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Game theory

Game theory is the study of mathematical models of strategic interactions among
rational agents1

1
Myerson, Roger B. Game theory: analysis of con�ict. Harvard university press, 1991
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Game theory: main ingredients

A set of players I

A set of actions Ai that each player i can take

A reward function ui (ai , a−i ) for each player i

Pure strategy Nash equilibrium (NE) is an action con�guration a such that

ui (ai , a−i ) ≥ ui (bi , a−i ), ∀bi ∈ Ai

Mixed strategy NE is a probability distribution over the action set of each player
such that no one wants unilaterally to deviate
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Example: tra�c lights

Two players at a road intersection, Ai = {go, stop} for each player i

I Row = Player 1
I Column = Player 2

go stop
go −100,−100 1, 0

stop 0, 1 0, 0

Two pure-strategy NE: (go,stop), (stop,go)
I Equilibria are unfair
I Total reward = 1

One mixed-strategy NE: both players play p =

(
1/101
100/101

)
The corresponding action distribution is pp′, i.e.,

go stop
go ∼ 0.01% ∼ 1%
stop ∼ 1% ∼ 98%

I Equilibrium is fair
I Expected total reward = 0

We would like equilibria to maximize the total reward and to be fair
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Information in game theory: why we need mediators

Rewards

go stop
go −100,−100 1, 0

stop 0, 1 0, 0

Equilibria

go stop
go 0% 0%
stop 100% 0%

go stop
go 0% 100%
stop 0% 0%

go stop
go ∼ 0.01% ∼ 1%
stop ∼ 1% ∼ 98%

The outcome that maximizes fairness and total reward is

go stop
go 0% 50%
stop 50% 0

This matrix is not in form pq′

It is not feasible if actions are uncorrelated

To correlate actions, we need a mediator!
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Correlated equilibria

A mediator privately recommends actions according to a publicly known policy

We consider recommendation policy{
(go, stop) with prob 0.5

(stop, go) with prob 0.5

Players follow recommendation only if it is rational to do so.

go stop
go −100,−100 1, 0

stop 0, 1 0, 0

If one gets go, he knows that the other one gets stop, so he goes

If one gets stop, he knows that the other one gets go, so he stops

This simple mediator actually exists, it is tra�c lights!

Take-home message

Information allows to correlate actions and induce desired outcomes
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Information in tra�c: motivation

Equilibria of uncoordinated routing in transportation systems are typically ine�cient

Travel times may be a�ected by uncertainty (accidents, road works)

Uncertainty may be leveraged by a mediator to reduce ine�ciency
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Bayesian transportation networks and �ows

Transportation network → directed multigraph G = (N , E)

For ease of presentation we assume parallel links

Random network state θ with domain Θ

Flow f : Θ→ ∆E

Delay functions τe : R+ ×Θ→ R+ for every link e (increasing and convex in fe)

Given a �ow f , the system cost is the expected travel time on the network

C(f ) =

∫
Θ

∑
e∈ε

fe(θ)τe(fe(θ), θ)dP(θ) .

Flows depend on available information on the network state
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Full information vs No Information

Full-info system optimum �ow

Full-info system-optimum is a �ow that depends on θ and minimizes the system cost,

f ∗FI = arg min
f :Θ→∆ε

C(f ) = arg min
f :Θ→∆ε

∫
Θ

∑
e∈ε

fe(θ)τe(fe(θ), θ)dP(θ).

Full-info equilibrium �ow

System-optimum is not satisfying for users fully informed on θ

Users take paths (links) with minimum delay. The equilibrium is f W ,FI s.t.

f W ,FI
e (θ) > 0 =⇒ τe(f W ,FI

e (θ), θ) ≤ τi (f W ,FI
i (θ), θ) ∀i ∈ E

f W is typically suboptimal in terms of system cost

No-info equilibrium �ow

Users take links with minimum expected delay. The equilibrium is f W ,NI ∈ ∆E s.t.

f W ,NI
e > 0 =⇒ E[τe(f W ,NI

e )] ≤ E[τi (f
W ,NI
i )] ∀i ∈ E
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Example [Das17]

o d

τ1(f1, θ) = θ

τ2(f2) = 1/3 + 2f2

θ =

{
0 prob = 0.5

1 prob = 0.5

One unit of �ow

Full-info system optimum: f ∗(0) =

(
1
0

)
, f ∗(1) =

(
5/6
1/6

)
, C(f ∗) = 17/36

Full-info equilibrium: f W ,FI (0) =

(
1
0

)
, f W ,FI (1) =

(
2/3
1/3

)
, C(f W ,FI ) = 1/2

No-info equilibrium: f W ,NI =

(
11/12
1/12

)
, C(f W ,NI ) = 1/2

Take-home message

Providing information does not help the system at the equilibrium

In general, information can also hurt the system [Acemoglu18]
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Private signals

Public signals do not achieve optimality in tra�c [Tafavoghi17, Das17, Savla22]

We consider private signals: send di�erent signals to users

Signals are route recommendations (revelation principle [Bergemann19])
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Information model

Mediator selects policy π : Θ→ ∆E

πi (θ) is the fraction of agents that receive signal i when the state is θ

Users know the prior dP(θ) and the policy π

Mediator observes state θ and sends signals according to π

Users receive signal and choose route according to their posterior beliefs

According to Bayes' theorem, the posterior belief of users that receive i is

dPi (θ) =
πi (θ)dP(θ)∫

Θ
πi (ω)dP(ω)
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Bayesian user equilibrium

Users receive recommendations, but can deviate

yij fraction of users choosing link j after receiving signal i

Given π and y , the �ow is f π,y (θ) = y ′π(θ). In components,

f π,yj (θ) =
∑
i∈E

πi (θ)yij , ∀j ∈ E

De�nition (Bayesian user equilibrium)

Let Ei [·] denote expected value according to dPi (θ)

Given a policy π, a �ow f π,y (θ) = y ′π(θ) is a Bayesian user equilibrium if
πi (θ)yij > 0 for at least a θ in Θ implies

Ei [τj(f
π,y (θ), θ)] ≤ Ei [τk(f π,y (θ), θ)] ∀k ∈ E ,

13 / 29
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De�nition (Bayesian user equilibrium)

Let Ei [·] denote expected value according to dPi (θ)

Given a policy π, a �ow f π,y (θ) = y ′π(θ) is a Bayesian user equilibrium if
πi (θ)yij > 0 for at least a θ in Θ implies

Ei [τj(f
π,y (θ), θ)] ≤ Ei [τk(f π,y (θ), θ)] ∀k ∈ E ,
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Equilibria characterization

Proposition

Given a policy π, a �ow f π(θ) = (y∗)′π(θ) is a Bayesian user equilibrium if and only if y∗

is a solution of the convex program

y∗ ∈ arg min
y∈RE×E+ :y1=1

Φ (y , π) ,

where

Φ (y , π) =

∫
Θ

∑
e∈E

∫ (y′π(θ))e

0

τe(θ, s)dsdP(θ).

The equilibrium f π is unique for every policy π

y∗ equivalent to Nash equilibrium of a population game with weighted potential
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Problem formulation

The cost of a policy π is the expected total travel time at the corresponding
Bayesian user equilibrium f π, i.e.,

C(π) =

∫
Θ

∑
e

f πe (θ)τe (f πe (θ), θ) dP(θ).

Problem

The system planner wants to �nd π∗ such that

π∗ ∈ arg min
π:Θ→∆E

C(π).

It is a bi-level program, since f π = (y∗)′π and y∗ = arg min Φ (y , π)

Can we simplify the problem?
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Obedience and revelation principle

De�nition: obedience

A policy π is obedient if users do not want to deviate, i.e., if y∗ = I

I ∈ arg min
y∈RE×E+ :y1=1

Φ (y , π) =

∫
Θ

∑
e∈E

∫ (y′π(θ))e

0

τe(θ, s)dsdP(θ).

In other words, π is obedient if f π = π

Revelation principle [Bergemann19]

For every policy π, there always exists an obedient policy π̃ such that C(π) = C(π̃)

Revelation principle implies that we can restrict attention to obedient policies

16 / 29



Problem formulation II

Revelation principle: restrict to obedient policies (f π = π)

Problem

The optimal information policy is

π∗ = arg min
π:Θ→∆E

∫
Θ

∑
e∈E

f πe (θ)τe(f πe (θ), θ)dP(θ)

with
f π = (y∗)′π, y∗ = arg minyΦ(y , π)

The problem is now single-level (C(π) depends directly on π)

The price is that we now have obedience constraints (# constraints = |E|(|E| − 1))
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Some literature

- [Das17] raises the problem and analyzes examples

- [Tafavoghi17] provides su�cient conditions for optimality in a stylized setting

- [Savla22] focuses on computational aspects
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Problem properties

Problem

Find

π∗ = arg min
π:Θ→∆E

∫
Θ

∑
e∈E

πe(θ)τe(πe(θ), θ)dP(θ)

subject to
Ei [τi (π(θ), θ)− τj(π(θ), θ)] ≤ 0 , ∀i , j ∈ E

Properties

The objective function is always convex in π

Obedience constraints are in general non-convex

Obedience constraints are convex with two parallel links and a�ne delay functions
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Price of Anarchy

De�nition

The Price of Anarchy (PoA) is

PoA =
C(π∗)

C(f ∗)
=

∫
Θ

∑
e∈E π

∗
e (θ)τe(π∗e (θ), θ)dP(θ)∫

Θ

∑
e∈E f

∗
e (θ)τe(f ∗e (θ), θ)dP(θ)

PoA ≥ 1 by construction

PoA = 1 i� π∗ = f ∗

Is non-convexity a problem? It depends!

If we search conditions under which optimality can be achieved (PoA=1), no!

I Compute f ∗(θ) for every θ (minimize convex function)

I PoA=1 i� f ∗ satis�es obedience constraints

Finding π∗ when PoA > 1 may be hard because of non-convexity.
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Back to example: can information achieve optimality?

o d

τ1(f1, θ) = θ

τ2(f2) = 1/3 + 2f2

θ =

{
0 prob = 0.5

1 prob = 0.5

Full-info system optimum: f ∗(0) =

(
1
0

)
, f ∗(1) =

(
5/6
1/6

)
,C(f ∗) = 17/36

Is π = f ∗ obedient?

If an agent receives signal s = 1,

E1[τ1] = P(θ = 1|s = 1) =
P(θ = 1)

=π1(1)︷ ︸︸ ︷
P(s = 1|θ = 1)

P(s = 1)
=

1
2
× 5

6
1
2
× 1 + 1

2
× 5

6

=
5

11

E1[τ2] =
1

3
+ 2 (P(θ = 0|s = 1)π2(0) + P(θ = 1|s = 1)π2(1)) =

1

3
+

5

33
=

16

33
>

5

11

Since E1[τ1] ≤ E1[τ2] (same for link 2), f ∗ is obedient, hence π∗ = f ∗ and PoA = 1.
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Two links, a�ne delay functions

Two links, delay functions

τe(ae , be , fe) = ae fe + be , e = 1, 2

a number (for ease of exposition), b random variable

The optimal policy depends on b via x = b1 − b2

Problem

Find π∗1 : Θ→ [0, 1] to minimize∫
Θ

[(x − 2a2)π1(a, x) + (a1 + a2)π21(a, x)]dP(a, x)

under obedience constraints∫
Θ

[(x − a2)π1(a, x) + (a1 + a2)π21(a, x)]dP(a, x) ≤ 0

∫
Θ

[a2 − x + (x − a1 − 2a2)π1(a, x) + (a1 + a2)π21(a, x)]dP(a, x) ≤ 0
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Results: conditions for optimality

Full-info system optimum is

f ∗1 (a, x) =

[
2a2 − x

2 (a1 + a2)

]1
0

Theorem 1 [Cianfanelli23]

Assume that
supp(x) ⊆ [−2a1, 2a2] . (1)

Then, π∗ = f ∗ and PoA = 1 if and only if{
σ2x ≥ E[x ](2a2 − E[x ]) (obedience 1 vs 2)

σ2x ≥ −E[x ](2a1 + E[x ]) (obedience 2 vs 1)
(2)

(1) guarantees that f ∗ does not saturate

(2) is veri�ed i� f ∗ satis�es obedience constraints

Remark: (1) is not necessary
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How much uncertainty do we need?

Example: a1 = 2, a2 = 1

-4 -3 -2 -1 0 1 2

E[x]

0

0.5

1

1.5

2

- Smallest
√
σ2x such that PoA = 1 (optimality)

- ||f W − f ∗||1 in no-information setting as a function of E[x ]

Theorem 1 shows that if σ2x is large, optimality can be achieved more easily

The mediator leverages the uncertainty to persuade the agents

Remark 1: Minimum variance σ2x for optimality depends on distance between
equilibrium and system-optimum

Remark 2: if E[x ] = 0, no uncertainty needed
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What if assumptions are not met?

Theorem 1 [Cianfanelli23]

Assume that
supp(x) ⊆ [−2a1, 2a2] . (3)

Then, π∗ = f ∗ and PoA = 1 if and only if{
σ2x ≥ E[x ](2a2 − E[x ]) (obedience 1 vs 2)

σ2x ≥ −E[x ](2a1 + E[x ]) (obedience 2 vs 1)
(4)

Other results

When (4) violated, we can compute π∗ and PoA to measure suboptimality

We have studied a special case with be uniform in [0, 1] (hence E[x ] = 0), showing
that PoA = 1 for every a, even if (3) is violated
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N links

N parallel links, delay functions

τe(ae , be , fe) = ae fe + be , e = 1, · · · ,N

a number (for ease of exposition), b random variable

Theorem 2 (optimality result)

Assume that

min
e∈E

min
b

∑
i∈E

bi − be
2ai

≥ −1 (5)

Then, PoA = 1 if and only if

E

2
∏
k 6=j

ak +
∑
i

(bi − bj)
∏
k 6=i,j

ak

 (bj − be)

 ≤ 0 , ∀j , e ∈ E (6)

Not much intuition, but...
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N links

Proposition 1

Assume that
E[be ] = c , ∀e ∈ E (7)

E[bibj ]− E[bi ]E[bj ] := Kij = 0 , ∀i 6= j . (8)

Then, π∗ = f ∗ and PoA = 1.

(7) generalizes E[x ] = 0 (recall x = b1 − b2) to the case of N links

(8) was not required with 2 links

Conjecture: Proposition 1 holds true for arbitrary topologies, if all the paths have
same expected free-�ow delay
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The role of correlations: 3 parallel links

3 parallel links with τe = ae fe + be

ae is a number, E[be ] = c for every link e

There are 6 obedience constraints

We focus on "who gets signal 1 (with policy π = f ∗) prefers 1 over 2"

−K11(a2 + a3)− K22a3 + (a2 + 2a3)K12 + a2K13 − K23a2 ≤ 0.

O�-diagonal elements ok covariance K play a role

Example

Assume that b3 is known (Ki3 = 0 for every i), a2 = a3 = 1. Then, the constraint
becomes

K12 ≤
2K11 + K22

3
.

Let K11 = 1,K22 = 2. Then, if K12 > 4/3, the obedience constraint is violated.

Remark: With 2 links, E[x ] = E[b1 − b2] = 0 guarantees optimality, regardless K12 = 0.
With 3 links, this is no longer su�cient (neither necessary)
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Conclusions

Summary

Formulated information design problem in routing games

Su�cient conditions for optimality with N parallel links and a�ne delays

Correlations can hurt the system

Future research lines

Extend results to general topologies and delay functions

Consider information design in other games

Study what happens when multiple routing apps compete for customers

29 / 29



Conclusions

Summary

Formulated information design problem in routing games

Su�cient conditions for optimality with N parallel links and a�ne delays

Correlations can hurt the system

Future research lines

Extend results to general topologies and delay functions

Consider information design in other games

Study what happens when multiple routing apps compete for customers

29 / 29


