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Outline

• Will discuss work in [1, 2, 3, 4].

1.  Tool to achieve synchronization: Discontinuous coupling 

to synchronize piecewise-smooth systems.

2.  Application of synchronization: Sync. used to solve 

minimax flow problem in flow networks.
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1
Synchronization of 
piecewise-smooth 
systems



Introduction
to the problem



• Sync. appears in many natural and engineered systems.

• In some cases, it is desired, in others not.

Hence, it's crucial to understand when and how it occurs.

• Often studied with master stability fun. [1], Lyapunov fun. [5].

Synchronization 6
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• Typical assumption: nodes in the 

network have smooth dynamics (ODE).

• Not true in many cases:

• switching control systems,

• mechanical gears,

• neuron and cardiac cells,

• power converters…

Piecewise-smooth (PWS) systems 7
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• In several real-world networks, 

nodes might be modeled as

piecewise-smooth systems

(discontinuous dynamics):

• drivelines of vehicles,

• power grids,

• cell populations,

• cooperative robot tasks,

• biological neuron networks.

Networks of Piecewise-smooth systems 8
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• Network model:

• f is in general discontinuous, e.g.,

Problem formulation 10
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• We seek sufficient conditions 

for synchronization of the nodes:

• We want a synchronization that is:

1. Global;             (achievable from all initial conditions)

2. Complete;        (zero asymptotic synchronization error)

3. Without a centralised control.

Problem formulation 11



Main results



• First, we need some regularity condition on the dynamics f.

• QUADness is a typical one, used in smooth networks:
(slightly more flexible than one-sided Lipschitz continuity)

• Some discontinuous functions are QUAD.

Node dynamics: QUAD 13

QUAD function. Non-QUAD function.



• Consider a linear diffusive coupling:

• We seek a threshold value on c to attain synchronization.

Coupling: linear diffusive 14
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Theorem. Assume:

• f is QUAD(P, Q), with P > 0,

• Γ > 0.

The network synchronizes if c > c*, where

• Proof through a

common Lyapunov function.

Synchronization of PWS QUAD systems 15

graph topology
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μ: matrix measure (logarithmic norm)

agent dynamics

coupling protocol



• Problem: many PWS functions are not QUAD.

• We define σ-QUADness, a less restrictive assumption on f :

• Now, f can have any number of finite jumps.

New assumption for node dynamics 16

QUAD, σ-QUAD. Not QUAD, σ-QUAD.



Lipschitz-like properties 17

QUADness:

One-sided Lipschitz:

Lipschitz continuity:



• Start with linear diffusive coupling layer.

• Add a discontinuous coupling layer (even different edges).

• We have a multiplex network:

Discontinuous coupling layer 18

x1 x3

x2 x4

x5



Theorem. Assume

• f is σ-QUAD(P, Q, M), with P > 0,

• Γ, Γd > 0.

The network synchronizes if c > c* and cd ≥ cd
*, where

Synchronization of PWS QUAD systems 19

coupling protocol
graph topology
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• δ𝒢 d : minimum density of 𝒢d; computed from sparsest cut.

• We devised an algorithm and found simple formulae for 

selected topologies (complete, star, ring, path, k-nearest-neighbours).

Minimum density 20

sparsest

cut

NP-hard, 

but…



• Complete:

• Star:

• Path:

• Ring:

• l-nearest 

neighbours:

Minimum density for selected topologies 21



Examples and numerical 
considerations



• Consider N = 30 chaotic relay systems               , with

• These systems are σ-QUAD with 

Example 1: Theorem application 23



• Coupling protocol:        Γ = Γd = I; 

Diffusive layer:             λ2(L) = 1; 

Discontinuous layer:    δ𝒢 d = 1.29. 

• c* = μ2(Q) / λ2(L) = 50.31, cd
* = μ∞(M) / δ𝒢 d = 3.10.

Example 1: Theorem application 24

No synchronization

(c = 0.1 < c*,    cd = 0.001 < cd
* ).

Synchronization

(c = 51 > c*,    cd = 3.2 > cd
* ).



• Resilience: how cd
*

changes when edges 

are removed?

a) Remove 4 blue & 4 red.

b) Remove 8 green.

• δ𝒢 d,a > δ𝒢 d,b

(a better than b).

So here inter-cluster 

edges are more 

important to have 

a low threshold cd
*.

Example 2: Resilience to faults 25



• N = 10 Sprott circuits;

L: 3-nearest-neighbours;

Ld: variable.

• Different syncrhonizability 

with different topologies.

Example 3: Relation between layers 26



• What is the relation

between the gains?

Can we find smaller 

thresholds c*, cd
* that 

depend on each other?

• We found that discontinuous coupling can also be used to:

• Synchronize heterogeneous agents [1].

• Compensate disturbances.

Remarks 27
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2
The minimax flow 
problem in flow 
networks



Introduction 
to the problem



• Flow networks are ubiquitous in nature and engineering.

• Some commodity flows between nodes,

which are suppliers or consumers;

Flow networks 30
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• Each edge has a

maximum capacity for the flow.

• If the capacity is met, 

a fault occurs.

• We wish to maximize 

robustness to such faults.

• To do so, we aim to

minimize the maximum flow.

Line faults 31

🟥: close to failure   🟩: fine   🟧: distressed



• Minimax problems on graphs have a long history

and many variations exist (e.g. [1]).

• Distributed solutions [2] are important in many applications, 

such as new-generation power grids. 

• We could not find in the literature our exact problem.

• Yet, in [3], a very similar one is considered, 

providing only an approximate solution.

State of the art 32
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• We consider acyclic graphs.

• Flow network model (static):

• Cost function:

• Optimization

problem:

Problem statement 33

mi ∈ ℝ : 

commodity 

fij ∈ ℝ : flow

f̅ij ∈ ℝ>0 : capacity

i

mi

j

fij



Main results



Definition. For each node i, 

maximum downstream flow ϕi is the 

maximum flow in the out-tree of node i.

• ϕis give global information but can 

be computed with local information:
(exploiting acyclicity of the graph)

Maximum downstream flows 35

ϕi = 0.6

0.4

0.2

0.6

0.2

0.2

i

𝒟i : downstream of i

(excluding branches with 

consumers only)

βij : Boolean to exclude 

uncontrollable flows

Example.



Theorem. If the maximum downstream flows ϕi of all suppliers 

are equal, then the max flow (J )  is minimized.

• We turned the optimization problem

into a synchronization problem.

• Proof based on graph-theoretic arguments.

• To achieve synchronization, we use a 

distributed control law akin to:

Main results 36

ϕavg : average of 

ϕi for suppliers

▲ Suppliers 

▼ Consumers



• The voltage phase angles δi(t) have the dynamic 

• The steady state solution

is a flow network

• We minimax f, 

by varying P.

Application to (electrical) microgrids 37

Commodity = power (P)

Suppliers    = generators (▲)

Consumers = loads (▼)

Di : droop coefficient

Pi : power

Aij : weighted incidence matrix

B : incidence matrix

f : flows

P : power

ω = dδi /dt

D : droop coeff.s



Control law on powers Pi
38

Recall:



• Our strategy 

achieves same 

steady state 

cost J as a 

centralised 

solution to the 

optimization.

• … and better 

transient.

Simulation results 39

Centralised solution. Our distributed strategy.



Conclusion

RECAP:

• Discontinuous coupling can synchronize 

piecewise-smooth (and heterogeneous) systems.

• σ-QUADness is an extension of one-sided Lipschitz for 

discontinuous functions

• The minimum density is an additional metric to capture the 

synchronizability of a graph.

• In flow networks, we defined the maximum downstream flows, 

which measure the stress caused by a supplier onto the network.

• The minimax flow problem can be solved through synchronization of 

the maximum downstream flows.

OPEN CHALLENGES:

• Find less conservative (possibly related) coupling thresholds c*, cd
*.

• Solve the minimax flow problem in cyclic networks.
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