevalence of cooperating agents
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Dominance, bistability, and coexistence obtained from replicator 
dynamics are recovered. 
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Markov chain representation
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𝑋𝑋 𝑡𝑡 𝑋𝑋 𝑡𝑡 + 1
asynchronous best response

Markov chain 𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑁𝑁

𝑋𝑋1
𝑋𝑋3

𝑋𝑋4

𝑋𝑋2
𝑃𝑃31

𝑃𝑃12

𝑃𝑃13 𝑃𝑃34

𝑃𝑃24

𝑃𝑃42

1 2
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3
1 2

3

1 2
3

Markov chain
Best response decision making 

rule guarantees that the current 
(joint) action depends only on the 
previous action



Control action
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Control Method
Targeted agent: allowed to be controlled and adopt a given action. 
Ordinary agent: follow the asynchronous best response rule

Control Objective
 Avoid “price of anarchy” “social dilemma”: agents’ selfish decision 

making often leads to undesired outcomes. 

 Some action is preferred.
Maximize the sum of agents’ payoffs



Formulation as a Markovian Decision Process (I)
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State
Joint action of all the players 𝑋𝑋

Control Action 
The joint action of all the targeted players 𝑢𝑢

Utility function
Equip a corresponding utility function for each state 𝑟𝑟 𝑋𝑋

𝑋𝑋 𝑡𝑡
𝑋𝑋 𝑡𝑡 + 1

�𝑋𝑋 𝑡𝑡 + 1

𝑢𝑢𝑖𝑖 𝑡𝑡

�𝑢𝑢𝑖𝑖 𝑡𝑡



Formulation as a Markovian Decision Process (II)
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Policy
a stationary deterministic policy 𝜋𝜋: 𝒳𝒳 → 𝒰𝒰

Objective function 
expected discounted objective function 

𝐽𝐽𝜋𝜋 𝑋𝑋 ≔ 𝐸𝐸𝜋𝜋,𝑋𝑋 0 =𝑋𝑋�
𝑡𝑡=0

∞

𝛽𝛽𝑡𝑡 𝑟𝑟 𝑋𝑋 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

State value
𝑉𝑉∗:𝒳𝒳 → ℛ, which calculates the quality of each state, 

𝑉𝑉∗ 𝑋𝑋 ≔ 𝑚𝑚𝑚𝑚𝑥𝑥𝜋𝜋∈Π 𝐽𝐽𝜋𝜋 𝑋𝑋
Q value
𝑄𝑄∗:𝒳𝒳 × 𝒰𝒰 → ℛ, which calculates for each state-action pair, 

𝑄𝑄∗ 𝑋𝑋,𝑢𝑢 ≔ 𝑟𝑟 𝑋𝑋,𝑢𝑢 + 𝛽𝛽 ∑𝑌𝑌∈𝒳𝒳 𝑃𝑃𝑟𝑟 𝑌𝑌|𝑋𝑋,𝑢𝑢 𝑉𝑉∗ 𝑌𝑌

Optimal policy
𝑢𝑢∗ 𝑋𝑋 =𝑚𝑚𝑟𝑟𝑎𝑎𝑚𝑚𝑥𝑥𝑢𝑢∈𝒰𝒰 𝑄𝑄∗ 𝑋𝑋,𝑢𝑢



Q-learning and ergodic condition
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Q-learning
a recursive learning algorithm for computing the Q-values

𝑄𝑄𝑘𝑘+1 𝑋𝑋,𝑢𝑢 = 𝑄𝑄𝑘𝑘 𝑋𝑋,𝑢𝑢 , if 𝑋𝑋,𝑢𝑢 ≠ 𝑋𝑋 𝑡𝑡 ,𝑢𝑢 𝑡𝑡
𝑄𝑄𝑘𝑘+1 𝑋𝑋,𝑢𝑢 = 𝑄𝑄𝑘𝑘 𝑋𝑋,𝑢𝑢 + 𝛾𝛾𝑘𝑘 𝑟𝑟 𝑋𝑋,𝑢𝑢 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥𝑣𝑣∈𝒰𝒰𝑄𝑄𝑘𝑘 �𝑋𝑋,𝑣𝑣 − 𝑄𝑄𝑘𝑘 𝑋𝑋,𝑢𝑢

if 𝑋𝑋,𝑢𝑢 = 𝑋𝑋 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

Learning rate
Old valueestimate

Ergodicity condition
every state-action pair 𝑋𝑋,𝑢𝑢 occurs infinitely often 

Ergodicity condition is necessary for Q-learning to converge 
to the optimal Q-value



Ergodic condition
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Ergodicity condition
every state-action pair 𝑋𝑋,𝑢𝑢 occurs infinitely often 

Ergodicity condition is necessary for Q-learning to converge 
to the optimal Q-value

Condition 1: One state is always reachable from another state
Condition 2: All-A and All-B are mutually reachable

Condition 1 and condition 2 are equivalent for unbiased 
population and uniformly biased population.



Conclusions and outlook
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Conclusions:
• Under the coordination game model, networks of all coordinating or 

all anti-coordinating agents will almost surely reach an equilibrium in 
finite time.

• Incentive-driven control helps to drive coordinating networks towards 
desired equilibria

• Targeted control can be realized through Q-learning

Outlook:
• More analytical results for stochastic games
• Efficient learning algorithms design
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