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What do | mean by “Complex” System

A complex system is:

a) A collection of objects or agents with high cardinality..

b) ..which interact with one another in a nontrivial way..

c) ..such that their collective behaviour is unexpected or different from, or not
immediately predictable from, the aggregation of the behaviour of its individual parts

T; = fi(t, ;) +ui(t, X;)
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@ L. Torres, A. Blevins, D. Bassett, T. Eliassi-Rad, The Why, How and When of Representations for Complex Systems, SIAM Review 2021




Numerous applications

 From power grids and swarm robotics to biology and epidemiology
« Often, we wish to control the emerging collective behaviour of these systems

« E.g. avoid or induce synchronization, pattern formation, prevent undesired
cascading phenomena, achieve crowd control etc

Can we orchestrate in real-time the collective behaviour of a complex system?




Controlling complex systems

Feedback Control = Sense + Compute + Actuate

1. Whom do we sense? observability

2. Whom do we control? controllability

3. What do we compute? control design

« We want the control strategy to be distributed and to be
computed in real-time as a function of the sensed variables

 In Control Theory, we also want to certify stability (proofs of convergence)




Control Design

» To achieve this goal we can act upon

1. the agents

2. the links interconnecting them

3. the topology of the network structure itself
4. a combination of the above

« Each of these approaches yields different types of problems but also opens up
different opportunities for control (pinning control, adaptive control, network
topological control..)

@ R. De Souza, MdB, YY Liu, “Controlling complex systems with complex nodes”, Nature Reviews Physics, 2023




A multi-scale problem

* \We need to "close the loop” across different scales
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Continuification-based control
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Microscopic modeling and emerging behaviors

« Take N identical coupled dynamical systems
swarming on a ring:

N
CEZ:Zf({aZ@,SIZ]}W)—I—’LL@ f:[—7T,7T]—>R
J=1

« Goal: steer the agents towards a desired

distribution
! 0
O A
o ,
1 0 1 —Tr s 1 0 1 —TT i
N/2xm
I S NEAY LS N £ K




1. Continuification (micro -> macro)

* In the limit of infinitely many agents, we can find a macroscopic closure:

Pt T (,OV):,; =0

Ti = Zf ({xivxj}w)

Agents are moving on the circle
of radius 1

Vo= [ " A et i = (= 9 )

/0<7T, t) — p(—ﬂ', t)

Agents starts evenly distributed
p(x,0) = N/2x

Micro Macro
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@ Leverentz et al. "Asymptotic dynamics of attractive-repulsive swarms." SIAM Journal on Applied Dynamical Systems 8.3 (2009): 880-908




2. Macroscopic control design

» Consider the addition of a macroscopic control input
pe(x,1) + |p(z, )V (2, )], = q(z,t)
e(x,t) = p*(x,t) — p(z,1)
Ve (z,t) = (f * p9) (2, 1)

Ve(x,t)=(fx*e)(x,t)

4 )

Theorem (Local macroscopic convergence)

By choosing ¢(z,t) = Kpe(z,t) — [e(z,t)V(z,t)] — [p%(z,¢)V°(w,¢)]_, the closed loop

macroscopic dynamics converges globally asymptotically towards the desired density profile.




3. Discretization (macro -> micro)

« Recast the control action as an additional velocity field
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uz(t):U(J;z,t), 221,2,N

@ Maffettone et al, "Continuification Control of Large-Scale Multiagent Systems in a Ring”, IEEE Control Systems Letters 7 (2022), 841-846




Validation: tracking a time-varying distribution

Repulsive swarm

t = 0.013605 s
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Overcoming a potential pitfall

* Problem: control action is nonlocal (convolutions are involved)

q(x,t) = Kpe(x,t) — [e(az,t)Vd(x,t)}x — [pd(a:,t)Ve(a:,t)}x
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« What if we limit the spatial range of interaction?
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Maffettone et al, "Continuification control of large-scale multiagent systems under limited sensing and structural perturbations, IEEE Control Systems Letters, 2023




Local control action ‘ 15

* In this case we get a residual control error (that decreases with the sensing radius)

t=15.9972 s t=5.9972 s
~ ~ d
Ps pd T PP 1.2
T | - ——No integral action
1 1 1t — Integral action
/2 ]
0.5 5 o 0.8
—
r
0 0 | 0 £06
; 5 1 0.4
v // —m/2 K
-1 1 ] 0.2 L
| -l 0 : . :
20 60 0 40 0 2 4 6

t
er(,t) = —Kpe(x,t) — Ki/ e(x,7)dr
0




Robustness theorems

 We can prove robustness to
« Limited sensing capabilities
« Spatio-temporal perturbations of the velocity field p:(z,t) + [p(z,t)(V (z,t) + d(z,t))], = q(z,1),
« Perturbations of the interaction kernel itself

1
. 1
Theorem 2 (Bounded convergence in the presence of ¥
velocity perturbations) There exists a threshold value Dy < —F 0
Kk < +oo such that, if 2K, > K, the dynamics of the squared 7 j
) P — fo
error norm is bounded and QM 0.5 1 1
2LD1 +2MD SESN TN RS
limsup fle(-, £) o < == -2 AT
t—o00 K — DQ
Hence, the upper bound on the steady-state error can be made )
arbitrarily small by choosing k sufficiently large. 0 ‘
0 1 2 3

t

Maffettone et al, "Continuification control of large-scale multiagent systems under limited sensing and structural perturbations, IEEE Control Systems Letters, 2023




Extension to higher dimensions

* The derivation can be applied almost as is to higher dimensions but..

pe(x,1) +V - [p(x,1) (V(x,1) + U(x, 1)) = 0

V- [p(X,t)U(X,t)] — _Q(Xa t)

 To uniquely derive U(x,t) from ¢(x,t), we need an extra condition

w(x, 1) = p(x, 1) U(x, 1) { w(x,t) = —q(x,t)

VXxw(x,t)=0
w(x,t) periodic on 0f2

@ Maffettone et al, Hybrid Platform for Swarm Robotics: Experiments and High-Dimensional Continuification Control, IEEE Trans. Robotics, in preparation, 2023




Discretization in higher dimensions

The problem can be recast as a Poisson equation in terms of a scalar potential ¥

w(x,t) = —Vp(x,t)  Vp(x,t) = —q(x,t) Vp(x,t) periodic on 09

This PDE can be solved using Fourier series expansion

From the potential we can derive the flux w, and

U(x,t) = w(x,t)/p(x,1)

We then finalize the discretization by a spatial sampling

ui(t):U(Xi,t), 221,2,,N




Numerical validation
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Hybrid experimental platform

« We built an experimental platform for validating control solutions for swarm
robotics

« The platform is hybrid (part of the agents are virtualized) and allows to run full-
scale experiments with large scale systems (time and costs)




Experimental validation (4 robots, 96 virtual agents) ‘ 21

* An inner control loop is embedded on the robots to deal with their kinematic
constraints

* The periodicity assumption is adapted considering a fictitiously extended domain

Monomodal regulation Monomodal tracking Multimodal tracking

2 ~~@«




Remarks ‘ 2

« The approach seems to work well but there are many open CAUTION

problems:

* How do you find closures of the ABMs? WO RK

IN PROGRESS

« Can you ensure control actions are local when discretized?

 How do you better characterize convergence?

« We are currently exploring the use of physics-informed
learning methods to find closures (see e.g. work by Kevrekidis, Siettos et al)




Complex systems for control

« So far we looked at how to control a complex system

« What if the complex system acts as the controller rather than being the system we

wish to control?

« Can we engineer the collective behaviour of a complex system to perform a

control task?
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The shepherding problem

« A paradigmatic example is the shepherding problem

* Here a group of agents, the herders, need to steer the collective dynamics of
another group of agents, the targets, in some desired way

© F. Auletta




Relevance

* Observed in biological systems (e.g dolphins hunting fish [Haque et al, 2071, Int.
J. Bio-Inspired Comp], ants collecting aphids [Oliver et al,2007,Proc. R. Soc. B]

« Technological applications: search & rescue, crowd control, oil cleanup
[Long et al, 2021, IEEE Emerging Comp applications]




A complex system performing a control task

 In these situations the emerging collective behaviour of a complex system must
be controlled by the driving the emerging behaviour of another complex system




Deciding the herding behaviour

« The crucial problem is the design of the herders’ dynamics so as to achieve the
desired goal

* Herders must cooperate with each other and collectively implement decision-
making strategies

* An intuitive solution is to rely on formation control % o K
or pre-computed optimal control solutions PN

* Or use virtual attractive/repulsive forces related
to their relative positions with each other
and the targets 2

<*->0

A Pierson, M Schwager, Controlling noncooperative herds with robotic herders, IEEE Trans Robotics 2018
R.A. Licitra, Z Bell, W Dixon, Single-agent indirect herding of mutliple targets with uncertain dynamics”, IEEE Trans Robotics, 2019
D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model”, Math Models Methods Appl Sci, 2020




Two key assumptions

 All existing solutions are based on two key assumptions: 0\

O N

1. Targets’ cohesiveness (e.g. flocking) N

[Pierson et al, IEEE T. Robotics, 2017; Licitra et al 2019]
: . : o
2. Herders’ Unlimited sensing ¢
[Auletta et al, Auton, Rob., 2022]
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Key research guestion

 Also, current solutions do not exploit a crucial feature of complex systems..

« ..their ability of exhibiting emerging collective behaviour from simpler agent
behaviour

* In this spirit, shepherding solutions should not be engineered into the model but
could emerge out of the herders following simpler local engagement rules

Can local simpler feedback rules solve the global herding control problem

in the presence of limited sensing and non-flocking targets?

@ F. Auletta, D. Fiore et al , "Herding stochastic autonomous agents via local control rules and online global target selection strategies", Autonomous Robots, 2022



https://link.springer.com/article/10.1007/s10514-021-10033-6

The planar shepherding problem

« A group of agents, the herders, is tasked with the goal of collecting and coralling
another group of agents, the targets towards some goal region in the plane

« M targets, N herders initially distributed as shown
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@ A. Lama, MdiB, ”"Shepherding and herdability in complex multiagent systems”, PRL, under review, 2023




Herders’ local dynamics
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Shepherding can be successful
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The herdability problem

« Under what conditions on the repulsion zone, the sensing area and the density of
the targets can we achieve herdability of a given number of targets?

N=10, M=60, r0T=30 N=10, M=60, rOT=60
Time 0.0 Time 0.0
53 I T T T T T ] 103 F T T T T T ]
0 Herders ‘ Herders
® Targets ® Targets
35 - gensmgg ) 68 - 3ensmg.£ |
¢ o0 S &> ¢ 8
® . ® o o ®
17 | o® ° % © - 33 ¥, ¢
@ ® 9 L
@ @ [ ] €& °
%“e o o o « *» " ™ o°
1 ¢ °© ° @ .’ 2 e®eo .O.
® oe0
. > ® o’ 00 ¢ oo° & ¢
fe) g # & 37 o ®
oD a % ¢ LIPS e o
¢ o ® % ) ee0o o ¢
¢ ¢ & ¢
4 P 4 ¢
=37 12
-5 & 1 1 1 1 1 1 07 1 1 1 1 1 1
-55 -37 -19 -1 17 35 53 -107 -72 -37 -2 33 68 103

@ S. Ruf, M. Egerstedt, ] Shamma, ,”Herding complex networks”, online communication; Di Pasquale, Valcher, Automatica, 2023




Herdability conditions
« We look for the minimum number of herders N*(M) necessary to herd M targets
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The herdabillity graph

« \We define the herdability graph

Gap(T,$) =1

iflTa_Tbl SS(

« Assume that if there is a path on
G between a and e the herder is
theoretically able to switch from
atoe

* Then study herdability in term of
Its percolation

@ A. Lama, MdiB, ”"Shepherding and herdability in complex multiagent systems”, PRL, under review, 2023
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Percolation analysis

« We study when G becomes initially
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Conclusions

« Complex systems can be controlled by devising multi-scale feedback control
strategies comprising sensing, computing and actuation

« Continuification-based approaches might be a solution

» Also, complex systems can solve control tasks
where the control strategy emerges out
of simple local rules of interaction

« Shepherding is a great paradigmatic example..

______________
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« ..where emerging behaviour needs to arise from
a complex system in order to solve a control task \\) /
[ Control j




Challenges and open problems

 How do we engineer local rules of interaction for
more complex tasks than shepherding?

« What if the targets actively escape from herders?
« What if the herders actively seek targets?

« Can we use multi-agent reinforcement learning?
« Can we use a continuification approach?

« Can we prove convergence?

» Lots of opportunities for further research!
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