

Information design in Bayesian routing games

Leonardo Cianfanelli

Linkoping, September 28th, 2023

Game theory is the study of mathematical models of strategic interactions among rational \mbox{agents}^1

 $^{^1}$ Myerson, Roger B. Game theory: analysis of conflict. Harvard university press, 1991

• A set of players I

- A set of players I
- A set of actions A_i that each player *i* can take

- A set of players I
- A set of actions A_i that each player *i* can take
- A reward function $u_i(a_i, a_{-i})$ for each player *i*

- A set of players I
- A set of actions A_i that each player i can take
- A reward function $u_i(a_i, a_{-i})$ for each player *i*
- Pure strategy Nash equilibrium (NE) is an action configuration a such that

$$u_i(a_i, a_{-i}) \geq u_i(b_i, a_{-i}), \quad \forall b_i \in A_i$$

- A set of players I
- A set of actions A_i that each player i can take
- A reward function $u_i(a_i, a_{-i})$ for each player *i*
- Pure strategy Nash equilibrium (NE) is an action configuration a such that

$$u_i(a_i, a_{-i}) \geq u_i(b_i, a_{-i}), \quad \forall b_i \in A_i$$

• Mixed strategy NE is a probability distribution over the action set of each player such that no one wants unilaterally to deviate

Example: traffic lights

- Two players at a road intersection, $A_i = \{go, stop\}$ for each player *i*
 - ► Row = Player 1
 - ► Column = Player 2

	go	stop
go	-100, -100	1, <mark>0</mark>
stop	0,1	0, 0

Example: traffic lights

- Two players at a road intersection, $A_i = \{go, stop\}$ for each player i
 - ► Row = Player 1
 - Column = Player 2

	go	stop
go	-100, -100	1,0
stop	0,1	<mark>0,0</mark>

- Two pure-strategy NE: (go,stop), (stop,go)
 - Equilibria are unfair
 - ► Total reward = 1

Example: traffic lights

- Two players at a road intersection, $A_i = \{go, stop\}$ for each player i
 - Row = Player 1
 - Column = Player 2

	go	stop
go	-100, -100	1, <mark>0</mark>
stop	0,1	<mark>0,0</mark>

- Two pure-strategy NE: (go,stop), (stop,go)
 - Equilibria are unfair
 - Total reward = 1
- One mixed-strategy NE: both players play $p = \begin{pmatrix} 1/101 \\ 100/101 \end{pmatrix}$
- The corresponding action distribution is pp', i.e.,

	go	stop
go	$\sim 0.01\%$	$\sim 1\%$
stop	$\sim 1\%$	$\sim 98\%$

- Equilibrium is fair
- Expected total reward = 0
- We would like equilibria to maximize the total reward and to be fair

Information in game theory: why we need mediators

• Rewards

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

• Equilibria

	go	stop		go	stop]		go	stop
go	0%	0%	go	0%	100%		go	$\sim 0.01\%$	$\sim 1\%$
stop	100%	0%	stop	0%	0%		stop	$\sim 1\%$	$\sim 98\%$

Information in game theory: why we need mediators

Rewards

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

• Equilibria

	go	stop	
go	0%	0%	go
stop	100%	0%	stop

	go	stop
go	0%	100%
stop	0%	0%

	go	stop
go	$\sim 0.01\%$	$\sim 1\%$
stop	$\sim 1\%$	$\sim 98\%$

• The outcome that maximizes fairness and total reward is

	go	stop
go	0%	50%
stop	50%	0

Information in game theory: why we need mediators

Rewards

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

• Equilibria

	go	stop	
go	0%	0%	e
stop	100%	0%	st

	go	stop	
go	0%	100%	
stop	0%	0%	

	go	stop
go	$\sim 0.01\%$	$\sim 1\%$
stop	$\sim 1\%$	$\sim 98\%$

• The outcome that maximizes fairness and total reward is

	go	stop
go	0%	50%
stop	50%	0

- This matrix is not in form pq'
- It is not feasible if actions are uncorrelated
- To correlate actions, we need a mediator!

• A mediator privately recommends actions according to a publicly known policy

- A mediator privately recommends actions according to a publicly known policy
- We consider recommendation policy

 $\begin{cases} (go, stop) & \text{with prob } 0.5 \\ (stop, go) & \text{with prob } 0.5 \end{cases}$

- A mediator privately recommends actions according to a publicly known policy
- We consider recommendation policy

 $\begin{cases} (go, stop) & \text{with prob } 0.5 \\ (stop, go) & \text{with prob } 0.5 \end{cases}$

• Players follow recommendation only if it is rational to do so.

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

- A mediator privately recommends actions according to a publicly known policy
- We consider recommendation policy

 $\begin{cases} (go, stop) & \text{with prob } 0.5 \\ (stop, go) & \text{with prob } 0.5 \end{cases}$

• Players follow recommendation only if it is rational to do so.

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

• If one gets go, he knows that the other one gets stop, so he goes

- A mediator privately recommends actions according to a publicly known policy
- We consider recommendation policy

 $\begin{cases} (go, stop) & \text{with prob } 0.5 \\ (stop, go) & \text{with prob } 0.5 \end{cases}$

• Players follow recommendation only if it is rational to do so.

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

- If one gets go, he knows that the other one gets stop, so he goes
- If one gets stop, he knows that the other one gets go, so he stops

- A mediator privately recommends actions according to a publicly known policy
- We consider recommendation policy

 $\begin{cases} (go, stop) & \text{with prob } 0.5 \\ (stop, go) & \text{with prob } 0.5 \end{cases}$

• Players follow recommendation only if it is rational to do so.

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

- If one gets go, he knows that the other one gets stop, so he goes
- If one gets stop, he knows that the other one gets go, so he stops
- This simple mediator actually exists, it is traffic lights!

- A mediator privately recommends actions according to a publicly known policy
- We consider recommendation policy

 $\begin{cases} (go, stop) & \text{with prob } 0.5\\ (stop, go) & \text{with prob } 0.5 \end{cases}$

• Players follow recommendation only if it is rational to do so.

	go	stop
go	-100, -100	1,0
stop	0,1	0,0

- If one gets go, he knows that the other one gets stop, so he goes
- If one gets stop, he knows that the other one gets go, so he stops
- This simple mediator actually exists, it is traffic lights!

Take-home message

Information allows to correlate actions and induce desired outcomes

• Equilibria of uncoordinated routing in transportation systems are typically inefficient

- Equilibria of uncoordinated routing in transportation systems are typically inefficient
- Travel times may be affected by uncertainty (accidents, road works)

- Equilibria of uncoordinated routing in transportation systems are typically inefficient
- Travel times may be affected by uncertainty (accidents, road works)
- Uncertainty may be leveraged by a mediator to reduce inefficiency

- Transportation network ightarrow directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- For ease of presentation we assume parallel links

- Transportation network ightarrow directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- For ease of presentation we assume parallel links
- Random network state θ with domain Θ

- Transportation network ightarrow directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- For ease of presentation we assume parallel links
- Random network state θ with domain Θ
- Flow $f: \Theta \to \Delta_{\mathcal{E}}$

- Transportation network ightarrow directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- For ease of presentation we assume parallel links
- Random network state θ with domain Θ
- Flow $f: \Theta \to \Delta_{\mathcal{E}}$
- Delay functions $\tau_e : \mathbb{R}_+ \times \Theta \to \mathbb{R}_+$ for every link *e* (increasing and convex in f_e)

- Transportation network ightarrow directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- For ease of presentation we assume parallel links
- Random network state θ with domain Θ
- Flow $f: \Theta \to \Delta_{\mathcal{E}}$
- Delay functions $\tau_e : \mathbb{R}_+ \times \Theta \to \mathbb{R}_+$ for every link e (increasing and convex in f_e)
- Given a flow f, the system cost is the expected travel time on the network

$$C(f) = \int_{\Theta} \sum_{e \in \varepsilon} f_e(\theta) \tau_e(f_e(\theta), \theta) d\mathbb{P}(\theta) \, .$$

- Transportation network ightarrow directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- For ease of presentation we assume parallel links
- Random network state θ with domain Θ
- Flow $f: \Theta \to \Delta_{\mathcal{E}}$
- Delay functions $au_e : \mathbb{R}_+ imes \Theta o \mathbb{R}_+$ for every link e (increasing and convex in f_e)
- Given a flow f, the system cost is the expected travel time on the network

$$C(f) = \int_{\Theta} \sum_{e \in \varepsilon} f_e(\theta) \tau_e(f_e(\theta), \theta) d\mathbb{P}(\theta) \,.$$

Flows depend on available information on the network state

Full information vs No Information

Full-info system optimum flow

 $\bullet\,$ Full-info system-optimum is a flow that depends on θ and minimizes the system cost,

$$f_{FI}^* = \underset{f:\Theta \to \Delta_e}{\operatorname{arg\,min}} C(f) = \underset{f:\Theta \to \Delta_e}{\operatorname{arg\,min}} \int_{\Theta} \sum_{e \in \varepsilon} f_e(\theta) \tau_e(f_e(\theta), \theta) d\mathbb{P}(\theta)$$

Full information vs No Information

Full-info system optimum flow

• Full-info system-optimum is a flow that depends on heta and minimizes the system cost,

$$f_{FI}^* = \underset{f:\Theta \to \Delta_{\epsilon}}{\arg\min} C(f) = \underset{f:\Theta \to \Delta_{\epsilon}}{\arg\min} \int_{\Theta} \sum_{e \in \varepsilon} f_e(\theta) \tau_e(f_e(\theta), \theta) d\mathbb{P}(\theta)$$

Full-info equilibrium flow

- \bullet System-optimum is not satisfying for users fully informed on θ
- Users take paths (links) with minimum delay. The equilibrium is $f^{W,FI}$ s.t.

$$f_e^{W,FI}(heta) > 0 \implies au_e(f_e^{W,FI}(heta), heta) \leq au_i(f_i^{W,FI}(heta), heta) \quad orall i \in \mathcal{E}$$

• f^{W} is typically suboptimal in terms of system cost

Full information vs No Information

Full-info system optimum flow

• Full-info system-optimum is a flow that depends on heta and minimizes the system cost,

$$f_{FI}^* = \underset{f:\Theta \to \Delta_{\epsilon}}{\arg\min} C(f) = \underset{f:\Theta \to \Delta_{\epsilon}}{\arg\min} \int_{\Theta} \sum_{e \in \varepsilon} f_e(\theta) \tau_e(f_e(\theta), \theta) d\mathbb{P}(\theta)$$

Full-info equilibrium flow

- System-optimum is not satisfying for users fully informed on θ
- Users take paths (links) with minimum delay. The equilibrium is $f^{W,FI}$ s.t.

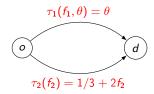
$$f_e^{W,FI}(heta) > 0 \implies au_e(f_e^{W,FI}(heta), heta) \leq au_i(f_i^{W,FI}(heta), heta) \quad orall i \in \mathcal{E}$$

• f^{W} is typically suboptimal in terms of system cost

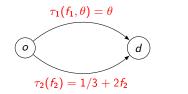
No-info equilibrium flow

• Users take links with minimum expected delay. The equilibrium is $f^{W, \textit{NI}} \in \Delta_\mathcal{E}$ s.t.

$$f_e^{W,NI} > 0 \implies \mathbb{E}[au_e(f_e^{W,NI})] \le \mathbb{E}[au_i(f_i^{W,NI})] \quad \forall i \in \mathcal{E}$$

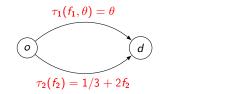


$$heta = egin{cases} 0 & \mbox{prob} = 0.5 \ 1 & \mbox{prob} = 0.5 \end{cases}$$



$$\theta = egin{cases} 0 & \mbox{prob} = 0.5 \ 1 & \mbox{prob} = 0.5 \end{cases}$$

- One unit of flow
- Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}$, $C(f^*) = 17/36$



$$heta = egin{cases} 0 & ext{prob} = 0.5 \ 1 & ext{prob} = 0.5 \end{cases}$$

- One unit of flow
- Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}, C(f^*) = 17/36$
- Full-info equilibrium: $f^{W,FI}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f^{W,FI}(1) = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}, C(f^{W,FI}) = 1/2$

- One unit of flow
- Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}$, $C(f^*) = 17/36$

• Full-info equilibrium: $f^{W,FI}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f^{W,FI}(1) = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}, C(f^{W,FI}) = 1/2$

• No-info equilibrium: $f^{W,NI} = \begin{pmatrix} 11/12 \\ 1/12 \end{pmatrix}$, $C(f^{W,NI}) = 1/2$

Example [Das17]

- One unit of flow
- Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}$, $C(f^*) = 17/36$

• Full-info equilibrium: $f^{W,FI}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f^{W,FI}(1) = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}, C(f^{W,FI}) = 1/2$

• No-info equilibrium: $f^{W,NI} = \begin{pmatrix} 11/12 \\ 1/12 \end{pmatrix}$, $C(f^{W,NI}) = 1/2$

Take-home message

- Providing information does not help the system at the equilibrium
- In general, information can also hurt the system [Acemoglu18]

• Public signals do not achieve optimality in traffic [Tafavoghi17, Das17, Savla22]

- Public signals do not achieve optimality in traffic [Tafavoghi17, Das17, Savla22]
- We consider private signals: send different signals to users

- Public signals do not achieve optimality in traffic [Tafavoghi17, Das17, Savla22]
- We consider private signals: send different signals to users
- Signals are route recommendations (revelation principle [Bergemann19])

- Mediator selects policy $\pi:\Theta \to \Delta_{\mathcal{E}}$
- $\pi_i(heta)$ is the fraction of agents that receive signal i when the state is heta

- Mediator selects policy $\pi:\Theta o \Delta_{\mathcal{E}}$
- $\pi_i(heta)$ is the fraction of agents that receive signal i when the state is heta
- ullet Users know the prior $d\mathbb{P}(heta)$ and the policy π

- Mediator selects policy $\pi:\Theta o \Delta_{\mathcal{E}}$
- $\pi_i(heta)$ is the fraction of agents that receive signal i when the state is heta
- Users know the prior $d\mathbb{P}(heta)$ and the policy π
- $\bullet\,$ Mediator observes state θ and sends signals according to $\pi\,$

- Mediator selects policy $\pi:\Theta o \Delta_{\mathcal{E}}$
- $\pi_i(heta)$ is the fraction of agents that receive signal i when the state is heta
- Users know the prior $d\mathbb{P}(heta)$ and the policy π
- $\bullet\,$ Mediator observes state θ and sends signals according to $\pi\,$
- Users receive signal and choose route according to their posterior beliefs

- Mediator selects policy $\pi:\Theta o \Delta_{\mathcal{E}}$
- $\pi_i(heta)$ is the fraction of agents that receive signal *i* when the state is heta
- ullet Users know the prior $d\mathbb{P}(heta)$ and the policy π
- $\bullet\,$ Mediator observes state θ and sends signals according to $\pi\,$
- Users receive signal and choose route according to their posterior beliefs
- According to Bayes' theorem, the posterior belief of users that receive i is

$$d\mathbb{P}_i(heta) = rac{\pi_i(heta)d\mathbb{P}(heta)}{\int_{\Theta}\pi_i(\omega)d\mathbb{P}(\omega)}$$

• Users receive recommendations, but can deviate

Bayesian user equilibrium

- Users receive recommendations, but can deviate
- y_{ij} fraction of users choosing link j after receiving signal i

Bayesian user equilibrium

- Users receive recommendations, but can deviate
- y_{ij} fraction of users choosing link j after receiving signal i
- Given π and y, the flow is $f^{\pi,y}(\theta) = y'\pi(\theta)$. In components,

$$f_j^{\pi,y}(heta) = \sum_{i \in \mathcal{E}} \pi_i(heta) y_{ij} \,, \qquad orall j \in \mathcal{E}$$

Bayesian user equilibrium

- Users receive recommendations, but can deviate
- y_{ij} fraction of users choosing link j after receiving signal i
- Given π and y, the flow is $f^{\pi,y}(\theta) = y'\pi(\theta)$. In components,

$$f_j^{\pi,y}(heta) = \sum_{i \in \mathcal{E}} \pi_i(heta) y_{ij} , \qquad orall j \in \mathcal{E}$$

Definition (Bayesian user equilibrium)

- Let $\mathbb{E}_i[\cdot]$ denote expected value according to $d\mathbb{P}_i(\theta)$
- Given a policy π , a flow $f^{\pi,y}(\theta) = y'\pi(\theta)$ is a Bayesian user equilibrium if $\pi_i(\theta)y_{ij} > 0$ for at least a θ in Θ implies

 $\mathbb{E}_i[\tau_j(f^{\pi,y}(\theta),\theta)] \leq \mathbb{E}_i[\tau_k(f^{\pi,y}(\theta),\theta)] \quad \forall k \in \mathcal{E},$

Proposition

Given a policy π , a flow $f^{\pi}(\theta) = (y^*)'\pi(\theta)$ is a Bayesian user equilibrium if and only if y^* is a solution of the convex program

$$y^{*} \in \underset{y \in \mathcal{R}_{+}^{\mathcal{E} \times \mathcal{E}} : y 1 = 1}{\operatorname{arg min}} \Phi(y, \pi),$$

where

$$\Phi(y,\pi) = \int_{\Theta} \sum_{e \in \mathcal{E}} \int_{0}^{(y'\pi(\theta))_e} \tau_e(\theta,s) ds d\mathbb{P}(\theta).$$

Proposition

Given a policy π , a flow $f^{\pi}(\theta) = (y^*)'\pi(\theta)$ is a Bayesian user equilibrium if and only if y^* is a solution of the convex program

$$y^{*} \in \underset{y \in \mathcal{R}_{+}^{\mathcal{E} \times \mathcal{E}} : y 1 = 1}{\operatorname{arg min}} \Phi(y, \pi),$$

where

$$\Phi(y,\pi) = \int_{\Theta} \sum_{e \in \mathcal{E}} \int_{0}^{(y'\pi(\theta))_e} \tau_e(\theta,s) ds d\mathbb{P}(\theta).$$

- The equilibrium f^{π} is unique for every policy π
- y^* equivalent to Nash equilibrium of a population game with weighted potential

• The cost of a policy π is the expected total travel time at the corresponding Bayesian user equilibrium f^{π} , i.e.,

$$C(\pi) = \int_{\Theta} \sum_{e} f_{e}^{\pi}(\theta) \tau_{e} \left(f_{e}^{\pi}(\theta), \theta \right) d\mathbb{P}(\theta).$$

• The cost of a policy π is the expected total travel time at the corresponding Bayesian user equilibrium f^{π} , i.e.,

$$C(\pi) = \int_{\Theta} \sum_{e} f_{e}^{\pi}(\theta) \tau_{e} \left(f_{e}^{\pi}(\theta), \theta \right) d\mathbb{P}(\theta).$$

Problem

The system planner wants to find π^* such that

 $\pi^* \in \operatorname*{arg\,min}_{\pi:\Theta o \Delta_{\mathcal{E}}} {\mathcal C}(\pi).$

• The cost of a policy π is the expected total travel time at the corresponding Bayesian user equilibrium f^{π} , i.e.,

$$C(\pi) = \int_{\Theta} \sum_{e} f_{e}^{\pi}(\theta) \tau_{e} \left(f_{e}^{\pi}(\theta), \theta \right) d\mathbb{P}(\theta).$$

Problem

The system planner wants to find π^* such that

$$\pi^* \in \operatorname*{arg\,min}_{\pi:\Theta \to \Delta_{\mathcal{E}}} C(\pi).$$

- It is a bi-level program, since $f^{\pi} = (y^{*})'\pi$ and $y^{*} = \arg\min\Phi\left(y,\pi
 ight)$
- Can we simplify the problem?

Definition: obedience

A policy π is obedient if users do not want to deviate, i.e., if $y^* = I$

$$I \in \argmin_{y \in \mathcal{R}_+^{\mathcal{E} \times \mathcal{E}}: y \mathbf{1} = \mathbf{1}} \Phi\left(y, \pi\right) = \int_{\Theta} \sum_{e \in \mathcal{E}} \int_0^{(y' \pi(\theta))_e} \tau_e(\theta, s) ds d\mathbb{P}(\theta).$$

In other words, π is obedient if $f^{\pi}=\pi$

Revelation principle [Bergemann19]

- For every policy π , there always exists an obedient policy $\tilde{\pi}$ such that $C(\pi) = C(\tilde{\pi})$
- Revelation principle implies that we can restrict attention to obedient policies

• Revelation principle: restrict to obedient policies $(f^{\pi} = \pi)$

Problem

The optimal information policy is

$$\pi^* = \underset{\pi:\Theta \to \Delta_{\mathcal{E}}}{\arg\min} \int_{\Theta} \sum_{e \in \mathcal{E}} f_e^{\pi}(\theta) \tau_e(f_e^{\pi}(\theta), \theta) d\mathbb{P}(\theta)$$

with

$$f^{\pi} = (y^*)'\pi, \quad y^* = \arg\min_y \Phi(y,\pi)$$

• Revelation principle: restrict to obedient policies $(f^{\pi} = \pi)$

Problem

The optimal information policy is

$$\pi^* = \underset{\pi:\Theta \to \Delta_{\mathcal{E}}}{\arg\min} \int_{\Theta} \sum_{e \in \mathcal{E}} \pi_e(\theta) \tau_e(\pi_e(\theta), \theta) d\mathbb{P}(\theta)$$

subject to

$$\mathbb{E}_i[\tau_i(\pi_i(\theta),\theta)-\tau_j(\pi_j(\theta),\theta)]\leq 0,\quad\forall i,j\in\mathcal{E}$$

- The problem is now single-level ($C(\pi)$ depends directly on π)
- The price is that we now have obedience constraints (# constraints = $|\mathcal{E}|(|\mathcal{E}|-1))$

- [Das17] raises the problem and analyzes examples
- [Tafavoghi17] provides sufficient conditions for optimality in a stylized setting
- [Sav|a22] focuses on computational aspects

Problem

Find

$$\pi^* = \argmin_{\pi:\Theta \to \Delta_{\mathcal{E}}} \int_{\Theta} \sum_{e \in \mathcal{E}} \pi_e(\theta) \tau_e(\pi_e(\theta), \theta) d\mathbb{P}(\theta)$$

subject to

$$\mathbb{E}_i[\tau_i(\pi(\theta),\theta) - \tau_j(\pi(\theta),\theta)] \leq \mathsf{0}\,, \quad \forall i,j \in \mathcal{E}$$

Problem

Find

$$\pi^* = \argmin_{\pi:\Theta \to \Delta_{\mathcal{E}}} \int_{\Theta} \sum_{e \in \mathcal{E}} \pi_e(\theta) \tau_e(\pi_e(\theta), \theta) d\mathbb{P}(\theta)$$

subject to

$$\mathbb{E}_i[au_i(\pi(heta), heta)- au_j(\pi(heta), heta)]\leq \mathsf{0}\,,\quad orall i,j\in\mathcal{E}$$

Properties

- The objective function is always convex in π
- Obedience constraints are in general non-convex
- Obedience constraints are convex with two parallel links and affine delay functions

Definition

The Price of Anarchy (PoA) is

$$PoA = \frac{C(\pi^*)}{C(f^*)} = \frac{\int_{\Theta} \sum_{e \in \mathcal{E}} \pi_e^*(\theta) \tau_e(\pi_e^*(\theta), \theta) d\mathbb{P}(\theta)}{\int_{\Theta} \sum_{e \in \mathcal{E}} f_e^*(\theta) \tau_e(f_e^*(\theta), \theta) d\mathbb{P}(\theta)}$$

- $\textit{PoA} \geq 1$ by construction
- PoA = 1 iff $\pi^* = f^*$

Definition

The Price of Anarchy (PoA) is

$$PoA = \frac{C(\pi^*)}{C(f^*)} = \frac{\int_{\Theta} \sum_{e \in \mathcal{E}} \pi_e^*(\theta) \tau_e(\pi_e^*(\theta), \theta) d\mathbb{P}(\theta)}{\int_{\Theta} \sum_{e \in \mathcal{E}} f_e^*(\theta) \tau_e(f_e^*(\theta), \theta) d\mathbb{P}(\theta)}$$

•
$$PoA \ge 1$$
 by construction

- PoA = 1 iff $\pi^* = f^*$
- Is non-convexity a problem? It depends!
- If we search conditions under which optimality can be achieved (PoA=1), no!
 - Compute $f^*(\theta)$ for every θ (minimize convex function)
 - PoA=1 iff f* satisfies obedience constraints
- Finding π^* when PoA > 1 may be hard because of non-convexity.

• Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}$, $C(f^*) = 17/36$

- Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}$, $C(f^*) = 17/36$
- Is $\pi = f^*$ obedient?
- If an agent receives signal s = 1,

$$\mathbb{E}_{1}[\tau_{1}] = \mathbb{P}(\theta = 1 | s = 1) = \frac{\mathbb{P}(\theta = 1) \underbrace{\mathbb{P}(s = 1 | \theta = 1)}_{\mathbb{P}(s = 1)} = \frac{\frac{1}{2} \times \frac{5}{6}}{\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{5}{6}} = \frac{5}{11}$$

- Full-info system optimum: $f^*(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f^*(1) = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}$, $C(f^*) = 17/36$
- Is $\pi = f^*$ obedient?
- If an agent receives signal s = 1,

$$\mathbb{E}_{1}[\tau_{1}] = \mathbb{P}(\theta = 1|s = 1) = \frac{\mathbb{P}(\theta = 1) \underbrace{\mathbb{P}(s = 1|\theta = 1)}_{\mathbb{P}(s = 1)} = \frac{\frac{1}{2} \times \frac{5}{6}}{\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{5}{6}} = \frac{5}{11}$$

$$[-1] = \frac{1}{2} + 2 \left(\mathbb{P}(\theta = 0|s = 1) - (0) + \mathbb{P}(\theta = 1|s = 1) - (1)\right) = \frac{1}{2} + \frac{5}{2} + \frac{16}{2} - \frac{5}{2}$$

$$\mathbb{E}_1[\tau_2] = \frac{1}{3} + 2\left(\mathbb{P}(\theta = 0|s = 1)\pi_2(0) + \mathbb{P}(\theta = 1|s = 1)\pi_2(1)\right) = \frac{1}{3} + \frac{5}{33} = \frac{10}{33} > \frac{5}{11}$$

• Since $\mathbb{E}_1[\tau_1] \leq \mathbb{E}_1[\tau_2]$ (same for link 2), f^* is obedient, hence $\pi^* = f^*$ and PoA = 1.

Two links, affine delay functions

• Two links, delay functions

$$\tau_e(a_e, b_e, f_e) = a_e f_e + b_e, \quad e = 1, 2$$

• a number (for ease of exposition), b random variable

Two links, affine delay functions

• Two links, delay functions

$$\tau_e(a_e, b_e, f_e) = a_e f_e + b_e, \quad e = 1, 2$$

- a number (for ease of exposition), b random variable
- The optimal policy depends on b via $x = b_1 b_2$

Two links, affine delay functions

• Two links, delay functions

$$\tau_e(a_e, b_e, f_e) = a_e f_e + b_e, \quad e = 1, 2$$

- a number (for ease of exposition), b random variable
- The optimal policy depends on b via $x = b_1 b_2$

Problem

Find $\pi^*_1:\Theta
ightarrow [0,1]$ to minimize

$$\int_{\Theta} [(x-2a_2)\pi_1(a,x) + (a_1+a_2)\pi_1^2(a,x)]d\mathbb{P}(a,x)$$

under obedience constraints

$$\int_{\Theta} [(x-a_2)\pi_1(a,x)+(a_1+a_2)\pi_1^2(a,x)]d\mathbb{P}(a,x)\leq 0$$

$$\int_{\Theta} [a_2 - x + (x - a_1 - 2a_2)\pi_1(a, x) + (a_1 + a_2)\pi_1^2(a, x)]d\mathbb{P}(a, x) \le 0$$

Results: conditions for optimality

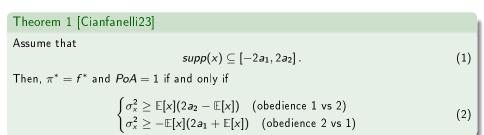
• Full-info system optimum is

$$f_{1}^{*}(a,x) = \left[\frac{2a_{2}-x}{2(a_{1}+a_{2})}\right]_{0}^{1}$$

Results: conditions for optimality

• Full-info system optimum is

$$f_{1}^{*}(a,x) = \left[\frac{2a_{2}-x}{2(a_{1}+a_{2})}\right]_{0}^{1}$$



• Full-info system optimum is

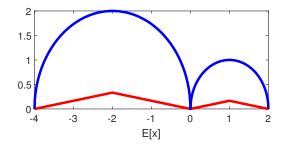
$$f_{1}^{*}(a,x) = \left[\frac{2a_{2}-x}{2(a_{1}+a_{2})}\right]_{0}^{1}$$

Theorem 1 [Cianfanelli23]	
Assume that $supp(x) \subseteq [-2a_1, 2a_2]$.	(1)
Then, $\pi^*=f^*$ and $PoA=1$ if and only if	
$egin{array}{l} \sigma_x^2 \geq \mathbb{E}[x](2a_2-\mathbb{E}[x]) & (ext{obedience 1 vs 2}) \ \sigma_x^2 \geq -\mathbb{E}[x](2a_1+\mathbb{E}[x]) & (ext{obedience 2 vs 1}) \end{array}$	(2)

- (1) guarantees that f^* does not saturate
- (2) is verified iff f^* satisfies obedience constraints
- Remark: (1) is not necessary

How much uncertainty do we need?

Example: $a_1 = 2, a_2 = 1$



- Smallest $\sqrt{\sigma_x^2}$ such that PoA = 1 (optimality) - $||f^W - f^*||_1$ in no-information setting as a function of $\mathbb{E}[x]$

- Theorem 1 shows that if σ_x^2 is large, optimality can be achieved more easily
- The mediator leverages the uncertainty to persuade the agents
- Remark 1: Minimum variance σ_x^2 for optimality depends on distance between equilibrium and system-optimum
- Remark 2: if $\mathbb{E}[x] = 0$, no uncertainty needed

Theorem 1 [Cianfanelli23]

Assume that

$$supp(x) \subseteq [-2a_1, 2a_2].$$
 (3)

Then, $\pi^* = f^*$ and PoA = 1 if and only if

$$\begin{cases} \sigma_x^2 \ge \mathbb{E}[x](2a_2 - \mathbb{E}[x]) & (\text{obedience 1 vs 2}) \\ \sigma_x^2 \ge -\mathbb{E}[x](2a_1 + \mathbb{E}[x]) & (\text{obedience 2 vs 1}) \end{cases}$$

(4)

Theorem 1 [Cianfanelli23]

Assume that

$$supp(x) \subseteq [-2a_1, 2a_2].$$
 (3)

Then, $\pi^* = f^*$ and PoA = 1 if and only if

$$\begin{cases} \sigma_x^2 \geq \mathbb{E}[x](2a_2 - \mathbb{E}[x]) & (\text{obedience 1 vs 2}) \\ \sigma_x^2 \geq -\mathbb{E}[x](2a_1 + \mathbb{E}[x]) & (\text{obedience 2 vs 1}) \end{cases}$$

Other results

- ullet When (4) violated, we can compute π^* and PoA to measure suboptimality
- We have studied a special case with b_e uniform in [0,1] (hence $\mathbb{E}[x] = 0$), showing that PoA = 1 for every *a*, even if (3) is violated

(4)

• N parallel links, delay functions

$$au_e(a_e, b_e, f_e) = a_e f_e + b_e, \quad e = 1, \cdots, N$$

• a number (for ease of exposition), b random variable

• N parallel links, delay functions

$$au_e(a_e, b_e, f_e) = a_e f_e + b_e, \quad e = 1, \cdots, N$$

• a number (for ease of exposition), b random variable

Theorem 2 (optimality result)
Assume that
$$\min_{e \in \mathcal{E}} \min_{b} \sum_{i \in \mathcal{E}} \frac{b_i - b_e}{2a_i} \ge -1$$
(5)
Then, $PoA = 1$ if and only if

$$\mathbb{E}\left[\left(2\prod_{k\neq j}a_k+\sum_i(b_i-b_j)\prod_{k\neq i,j}a_k\right)(b_j-b_e)\right]\leq 0,\quad\forall j,e\in\mathcal{E}$$
(6)

• Not much intuition, but...

Proposition 1

Assume that

$$\mathbb{E}[b_e] = c , \quad \forall e \in \mathcal{E}$$

$$\mathbb{E}[b_i b_j] - \mathbb{E}[b_i] \mathbb{E}[b_j] := K_{ij} = 0 , \quad \forall i \neq j.$$
(8)

Then, $\pi^* = f^*$ and PoA = 1.

Proposition 1

Assume that

$$\mathbb{E}[b_e] = c, \quad \forall e \in \mathcal{E}$$

$$\mathbb{E}[b_i b_j] - \mathbb{E}[b_i] \mathbb{E}[b_j] := K_{ij} = 0, \quad \forall i \neq j.$$
(8)

Then, $\pi^* = f^*$ and PoA = 1.

- (7) generalizes $\mathbb{E}[x] = 0$ (recall $x = b_1 b_2$) to the case of N links
- (8) was not required with 2 links

Proposition 1

Assume that

$$\mathbb{E}[b_e] = c, \quad \forall e \in \mathcal{E}$$

$$i] - \mathbb{E}[b_i]\mathbb{E}[b_j] := K_{ij} = 0, \quad \forall i \neq j.$$
(8)

$$\mathbb{E}[b_i b_j] - \mathbb{E}[b_i] \mathbb{E}[b_j] := K_{ij} = 0, \quad \forall i \neq j.$$

Then, $\pi^* = f^*$ and PoA = 1.

- (7) generalizes $\mathbb{E}[x] = 0$ (recall $x = b_1 b_2$) to the case of N links
- (8) was not required with 2 links
- Conjecture: Proposition 1 holds true for arbitrary topologies, if all the paths have same expected free-flow delay

The role of correlations: 3 parallel links

- 3 parallel links with $au_e = a_e f_e + b_e$
- a_e is a number, $\mathbb{E}[b_e] = c$ for every link e
- There are 6 obedience constraints
- We focus on "who gets signal 1 (with policy $\pi = f^*$) prefers 1 over 2"

 $-K_{11}(a_2+a_3)-K_{22}a_3+(a_2+2a_3)K_{12}+a_2K_{13}-K_{23}a_2\leq 0.$

• Off-diagonal elements ok covariance K play a role

Example

Assume that b_3 is known ($K_{i3} = 0$ for every i), $a_2 = a_3 = 1$. Then, the constraint becomes

$$K_{12} \leq rac{2K_{11}+K_{22}}{3}.$$

Let $K_{11} = 1, K_{22} = 2$. Then, if $K_{12} > 4/3$, the obedience constraint is violated.

Remark: With 2 links, $\mathbb{E}[x] = \mathbb{E}[b_1 - b_2] = 0$ guarantees optimality, regardless $K_{12} = 0$. With 3 links, this is no longer sufficient (neither necessary)

Summary

- Formulated information design problem in routing games
- Sufficient conditions for optimality with N parallel links and affine delays
- Correlations can hurt the system

Summary

- Formulated information design problem in routing games
- Sufficient conditions for optimality with N parallel links and affine delays
- Correlations can hurt the system

Future research lines

- Extend results to general topologies and delay functions
- Consider information design in other games
- Study what happens when multiple routing apps compete for customers