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Outline

« Will discuss work in [1, 2, 3, 4].

1. Tool to achieve synchronization: Discontinuous coupling
to synchronize piecewise-smooth systems.

2. Application of synchronization: Sync. used to solve
minimax flow problem in flow networks.
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Synchronization of
1 piecewise-smooth
systems



Introduction
to the problem



Synchronization

* Sync. appears in many natural and engineered systems.

 |In some cases, it is desired, in others not.
Hence, it's crucial to understand when and how it occurs.

« Often studied with master stability fun. [1], Lyapunov fun. [3].

@ [1]1 L. M. Pecora, T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett., 1998
[2] A. Pikovskij et al., "Synchronization: a universal concept in nonlinear sciences", Cambridge Univ. Press, 2003
[3] A. Arenas et al., “Synchronization in complex networks,” Phys. Rep., 2008
[4] L. Scardovi, R. Sepulchre, “Synchronization in networks of identical linear systems,” Automatica, 2009

[5] P. DeLellis, M. di Bernardo, G. Russo, “On QUAD, Lipschitz, and contracting vector fields for consensus and
synchronization of networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2011




Piecewise-smooth (PWS) systems

« Typical assumption: nodes in the
network have smooth dynamics (ODE).

 Not true in many cases:

 switching control systems,
* mechanical gears,
* neuron and cardiac cells,
e power converters...

Control




Networks of Piecewise-smooth systems

 In several real-world networks,
nodes might be modeled as
piecewise-smooth systems
(discontinuous dynamics):

OUTPUT

« drivelines of vehicles,
power grids,

cell populations,
cooperative robot tasks,
biological neuron networks.




Relevant previous results

Paper | Global sync. Asymptotic sync. | Control Lack of centralised control
[1] v v Yes X
[2] v X No v
[3] X ~ some cases No v
[4] v v Yes v

=

[1] X. Yang, Z. Wu, J. Cao, “Finite-time synchronization of complex networks with nonidentical discontinuous nodes,”
Nonlin. Dyn., 2013.

[2] P. De Lellis, M. di Bernardo, D. Liuzza, “Convergence and sync. in heterogeneous networks of smooth and
piecewise smooth systems,” Automatica, 2015.

[3] S. Coombes, R. Thul, “Synchrony in networks of coupled non-smooth dynamical systems: Extending the master
stability function”, Eur. J. Appl. Math., 2016.

[4] M. Coraggio, P. De Lellis, M. di Bernardo, “Convergence and synchronization in Networks of PWS Systems via
distributed discontinuous coupling”, Automatica, 2022.




Problem formulation ‘ 10

coupling

 Network model:

N
v . — ) — .. . : R L : Laplacian
x; = f(x;) Z Lijgx;,x;), i=1...,N. matrix of graph

J=1
Internal node
dynamics '

« fisin general discontinuous, e.g.,

i) = f"(x), xe8"
® = 1tx). xes




Problem formulation ‘ 1

« We seek sufficient conditions @
for synchronization of the nodes:

lim [|x;(1) - x;(1)]| = 0, Vi, j.

« We want a synchronization that is:

1. Global; (achievable from all initial conditions) /
2. Com plete; (zero asymptotic synchronization error)
3. Without a centralised control.




Main results



Node dynamics: QUAD

 First, we need some regularity condition on the dynamics f.

« QUADnNess Is a typical one, used in smooth networks:
(slightly more flexible than one-sided Lipschitz continuity)

(vi = v2) ' P[f(v)) — £(v2)] < (v — Vz)Tg(Vl —-Vv2) Vv, vo.

« Some discontinuous functions are QUAD.

f(x) A £(x) A
R £

| X |
I > [ >
X

I~ A

QUAD function. Non-QUAD function.




Coupling: linear diffusive

« Consider a linear diffusive coupling:

N
Xi = f(Xi) —@Z LijF(Xj — Xi), [ = 1, c ey N,
j=1

coupling strength

* We seek a threshold value on c to attain synchronization.




Synchronization of PWS QUAD systems 15

(vi =v2) ' P[f(v)) = £(v2)] < (vi —=v2)' Q(vi = v2) Vv, va.
Theorem. Assume:

* fis QUAD(P, Q), with P > 0,
- T'>0.
The network synchronizes if ¢ > ¢*, where

P ﬂZ(Q) AJ
(L) p; gPF))'

agent dynamics

Vol
graph topology coupling protocol
e Proof through a w: matrix measure (logarithmic norm)
] Ha(A) = /lmax(sym(A))a
common Lyapunov function. 15(A) = —1(~A) = Amin(sym(A)),

@ [1] M. Coraggio, P. De Lellis, S. J. Hogan, M. di Bernardo, “Synchronization of Networks of Piecewise-Smooth
Systems,” IEEE Control Syst. Lett., 2(4), 653—658, 2018.




New assumption for node dynamics 16

* Problem: many PWS functions are not QUAD.

f(x) A f(x) A
R £
— -
v\ —.____//
QUAD,  0-QUAD. Not QUAD,  0-QUAD.

« We define o0-QUADnNess, a less restrictive assumption on f :

(vi = v2) ' P[f(v)) = f(v2)] <(vi = v2)" Q(vi — W) Vv, V2

* Now, f can have any number of finite jumps.




Lipschitz-like properties

|  o-QUAD = QUAD affine
1
E
g semi-QUAD
o
SS l c o ,
>\
§O 3 QUAD ontractive 1n no'rm
S 2 Bounds on Jacobian
S| & I
£
One-sided Lipschitz continuous
I
Lipschitz continuous
Lipschitz continuity: I£(v1) = E(v2)|| < O [[vi — V2|
One-sided Lipschitz: (vi — v2)" [f(vi) — f(v2)] < Qlvi — v2|)°
QUADnNesSs: (vi = v2) P[£(vi) = £(v2)] < (vi = v2)" Q (v = V2)



Discontinuous coupling layer

« Start with linear diffusive coupling layer.

« Add a discontinuous coupling layer (even different edges).

cal'gsign(x4 — Xs)

N N
f(i = f(Xi) — Z Ll-jI‘(xj — Xi) —Z Lg.I‘dsign(xj — Xi).




Synchronization of PWS QUAD systems ‘ 19

Theorem. Assume /JE‘/

. fis 0-QUAD(P, Q, M), with P > 0,
. I,T,>0.

The network synchronizes if ¢ > ¢* and ¢, > ¢, where

agent dynamics

. wQ Y

c = , c,= — :
A2(L)  u, (PT) 4 (6g,) n(PTy)

"\ %

coupling protocol

graph topology
Heo(A) = max;(A;; + ijlzl,j?&i |Aij|)’ B
He(A) = —ptoo(—A) = mini(Ai — X1, o |4 ).

[1] M. Coraggio, P. De Lellis, M. di Bernardo, “Convergence and synchronization in networks of piecewise-smooth
systems via distributed discontinuous coupling”, Automatica, 2022
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* J,4: Minimum density of G,; computed from sparsest cut.

* We devised an algorithm and found simple formulae for

selected topologies (complete, star, ring, path, k-nearest-neighbours).



Minimum density for selected topologies ‘ 21

- Complete: 5g = % @
e Star: g = N '7?
2N - 1)
2/N, N e
« Path: 5g = / - Vel T
2N/(N2 = 1), N odd v o
. 4/N, N
* RiIng: 0g = « / 5 e Q
4N/(N2-1), N odd
( -1 7
e |-nearest P 42"7{’,“ k), N even
neighbours: AR Zi}o(l—k) N odd
X N+-1 ’




Examples and numerical
considerations



Example 1: Theorem application \ 23

« Consider N = 30 chaotic relay systems x; = f(x;), with

1.51 1 %

1 0]
f(x;) =1-99.922 0 1|x; - [-2|sign(x; ).
-5 0 0

* These systems are 0-QUAD with

1.51 1 0
P=IL Q=1[-99922 0 1|, M=
0 0

o O O
o O O

-5

o A~ O




Example 1: Theorem application

« Coupling protocol: r=ry,=1,
Diffusive layer: A,(L) = 1;
Discontinuous layer: 6,4 =1.29.

o ¢ =1,(Q) / 2p(L)=50.31, 5" =u, (M) /5 4= 3.10.

2 7.
= 15|
v~ | LT
0.5 - - 0 ' ' ' '
0 200 400 600 0 0.01 0.02 003 004 0.05
[ 5
No synchronization Synchronization
(c=0.1<c", ¢4=0.001<cy). (c=51>c", cy4=32>cy).



 Resilience: how ¢,
changes when edges
are removed?

a) Remove 4 blue & 4 red.

b) Remove 8 green.

Ogda™ Ogdb

(a better than b). LS

So here inter-cluster < , . o

edges are more SR " e

important to have e N \.f

a low threshold c,”. - X
(a)

(b)




Example 3: Relation between layers 26

« N =10 Sprott circuits; s
L: 3-nearest-neighbours; 0025 |

0.8

. . 0.02 |
L,: variable. |
<° 0.015 3 N
0.01
. . L 0.005
 Different syncrhonizability oL §EEEEEIEE
. . . 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
with different topologies. c
0.03 0.03 1
0.025 1 0.025 f ‘
0.02 t 0.8 0.02 0.8
<° 0.015 | <° 0.015 0.6
0.01 | 0.01 0.4
0.005 0.005 0.2
0 ! L] ! -
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

¢ c




ENEIE

0.03

« What is the relation 0.025 !
between the gains? _
Can we find smaller i
thresholds ¢, ¢, that 0.005 | TN
depend on each other? S0 01 o015 002 0025 OO 004 0

&

 We found that discontinuous coupling can also be used to:

« Synchronize heterogeneous agents [1].
« Compensate disturbances.

@ [1] M. Coraggio, P. De Lellis, M. di Bernardo, "Distributed discontinuous coupling for convergence in heterogeneous
networks", IEEE Control System Letters, 2020




The minimax flow
2 problem in flow
networks



Introduction
to the problem



Flow networks

* Flow networks are ubiquitous in nature and engineering.

« Some commodity flows between nodes,
which are suppliers or consumers;




Line faults

 Each edge has a
maximum capacity for the flow.

« If the capacity is met,
a fault occurs.

 We wish to maximize
robustness to such faults. )

 To do so, we aim to
minimize the maximum flow.

U/): close to failure [/]: fine [}: distressed



State of the art ‘ 32

« Minimax problems on graphs have a long history
and many variations exist (e.g. [1]).

 Distributed solutions [2] are important in many applications,
such as new-generation power grids.

« We could not find in the literature our exact problem.

* Yet, in [3], a very similar one Is considered,
providing only an approximate solution.

[1] P. L. Hammer, “Time-minimizing transportation problems: Time-minimizing transportation,” Naval Research Logistics
Quarterly, 19609.

[2] A. Nedi¢ and J. Liu, “Distributed Optimization for Control,” Annu. Rev. Control Robot. Auton. Syst, 2018

[3] S. Z. Anaraki and M. Kalantari, “Acceleration of distributed minimax flow optimization in networks,” 2011 45th Annual
Conference on Information Sciences and Systems, 2011.




Problem statement

« We consider acyclic graphs. i
» Flow network model (static): @)\f
J
Z fij = m;, Y nodes i, ( Z m,-—O). .
edges {i, j} all nodes i
_ ) |fl]| m; ER: |
« Costfunction: J =  max - commodity
all edges {i,j} fij f; ER : flow

f;; € R, - capacity

ST min J,
* Optlmlzatlon m; for supplier nodes i

problem: S.t. M min < M; < M; max, Y supplier nodes i.




Main results



Maximum downstream flows

Definition. For each node i,
maximum downstream flow ¢, is the
maximum flow in the out-tree of node I.

* ¢S give global information but can

be computed with local information:
(exploiting acyclicity of the graph)

fij
{ij,ﬁijT

Jij
‘f;i(f):‘kcb(ﬁﬁi(f)— max {ﬁij&véj(t)})aéi(o)zo

j€out-neig (i) fij

¢i =

max
jeout-neig (i)

Example.

D, : downstream of |
(excluding branches with
consumers only)

pB;; - Boolean to exclude
uncontrollable flows




Main results ‘ 36

Theorem. If the maximum downstream flows ¢; of all suppliers
are equal, then the max flow (J) is minimized.

C*
« We turned the optimization problem A m A
Into a synchronization problem.

Ecr ?

* Proof based on graph-theoretic arguments. A Suppliers

V¥ Consumers

« To achieve synchronization, we use a
distributed control law akin to:

m; = —k¢(¢i — ¢avg)- By - AVErage of

¢; for suppliers




Application to (electrical) microgrids

* The voltage phase angles J(¢) have the dynamic

Dié‘i(l‘) = P; — Zj;vzl Aij sin (5i(t) — 6j(f)) , 1 € suppl.
0=P; - fo\;l A;jsin (6;(¢) —6,(1)), i € cons.

D, : droop coefficient
P; : power
Aj; - weighted incidence matrix

* The steady state solution
is a flow network

B : incidence matrix
f: flows
Bf =P -wD P : power
= do; /dt
D : droop coeff.s

* We minimax f, Commodity = power (P)

. Suppliers = generators (A)
by varying P. Consumers = loads (V)




Control law on powers P,

[ gh ])mini < Pi 1) < ])melx.i .
OEE I L
0, otherwise

A

o2 men{Gano{sm}) L iem,
JEVs|i#At, v =1
7sat A 7

) ,-t:ma{xt} ,
nmx,z( ) X gb}( ) jE(V‘\‘\j#'i,,ﬁ,j:()/

4 1 Recall: : )
H; = _k¢(¢i - ¢avg)- if k= L vk < (VS
P-—{fi’ if (Jk € Vg :v,=0)A
@ (vi=1VG=1)

N L 0, otherwise

1€V

J

D A : i 7n-sat 7Y ( Jn-sat 7sat
Py = —kp <()/ o Qav;’;.i) o AP ((‘)a\';’;.[ o Omax.[)

{L if (P;<P™® A P>0)V

G = (P, > Pmax A P, < 0)

0, otherwise




Simulation results

* Our strategy
achieves same
steady state
costJasa
centralised
solution to the
optimization.

e ... and better
transient.

AT 20+

15

10

20t
L S ———— L 15 \/\———/—\/———
—— 10 b/ : ! ———
t t
Centralised solution. Our distributed strategy.



Conclusion

RECAP:

« Discontinuous coupling can synchronize
piecewise-smooth (and heterogeneous) systems.

« 0-QUADnNess is an extension of one-sided Lipschitz for
discontinuous functions

« The minimum density is an additional metric to capture the
synchronizability of a graph.

* In flow networks, we defined the maximum downstream flows,
which measure the stress caused by a supplier onto the network.

« The minimax flow problem can be solved through synchronization of
the maximum downstream flows.

OPEN CHALLENGES:

 Find less conservative (possibly related) coupling thresholds c*, c;".
« Solve the minimax flow problem in cyclic networks.




Thank you for your attention.

F1 marco.coraggio@unina.it

WWW.Mmarco-coraggio.com

O 3540,




	Sezione predefinita
	Slide 1: Facets of synchronization: discontinuous coupling  and the minimax flow problem
	Slide 2: Outline
	Slide 3: Acknowledgments
	Slide 4: Synchronization of piecewise-smooth systems
	Slide 5: Introduction to the problem
	Slide 6: Synchronization
	Slide 7: Piecewise-smooth (PWS) systems
	Slide 8: Networks of Piecewise-smooth systems
	Slide 9: Relevant previous results
	Slide 10: Problem formulation
	Slide 11: Problem formulation
	Slide 12: Main results
	Slide 13: Node dynamics: QUAD
	Slide 14: Coupling: linear diffusive
	Slide 15: Synchronization of PWS QUAD systems
	Slide 16: New assumption for node dynamics
	Slide 17: Lipschitz-like properties
	Slide 18: Discontinuous coupling layer
	Slide 19: Synchronization of PWS QUAD systems
	Slide 20: Minimum density
	Slide 21: Minimum density for selected topologies
	Slide 22: Examples and numerical considerations
	Slide 23: Example 1: Theorem application
	Slide 24: Example 1: Theorem application
	Slide 25: Example 2: Resilience to faults
	Slide 26: Example 3: Relation between layers 
	Slide 27: Remarks
	Slide 28: The minimax flow problem in flow networks
	Slide 29: Introduction  to the problem
	Slide 30: Flow networks
	Slide 31: Line faults
	Slide 32: State of the art
	Slide 33: Problem statement
	Slide 34: Main results
	Slide 35: Maximum downstream flows
	Slide 36: Main results
	Slide 37: Application to (electrical) microgrids
	Slide 38: Control law on powers Pi
	Slide 39: Simulation results
	Slide 40: Conclusion
	Slide 41
	Slide 42: Appendix
	Slide 43: Heterogeneity
	Slide 44: State of the art
	Slide 45: Semipassivity
	Slide 46: Semipassivity with discontinuous input
	Slide 47: Boundedness of network trajectories
	Slide 48: Synchronization of heterogeneous systems
	Slide 49: Gain thresholds
	Slide 50: Example
	Slide 51: Numerical results
	Slide 52: Appendix
	Slide 53: Key idea
	Slide 54: Synchronization with
	Slide 55: Example 4: A QUAD PWS case
	Slide 56: Example 4: A PWS QUAD case
	Slide 57: Example 5: QUAD PWS with
	Slide 58: Example 5: QUAD PWS with
	Slide 59: Example 3: Relation between layers 
	Slide 60: Appendix
	Slide 61: Sketch of proof (sync of QUAD)
	Slide 62: A struggle between two forces
	Slide 63: Sketch of proof (sync of σ-QUAD)
	Slide 64: The critical bit in the proof
	Slide 65: A piecewise-linear function
	Slide 66: Edges and graph partitions


