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Improve the representation of clouds/precipitation in climate simulations

Motivation 
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Training Data

• Unified Model high-resolution simulations, 80 
uniformly-spaced Limited-Area Models (LAMs) 
spread across the globe 


• Nested within a global model hindcast (GA6 
configuration)


• Each LAM is 512 x 512 grid-points wide and uses 
a horizontal grid length of 1.5 km


• This combination of LAM and global configuration 
has been used to study a range of atmospheric 
processes on the kilometer-scale.

UK Met Office Unified Model (MetUM)



Training Data

• Split each LAM into coarse patches (2x2) calculate the average and standard 
deviation over each patch.


• Results in a dataset of 12,800 profiles

(a) (b)

The standard 
deviation of 
near-surface 
temperature 
[K] at 00Z on 
1 Jan 2020

Data Coarse Graining
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Gaussian Process

Statistical Model 

Example of a  
single output GP 

• In simple terms, a Gaussian process can be thought of 
as a distribution over functions. 


• Instead of having a single function that maps inputs to 
outputs, a GP defines a probability distribution over 
the possible functions that fit the data.


• Key ingredients:


• Mean function


• Covariance function (encodes assumptions about 
smoothness and periodicity of the data)


• A key advantage of GPs is that they provide not only 
predictions but also uncertainty estimates.



MOGP-Emulator[1]

• Multiple target outputs


• Parallelized optimization and fitting procedures – Multiprocessing (python) 
and GPUs (CUDA)


• Advanced experimental design methods (MICE)

[1] Multiple-Output Gaussian Process: https://github.com/alan-turing-institute/mogp-emulator

Key Features

https://github.com/alan-turing-institute/mogp-emulator


Results - (Sanity Check)
MOGP ‘One-shot’ Prediction Samples - 925hPa (bottom layer)
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Validation

• An example of a testing profile


• MOGP captures the overall 
trend in the vertical direction 
of the standard deviations



Workflow

1. Generate the high resolution training data - Unified Model (Met Office)


2. Train a statistical model to predict  and  at each layer of the atmosphere 


3. Embed the trained model into a coarse resolution climate model

σT σQ



SPEEDY[2] a simplified AGCM

Proof of concept coupling

• SPEEDY (Simplified Parameterizations, privitivE-Equation Dynamics) is a 
simplified GCM (Fortran)


• Run at a very coarse resolution T30 (96 x 48 x 8 grid)


• Computationally cheap (can be run on a laptop)


• Coupled with MOGP by using in-house developed python wrappers

[2] SPEEDY: https://www.ictp.it/research/esp/models/speedy.aspx
http://users.ictp.it/~kucharsk/speedy-net.html



SPEEDY
HYBRID

Experimental set up

10-year simulation 
(1982 – 1992)


Every 6 hours  
and  are predicted

σT
σQ



Experimental set up

• Every 6 hours  and  are predicted


• Cell values are perturbed 

• For cell I:  

•

σT σQ

xi = xi + ϵi

ϵi ∼ N(0,σi + τi)

GP’s predicted uncertainty



Temperature and Specific Humidity

Sanity check for long-term drift

Monthly average at each level of the vertical for temperature and 
specific humidity



Mean Precipitation

Results - Comparison to GPCP

• GPCP is a satellite derived global 
precipitation product and is considered 
to be the ground truth here.


• Reductions in the strength of the double 
Inter-Tropical Convergence Zone (ITCZ) 
and Indian Ocean dipole can be seen


• These are also long standing biases of 
fully fledged GCMs


• 17% reduction in global area-weighted 
RMSE (20% reduction in the tropics)



Robustness and naive perturbations

Results - Comparison to ERA5

• Hybrid run is repeated to test 
robustness


• Perturbing the profiles in a naive 
manner acts as the baseline model 
to compare against.


• Naive approach: The profiles are 
perturbed by additive Gaussian 
noise given by , 
where  is the mean values 
and 

𝒩(0, ϵμT/Q)
μT/Q

ϵ ∈ {0.01,0.05,0.1}



Understand the drivers
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Field differences

Results

• Increase/decrease in 
precipitation is consistent 
with the increases/
decreases in cloud cover 
and radiation patterns.


• Key areas of interest for 
further analysis: 


• Central Africa


• Pacific region off the 
coast of Central America



Increased precipitation

Results - Central Africa

• Lifted index is a measure of the 
atmospheric instability and is used to 
estimate the development of 
thunderstorms. 


• The lifted index is calculated by taking a 
parcel of air from the surface and lifting 
it adiabatically (without heat transfer) to 
a certain level in the atmosphere. 


• The temperature of this lifted parcel is 
then compared to the temperature of the 
surrounding environment at that level.

Lifted Index Stability

Greater than 0 Stable

0 to -4 Marginal Stability

-4 to -7 Large Instability

-7 or less Extreme Instability



Increased precipitation

Results - Central Africa

• The lifted index is 
calculated for each 
time step of the 10 
year simulations.


• Histogram shows an 
increase in large 
unstable values (< -4) 
which contribute to 
extreme precipitation 
events.



Skew-T log-p diagram for thermodynamic profile

Results - Pacific Region

• In this area the precipitation is reduced in the 
hybrid run.


• In the boundary layer, the temperatures and 
humidities are similar leading to similar lifting 
condensation levels for the SPEEDY control 
(black dot) and hybrid experiment (cyan cross) 
and similar moist adiabats for the ascents.


• However, as a result of the different 
tropospheric temperature profiles, the fates of 
the two ascents are quite different.

Dry-bulb temperature in blue, dew-
point in green and surface-parcel 

ascent in orange.



Skew-T log-p diagram for thermodynamic profile

Results - Pacific Region

• In the SPEEDY control these parcel ascents can rise to 
520 hPa,  corresponding to a convective cloud top of 
around 5.3 km where the environment temperature is -2 C. 


• The shaded pink area, the Convective Available 
Potential Energy (CAPE), is 122 J/kg. 


• The hybrid run has a moister troposphere and importantly 
a warmer troposphere. Due to the warmer mid-
troposphere the hybrid experiment has a parcel than can 
only rise as far as 645 hPa.


• This is a height of around 3.6 km where the temperature 
is +7 C. The CAPE is now only 25 J/kg (and the black 
shading can hardly be seen).

∘

∘

Dry-bulb temperature in blue, dew-
point in green and surface-parcel 

ascent in orange.



Conclusions
• Coarse grained high resolution GCM runs to generate a training data set.


• Trained a MOGP model to predict  and  at each level of the atmosphere.
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• Showcased improvements to the simplified GCM biases, in particular biases 
associated with precipitation patterns.


σT σQ



Conclusions
• Coarse grained high resolution GCM runs to generate a training data set.


• Trained a MOGP model to predict  and  at each level of the atmosphere.


• Coupled the trained model to a simplified GCM to augment the dynamics. 
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• Adding mean zero noise has a nonlinear effect to the dynamics.


• Technique could be used in conjunction with ensemble approaches to diversify 
members.


• Apply to other modelling settings (ocean profiles).

σT σQ



Ongoing Work
Fully Fledged GCM 

• Integrating the technique into a 
fully fledged GCM (CESM CAM) 


• This requires a lot of software 
engineering 

• Aim is to use the latest in 
heterogenous computing 
architectures (Nvidia Grace Hopper 
chip)


• Efforts have been led by Scott 
O’Connell (UCL)

ML Model and Training Data 

• DYAMOND dataset


• Investigating alternative ML models 
to predict the standard deviations


• Physics constraints and spatial 
covariances


• In collaboration with the IIT Delhi 
Climate modelling group - Prof. 
Saroj Kanta Misha and Debi Prasad



Integration into CAM
Heterogeneous Computing 

• Nvidia Grace Hopper Superchip


• Ideal for this application where the 
Fortran code can run on the Grace 
CPU and the ML model can run on 
the Hopper GPU (H100)


• Hurdles to get this to work


• ARM based architecture


• Integrate Fortran with Python



Integration into CAM
ARM based architecture  

• Containerised development of CESM


• First instance of CESM running on 
the Grace CPU


• Ease the transition from an x86 
instruction set to ARM.


• Making CESM accessible to new 
users on new machines. 


• Aids with reproducibility


• Github: https://github.com/scotty110/
CESM_Docker

Medium blogpost: https://medium.com/@twins.corgi.0a/
containerizing-cesm-and-porting-to-arm-b9419ed939af

Aqua Planet Simulation on ARM Aqua Planet Simulation on x86

https://github.com/scotty110/CESM_Docker
https://github.com/scotty110/CESM_Docker
https://github.com/scotty110/CESM_Docker
https://medium.com/@twins.corgi.0a/containerizing-cesm-and-porting-to-arm-b9419ed939af
https://medium.com/@twins.corgi.0a/containerizing-cesm-and-porting-to-arm-b9419ed939af
https://medium.com/@twins.corgi.0a/containerizing-cesm-and-porting-to-arm-b9419ed939af


Integration into CAM
Integrate Fortran with Python 

• Built upon the the FTorch library 
which enables trained PyTorch ML 
models to be called directly from 
Fortran. 


• Early results showcase minimal 
overheads on runtimes.

We strongly encourage anyone who is interested in 
integrating ML models with CESM to reach out!



Thank you


