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• Complex Systems and Control Theory

• Controlling a complex system

• Continuification-based control

• Complex Systems for Control

• The shepherding problem

• Conclusions and open problems

What’s in my talk



• A complex system is:
a) A collection of objects or agents with high cardinality..
b) ..which interact with one another in a nontrivial way.. 
c) ..such that their collective behaviour is unexpected or different from, or not 

immediately predictable from, the aggregation of the behaviour of its individual parts

What do I mean by “Complex” System

L. Torres, A. Blevins, D. Bassett, T. Eliassi-Rad, The Why, How and When of Representations for Complex Systems, SIAM Review 2021
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• From power grids and swarm robotics to biology and epidemiology

• Often, we wish to control the emerging collective behaviour of these systems

• E.g. avoid or induce synchronization, pattern formation, prevent undesired 
cascading phenomena, achieve crowd control etc

Numerous applications

Can we orchestrate in real-time the collective behaviour of a complex system?



1. Whom do we sense? observability

2. Whom do we control? controllability

3. What do we compute? control design

• We want the control strategy to be distributed and to be 
computed in real-time as a function of the sensed variables

• In Control Theory, we also want to certify stability (proofs of convergence)

Controlling complex systems

Feedback Control = Sense + Compute + Actuate



• To achieve this goal we can act upon
1. the agents  
2. the links interconnecting them 
3. the topology of the network structure itself
4. a combination of the above

• Each of these approaches yields different types of problems but also opens up 
different opportunities for control (pinning control, adaptive control, network 
topological control..)

Control Design

R. De Souza, MdB, YY Liu, “Controlling complex systems with complex nodes”, Nature Reviews Physics, 2023



• We need to ”close the loop” across different scales

A multi-scale problem

Nature Reviews Physics | Volume 5 | April 2023 | 250–262 255

Perspective

Control theory approaches
Control theory approaches were traditionally developed for analys-
ing and steering the behaviour of a specified system. Regardless, the 
problem in control can be distilled into determining what needs to 
be sensed, what needs to be controlled and how the information being 
sensed should be used to achieve the desired goal. Thus, the three 
key ingredients of any control design are sensing, computation and 
actuation14. Some methods are summarized in Table 2.

Typical control goals in multi-agent systems include consen-
sus63–71, which is the convergence of all units towards a common equi-
librium point, and synchronization72–75, which is the convergence to an 
asymptotic time-varying solution. They also include, among others, 
formation control76–78, pattern formation79 and coordinated motion 
of agents (such as flocking)80. The goal is often formulated in terms of 
performance (focused on transient properties such as settling time, 
rise time and overshoot, for example), stability (such as convergence 
to an equilibrium or a manifold in state space) and robustness to noise 
and external perturbations14.

Starting from a mathematical (or data-driven) model of the sys-
tem and a control goal, one can attempt to: establish controllability 
and observability of the system of interest; devise a control strategy and 
certify that the control strategy guarantees convergence and stability 
of the desired behaviour by means of appropriate rigorous proofs of 
these properties in the closed-loop network system (Fig. 5). Typically, 
when dealing with multi-agent systems, the focus is on devising strate-
gies that are distributed and decentralized so that sensing, actuation 
and control inputs do not need to be decided in a centralized manner. 
Open-loop strategies, which do not rely on feedback from the sensors, 
are also a solution to some control problems, but typically fail to fulfil 
stability and performance requirements in the presence of perturba-
tions and therefore lack robustness. Thus, we focus on closed-loop 
feedback strategies in this Perspective.

The controllability problem is an existence problem aimed at 
establishing which nodes need to be controlled to steer the collective 
behaviour, given the network structure, the dynamics of agents and 
the interaction protocol on the edges. Approaches to solve this prob-
lem in the context of complex networks include the use of structural 
controllability and the use of controllability Gramians81–85, for example. 

Despite notable advances in the past decade, many open problems 
remain. Examples include understanding controllability in networks 
of nonlinear or time-varying systems or when the network structure 
evolves in time or as a function of the dynamics taking place over it 
(state-dependent network evolution).

The observability problem is aimed at understanding which vari-
ables carry enough information such that the whole system behaviour 
can be reconstructed from their measurement. Assessing observability 
becomes cumbersome when applied to large-scale complex networks 
as it entails deciding which behaviours of agents must be measured to 
reconstruct the overall network dynamics. Again, approaches from 
control such as structural observability theory have been used to this 
aim82,86–88. But many problems remain open, such as studying observ-
ability in time-varying network structures of nonlinear dynamical 
systems.

Controllability and observability criteria for complex networks 
have a twist compared with those of more traditional control theoretic 
approaches, in that graph-theoretical tools can be used to comple-
ment and enhance criteria on the basis of algebra or geometry. This 
crucial direction was first recognized in the early work by Šiljak16 in 
the late 1970s and further developed in later work82; it can provide a 
viable option for dealing with large numbers of interacting dynami-
cal variables. (We note that using graph-theoretical methods to study 
network problems dates back at least to the mathematical sociology 
community in the 1960s89).

If the fundamental properties of the system of interest have been 
analysed, a feedback control strategy (that is, a closed-loop strategy) 
can then be devised to achieve the control goal by exploiting the sensed 
information from the network and attempting to steer the system via 
control inputs. A fundamental issue in validating the control strategy 
is to analyse and prove convergence of the controlled network system 
starting from different initial conditions (stability) and under external 
perturbations (robustness). Approaches to study stability and robust-
ness of complex networks of dynamical systems have been developed 
or extended from those available for homogeneous systems (for a 
review of some available methods, see refs. 17,21–23,90–95).

With respect to stability, approaches to study local or global sta-
bility of a given complex network system include those in which the 
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Fig. 4 | Closing the feedback loop in complex 
networks entails sensing, computing and 
actuating at different scales. Sensing and actuation 
can be performed at any of the scales depicted in 
the diagram. In this figure, we depict a centralized 
control strategy for simplicity; however, when 
dealing with network systems, the control strategy 
will typically be distributed and decentralized. Note 
r is the reference signal representing the desired 
behaviour of the system. Figure courtesy of Marco 
Coraggio.

M. di Bernardo, “Controlling collective behaviour in complex systems”, Encyclopedia of Systems and Control, Springer, 2020
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Perspective

control parameter at the critical point34. In the context of networks, 
an example of a phase transition is the percolation phase transition 
(Fig. 1e), which can be analysed using random graph models35. These 
models are based in the concept of a statistical ensemble, which is at 
the root of statistical physics.

A statistical ensemble of networks considers a given set of proper-
ties, such as a prescribed degree distribution. Each ensemble member 
is a realization of a network with a particular configuration of nodes 
and links and is attributed some probability (that is, statistical weight). 
All aspects other than the given set of properties are assumed to be 
completely random, thus they can be averaged over the entire ensemble 
by using some mean-field approaches, such as the generating function  
formalism36,37 based on the branching process and the tree ansatz.

The percolation phase transition describes the sudden onset of 
large-scale connectivity in a network, and small interventions during 
the growth of connections can allow one to control the location of the 
critical point and can lead to explosive percolation38,39. For critical 
transitions, it has been shown that the predicted increase in fluctua-
tions and autocorrelation times as a system reaches its ‘tipping point’ 
can serve as early warning signs40,41.

A theoretical underpinning for the study of self-organization in 
statistical physics is the paradigm of self-organized criticality42 (SOC). 
In SOC, the balance of competing forces, such as driving and dissipa-
tion, tunes the system to a critical point leading to cascading failures 
that follow a power-law distribution in size and are hence unbounded. 
Such cascading failures are a hallmark of complex networks such as 
power grids and brain networks43. Controlling SOC through the nature 
of the driving force is an important theme in the statistical physics 
literature44–47, with more recent focus on ‘dragon king’ events48–51.

Direct applications of statistical physics tools to controllability 
and observability do exist. When the control properties can be studied 
purely from the structure (or connectivity pattern) of the network, 
there are several successes.

One striking example is the application of the cavity method to 
solve structural control problems3. Owing to the graphical interpreta-
tion of the structural controllability theorem4, one can check whether 
a network is structurally controllable by simply inspecting its struc-
ture, avoiding expensive matrix operations that rely on detailed edge 
weights. In particular, one can identify a minimum set of nodes termed 
as driver nodes, the time-dependent control of which is sufficient to 
fully control the entire dynamics of the system. This identification 
can be achieved by mapping the structural control problem into a 
purely graph-theoretical problem called maximum matching52–54. 
Leveraging the cavity method55–57 rooted in statistical physics (and 
its further application in solving the maximum matching problem58), 
certain control properties of a network ensemble with a prescribed 
degree distribution can be analytically calculated3. Those properties 
include: the size of the maximum matching, which is directly related 
to the minimum number of driver nodes (or control inputs) to ensure 
structural controllability; and the total number of distinct maximum 
matchings, which is directly related to the number of different control 
configurations and hence affects the control robustness.

Another success is in the study of observability in the electric 
power grid. In this system, the voltages of nodes — which can be used as 
state variables — can be determined using phasor measurement units 
(PMUs). A PMU measures the real-time voltage and line currents of its 
corresponding node, thus a PMU determines the state variable of not 
only the node it is placed on but also all its first-nearest neighbours. 
In this case, the observability problem can be mapped to a purely 

graph-theoretical problem. Indeed, the random placement of PMUs 
leads to a network observability transition59, which can be analytically 
studied using the generating function formalism36,37. Moreover, the 
problem of identifying the minimum set of sensor nodes (that is, PMUs) 
in a power grid can be mapped to a classical graph-theoretical problem: 
the minimum dominating set problem. Despite its nondeterministic 
polynomial time (NP)-hard nature in general, the minimum dominating 
set problem can be solved by a message-passing algorithm (rooted in 
spin glass theory), which offers nearly optimal solutions and performs 
well on real-world networks60.

The power of mapping a control problem to a purely graph- 
theoretical problem is also naturally an intrinsic limitation. Any control 
property, such as the control energy cost, that requires detailed 
knowledge beyond network structure will not benefit from the purely 
graphical interpretation and the corresponding statistical ensemble 
approach. Techniques in random matrix theory61 that can directly 
handle edge weights of complex networks might have to be used to 
develop an appropriate network ensemble. In general, both the detailed 
structure and the dynamics matter62.

b  Network control paradigm

a  Classical control paradigm
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Fig. 3 | Control paradigms. a, The classic feedback control paradigm in which the 
output (y) of the system to be controlled is measured or estimated by sensors. 
The measured output (yŷ) is then fed back into a ‘comparator’ node (dark grey 
circle) that measures the difference between (yŷ) and the reference signal (Ref). 
That control error (e) is then fed to the controller that computes the control input 
(uû) according to some control law. The computed input is then implemented in 
the actual input (u) to the system via a set of actuators. In this situation, all the 
relevant degrees of freedom and their couplings are known. b, A distributed  
and decentralized pinning control strategy. Some of the network agents  
(yellow circles) send information (blue arrows) about their states or outputs to 
controllers (pink squares). The controllers cooperate (black edges) to formulate 
a network control strategy and then intervene on the behaviour of a fraction of 
appropriately selected agents in the network (red arrows) to achieve some 
desired collective behaviour. Figure courtesy of Davide Salzano.



Continuification-based control

Nikitin et al. "A continuation method for large-scale modeling and control: from ODEs to PDE, a round trip." IEEE Trans on Automatic Control, 2021



Microscopic modeling and emerging behaviors 9

• Take N identical coupled dynamical systems 
swarming on a ring: 

• Goal: steer the agents towards a desired
distribution 
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• In the limit of infinitely many agents, we can find a macroscopic closure:

1. Continuification (micro -> macro) 10

Leverentz et al. "Asymptotic dynamics of attractive-repulsive swarms." SIAM Journal on Applied Dynamical Systems 8.3 (2009): 880-908
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Agents are moving on the circle 
of radius 1 

Agents starts evenly distributed
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• Consider the addition of a macroscopic control input

2. Macroscopic control design 11

⇢t(x, t) + [⇢(x, t)V (x, t)]x = q(x, t)
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V d(x, t) = (f ⇤ ⇢d)(x, t)
<latexit sha1_base64="8nmSay3w8AQkHVNGSO6lZYYoBaY=">AAACFHicbVC5TsNAEF2HK4QrQEmzIkJKEIpsxNUgRdBQBokcUmKi9WYSVlkf2h0jIistn8BX0EJFh2jpKfgX7MQFJLzqzXszmpnnBFJoNM0vIzM3v7C4lF3OrayurW/kN7fq2g8Vhxr3pa+aDtMghQc1FCihGShgriOh4QwuE79xD0oL37vBYQC2y/qe6AnOMJY6eVq/bbsM75Qbwaj4cECxRM9psbcPpUnVyRfMsjkGnSVWSgokRbWT/253fR664CGXTOuWZQZoR0yh4BJGuXaoIWB8wPrQiqnHXNB2NP5kRPdCzdCnASgqJB2L8HsiYq7WQ9eJO5Or9bSXiP95rRB7Z3YkvCBE8HiyCIWE8SLNlYgjAtoVChBZcjlQ4VHOFEMEJSjjPBbDOLNcnIc1/f0sqR+WrZPy8fVRoXKRJpMlO2SXFIlFTkmFXJEqqRFOHskzeSGvxpPxZrwbH5PWjJHObJM/MD5/ALVSnEU=</latexit>

V e(x, t) = (f ⇤ e)(x, t)

Theorem (Local macroscopic convergence)

By choosing                                                                                                             , the closed loop 

macroscopic dynamics converges globally asymptotically towards the desired density profile.  

q(x, t) = Kpe(x, t)�
⇥
e(x, t)V d(x, t)

⇤
x
�

⇥
⇢d(x, t)V e(x, t)

⇤
x

<latexit sha1_base64="zyaXzm7PWHNxME3+P9TATQDhdoE="></latexit>



• Recast the control action as an additional velocity field

• Then discretize into microscopic control inputs

3. Discretization (macro -> micro) 12

<latexit sha1_base64="ZWrwfUYmb9xhcQd09IbSGWbqjZ0="></latexit>

⇢t(x, t) + [⇢(x, t)(V (x, t) + U(x, t))]x = 0

<latexit sha1_base64="//sQf8I5mY7vnNqJaCfyYVs6oNg=">AAACH3icbVDJTgJBEO1xRdxQj146EhOISmaM28WE6MUjJrIkzIT0NAV06FnsrjEQwkf4CX6FVz15M145+C8OAwcF36Ve3qtKVT03lEKjaY6MhcWl5ZXV1Fp6fWNzazuzs1vRQaQ4lHkgA1VzmQYpfCijQAm1UAHzXAlVt3s79qtPoLQI/Afsh+B4rO2LluAMY6mRObIltLBuq06Q6x1jnpbjQjFvK9HuoNPo0Wt68jjRGpmsWTAT0HliTUmWTFFqZL7tZsAjD3zkkmldt8wQnQFTKLiEYdqONISMd1kb6jH1mQfaGSRPDelhpBkGNARFhaSJCL8nBszTuu+5cafHsKNnvbH4n1ePsHXlDIQfRgg+Hy9CISFZpLkScVpAm0IBIhtfDlT4lDPFEEEJyjiPxSiOLx3nYc1+P08qpwXronB+f5Yt3kyTSZF9ckByxCKXpEjuSImUCSfP5JW8kXfjxfgwPo2vSeuCMZ3ZI39gjH4AA96gqA==</latexit>

[⇢(x, t)U(x, t)]x = �q(x, t)
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ui(t) = U(xi, t), i = 1, 2, . . . N

Maffettone et al, "Continuification Control of Large-Scale Multiagent Systems in a Ring”, IEEE Control Systems Letters 7 (2022), 841-846



Repulsive swarm

Validation: tracking a time-varying distribution 13



• Problem: control action is nonlocal (convolutions are involved)

• What if we limit the spatial range of interaction?

Overcoming a potential pitfall 14

q(x, t) = Kpe(x, t)�
⇥
e(x, t)V d(x, t)

⇤
x
�

⇥
⇢d(x, t)V e(x, t)

⇤
x

<latexit sha1_base64="zyaXzm7PWHNxME3+P9TATQDhdoE="></latexit>

Maffettone et al, "Continuification control of large-scale multiagent systems under limited sensing and structural perturbations, IEEE Control Systems Letters, 2023
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f̂(x) =

(
f(x) if |x| < �

0 otherwise

V̂ e(x, t) =

Z x+�

x��
f({x, y}⇡)e(y, t) dy

<latexit sha1_base64="vsNcrUkLJ0lGQE/1Q8J7v92DcGk="></latexit>

Fig. 1: Steady-state value of the KL divergence, D1
KL at

the end of a monomodal regulation trial, for different values
of � and Kp (Kp = 10 in blue, Kp = 100 in orange and
Kp = 1000 in yellow). In the inset, we show the repulsive
interaction kernel used in the simulations.

Finally, we compute the velocity input acting on agent i at
the microscopic level by spatially sampling U at xi

ui(t) = U(xi, t), i = 1, 2, . . . N. (18)

The main limitation of this approach is the non-local nature
of the control action. Since (13) is based on the convolution
V e, agent i must have global knowledge of e to compute ui.
Moreover, as the choice of q is based on some cancellations
of the macroscopic dynamics of the system, the robustness to
structural perturbations needs to be properly assessed. In this
study, we address both of these issues.

IV. LIMITED SENSING CAPABILITIES

To relax the assumption of unlimited sensing, we assume
agents can only sense an interval [��,�], with � > 0
centered at their position. Then, the macroscopic control action
in (13) becomes

q̂(x, t) = Kpe(x, t)�
⇥
e(x, t)V d(x, t)

⇤
x

�
h
⇢(x, t)bV e(x, t)

i

x
, (19)

where bV e = (f̂ ⇤ e), and f̂ is a modified velocity interaction
kernel defined as

f̂(z) = f(z)⇧(z,�), (20)

with ⇧(z,�) being the rectangular window of size 2�

⇧(z,�) =

(
1 if |z|  �,

0 otherwise.
(21)

Using q̂ instead of q as input to the macroscopic model (8)
yields the following error dynamics:

et(x, t) = �Kpe(x, t) +
h
⇢d(x, t)Ṽ (x, t)

i

x

�
h
e(x, t)Ṽ (x, t)

i

x
, (22)

where Ṽ = (g ⇤ e) with g := f̂ � f .

(a) � = 0.1⇡ (b) � = 0.4⇡

(c) � = 0.7⇡ (d) � = ⇡

Fig. 2: Steady-state (t = tf ) comparison between the agents
distribution (blue line) and the desired one (orange line) when
the agents are started from the initial distribution shown as a
black line, for increasing sensing abilities of the agents when
Kp = 10. Panel (d) shows the case when sensing is unlimited.
In the inset of each panel, we display the discrete formation
of the agents at the end of the trial.

Theorem 1 (Stability under limited sensing) The control
strategy (19) achieves semiglobal stabilization of the error
system (22) so that, for any initial condition in a compact
set ke(·, 0)k2 < � with � > 0, choosing Kp sufficiently large
ensures the error converges asymptotically to 0.

Proof: Choosing kek22 as a candidate Lyapunov function
for (22), we get (omitting dependencies for simplicity)

(kek22)t = 2

Z

S
eet dx = �2Kpkek22 �

Z

S
e2Ṽx dx

+ 2

Z

S
(e⇢dxṼ + e⇢dṼx) dx, (23)

where we computed product derivatives and used integration
by parts taking into account the periodicity of the functions.
Using the definition of L1-norm (see Definition 2), applying
Holder’s inequality with n = 3, p1 = p2 = 2, and p3 = 1
(see Lemma 1), invoking Young’s convolution inequality with
r = 1 and p = q = 2 (see Lemma 2), and recalling the
assumption on the L2- boundedness of ⇢d and ⇢dx by constants
L and M , we find

����
Z

S
e⇢dxṼ dx

���� 
Z

S
|e⇢dxṼ | dx = ke⇢dxṼ k1 

 kek2k⇢dxk2kṼ k1  Lkek22kgk2,
(24)

����
Z

S
e⇢dṼx dx

���� 
Z

S
|e⇢dṼx| dx = ke⇢dṼxk1 

 kek2k⇢dk2kṼxk1  Mkek22kgxk2,
(25)

����
Z

S
e2Ṽx dx

���� 
Z

S
|e2Ṽx| dx = keeṼxk1 

 kek22kṼxk1  kek32kgxk2.
(26)



• In this case we get a residual control error (that decreases with the sensing radius)

Local control action 15
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et(x, t) = �Kpe(x, t)�Ki

Z t

0
e(x, ⌧) d⌧



• We can prove robustness to
• Limited sensing capabilities
• Spatio-temporal perturbations of the velocity field
• Perturbations of the interaction kernel itself 

Robustness theorems 16

Using these bounds, from (23) we can write

(kek22)t  (�2Kp + 2Mkgxk2 + 2Lkgk2 + kgxk2kek2)kek22.
(27)

Then, choosing Kp > (M + �/2)kgxk2 + Lkgk2, guaran-
tees that the error asymptotically tends to 0; thus proving
semiglobal stability1.
We remark that (i) as � becomes smaller, kgk2 and kgxk2
increase, requiring a larger value of Kp to ensure convergence,
and (ii) in the limit of local dynamics about the origin, where
we neglect cubic terms in e, one can choose Kp = Mkgxk2+
Lkgk2.

Numerical validation: We consider the same framework,
control discretization and numerical set-up as in [14]. In par-
ticular, we refer to a mono-modal regulation scenario, where a
repulsive swarm of N = 100 agents, starting evenly displaced
in S , is required to achieve a desired density profile given by
a von Mises function, with mean µ = 0 and concentration
coefficient k = 4. The pairwise interactions between agents is
modelled via a repulsive Morse potential, depicted in the inset
of Fig. 1, given by

f(x) = sign(x)
h
�Ge�|x|/L + e�|x|

i
, (28)

where the characteristic parameters, modulating the strength
and characteristic distance of the attractive term, are G = L =
0.5, making the repulsion term dominant.

We run several trials of duration tf = 6. In each trial, we
consider a different sensing radius �, spanning from 0.1⇡
to ⇡. At the end of each trial, we record the steady-state
Kullback-Leibler (KL) divergence , D1

KL, between ⇢̂ and ⇢̂d

(equivalent to ⇢ and ⇢d, but normalized to sum to 1) [19]. The
results of such a numerical investigation are reported in Fig.
1, for different values of Kp. They show that: (i) for large
values of Kp, performance is independent from the specific
sensing radius that is given to the agents, and (ii) for smaller
values of Kp, a limited knowledge of the domain can still
guarantee a performance level that is comparable to the case
of � = ⇡. For example, when considering Kp = 10, choosing
� = 0.4⇡ makes D1

KL comparable to the value obtained for
unlimited sensing capabilities. We also report in Fig. 2 the
final configuration of the swarm for different values of the
sensing radius, when Kp = 10. We remark that the non-zero
D1

KL comes from the discretization process, and it approaches
0 in the limit of an infinite number agents.

V. STRUCTURAL PERTURBATIONS

Next, we assess the robustness of the approach to two
classes of perturbations, the first acting additively on the
macroscopic velocity field and the second on the interaction
kernel.

A. Spatio-temporal perturbations of the velocity field
We assume that perturbations of the microscopic dynamics

can be captured at the macroscopic level by means of some

1Theorem 1 in [14] should be equivalently interpreted.

spatio-temporal velocity field d(x, t) affecting (8). The macro-
scopic controlled model becomes

⇢t(x, t) + [⇢(x, t)(V (x, t) + d(x, t))]x = q(x, t), (29)

where we assume d(�⇡, t) = d(⇡, t) for any t and d, dx 2 L1

at any t so that that there exist two positive constants D1 and
D2 bounding the L1-norm of d and dx, respectively.

Substituting (13) into (29) and taking into account the
reference dynamics (14) yields

et(x, t) = �Kpe(x, t)+
⇥
(⇢d(x, t)� e(x, t))d(x, t)

⇤
x
. (30)

Theorem 2 (Bounded convergence in the presence of

velocity perturbations) There exists a threshold value D2 <
 < +1 such that, if 2Kp > , the dynamics of the squared
error norm is bounded and

lim sup
t!1

ke(·, t)k2  2LD1 + 2MD2

�D2

Hence, the upper bound on the steady-state error can be made
arbitrarily small by choosing  sufficiently large.

Proof: Taking into account (30), we write the dynamics
of kek22 (omitting dependencies for simplicity) as

(kek22)t = 2

Z

S
eet dx = �2Kpkek22 �

Z

S
e2dx dx

+ 2

Z

S
(e⇢dxd+ e⇢ddx) dx, (31)

where we computed product derivatives and applied inte-
gration by parts exploiting the periodicity of the functions.
Similarly to the proof of Theorem 1, we apply Definition 2,
Holder’s inequality with n = 3, p1 = p2 = 2 and p3 = 1
(see Lemma 1), and exploit the bounds on ⇢d, ⇢dx, d and dx,
to derive the following inequalities for the terms in (31):

����
Z

S
e⇢dxd dx

���� 
Z

S
|e⇢dxd| dx = ke⇢dxdk1 

 kek2k⇢dxk2kdk1  LD1kek2,
(32)

����
Z

S
e⇢ddx dx

���� 
Z

S
|e⇢ddx| dx = ke⇢ddxk1 

 kek2k⇢dk2kdxk1  MD2kek2,
(33)

����
Z

S
e2dx dx

���� 
Z

S
|e2dx| dx = keedxk1 

 kek22kdxk1  D2kek22.
(34)

Hence, we obtain

(kek22)t  (�2Kp +D2) kek22 + (2LD1 + 2MD2) kek2.
(35)

For convenience, we rewrite (35) as

⌘t  �a⌘ + c
p
⌘ := h(⌘), (36)

where ⌘ = kek22, a = 2Kp � D2, and c = 2LD1 + 2MD2.
Under the assumption that 2Kp > D2 (a > 0), the phase
portrait of the bounding field h yield an asymptotically stable
equilibrium at (see Fig. 3)

c2

a2
=

(2LD1 + 2MD2)2

(2Kp �D2)2

Using these bounds, from (23) we can write

(kek22)t  (�2Kp + 2Mkgxk2 + 2Lkgk2 + kgxk2kek2)kek22.
(27)

Then, choosing Kp > (M + �/2)kgxk2 + Lkgk2, guaran-
tees that the error asymptotically tends to 0; thus proving
semiglobal stability1.
We remark that (i) as � becomes smaller, kgk2 and kgxk2
increase, requiring a larger value of Kp to ensure convergence,
and (ii) in the limit of local dynamics about the origin, where
we neglect cubic terms in e, one can choose Kp = Mkgxk2+
Lkgk2.

Numerical validation: We consider the same framework,
control discretization and numerical set-up as in [14]. In par-
ticular, we refer to a mono-modal regulation scenario, where a
repulsive swarm of N = 100 agents, starting evenly displaced
in S , is required to achieve a desired density profile given by
a von Mises function, with mean µ = 0 and concentration
coefficient k = 4. The pairwise interactions between agents is
modelled via a repulsive Morse potential, depicted in the inset
of Fig. 1, given by

f(x) = sign(x)
h
�Ge�|x|/L + e�|x|

i
, (28)

where the characteristic parameters, modulating the strength
and characteristic distance of the attractive term, are G = L =
0.5, making the repulsion term dominant.

We run several trials of duration tf = 6. In each trial, we
consider a different sensing radius �, spanning from 0.1⇡
to ⇡. At the end of each trial, we record the steady-state
Kullback-Leibler (KL) divergence , D1

KL, between ⇢̂ and ⇢̂d

(equivalent to ⇢ and ⇢d, but normalized to sum to 1) [19]. The
results of such a numerical investigation are reported in Fig.
1, for different values of Kp. They show that: (i) for large
values of Kp, performance is independent from the specific
sensing radius that is given to the agents, and (ii) for smaller
values of Kp, a limited knowledge of the domain can still
guarantee a performance level that is comparable to the case
of � = ⇡. For example, when considering Kp = 10, choosing
� = 0.4⇡ makes D1

KL comparable to the value obtained for
unlimited sensing capabilities. We also report in Fig. 2 the
final configuration of the swarm for different values of the
sensing radius, when Kp = 10. We remark that the non-zero
D1

KL comes from the discretization process, and it approaches
0 in the limit of an infinite number agents.

V. STRUCTURAL PERTURBATIONS

Next, we assess the robustness of the approach to two
classes of perturbations, the first acting additively on the
macroscopic velocity field and the second on the interaction
kernel.

A. Spatio-temporal perturbations of the velocity field
We assume that perturbations of the microscopic dynamics

can be captured at the macroscopic level by means of some

1Theorem 1 in [14] should be equivalently interpreted.

spatio-temporal velocity field d(x, t) affecting (8). The macro-
scopic controlled model becomes

⇢t(x, t) + [⇢(x, t)(V (x, t) + d(x, t))]x = q(x, t), (29)

where we assume d(�⇡, t) = d(⇡, t) for any t and d, dx 2 L1

at any t so that that there exist two positive constants D1 and
D2 bounding the L1-norm of d and dx, respectively.

Substituting (13) into (29) and taking into account the
reference dynamics (14) yields

et(x, t) = �Kpe(x, t)+
⇥
(⇢d(x, t)� e(x, t))d(x, t)

⇤
x
. (30)

Theorem 2 (Bounded convergence in the presence of

velocity perturbations) There exists a threshold value D2 <
 < +1 such that, if 2Kp > , the dynamics of the squared
error norm is bounded and

lim sup
t!1

ke(·, t)k2  2LD1 + 2MD2

�D2

Hence, the upper bound on the steady-state error can be made
arbitrarily small by choosing  sufficiently large.

Proof: Taking into account (30), we write the dynamics
of kek22 (omitting dependencies for simplicity) as

(kek22)t = 2

Z

S
eet dx = �2Kpkek22 �

Z

S
e2dx dx

+ 2

Z

S
(e⇢dxd+ e⇢ddx) dx, (31)

where we computed product derivatives and applied inte-
gration by parts exploiting the periodicity of the functions.
Similarly to the proof of Theorem 1, we apply Definition 2,
Holder’s inequality with n = 3, p1 = p2 = 2 and p3 = 1
(see Lemma 1), and exploit the bounds on ⇢d, ⇢dx, d and dx,
to derive the following inequalities for the terms in (31):

����
Z

S
e⇢dxd dx

���� 
Z

S
|e⇢dxd| dx = ke⇢dxdk1 

 kek2k⇢dxk2kdk1  LD1kek2,
(32)

����
Z

S
e⇢ddx dx

���� 
Z

S
|e⇢ddx| dx = ke⇢ddxk1 

 kek2k⇢dk2kdxk1  MD2kek2,
(33)

����
Z

S
e2dx dx

���� 
Z

S
|e2dx| dx = keedxk1 

 kek22kdxk1  D2kek22.
(34)

Hence, we obtain

(kek22)t  (�2Kp +D2) kek22 + (2LD1 + 2MD2) kek2.
(35)

For convenience, we rewrite (35) as

⌘t  �a⌘ + c
p
⌘ := h(⌘), (36)

where ⌘ = kek22, a = 2Kp � D2, and c = 2LD1 + 2MD2.
Under the assumption that 2Kp > D2 (a > 0), the phase
portrait of the bounding field h yield an asymptotically stable
equilibrium at (see Fig. 3)

c2

a2
=

(2LD1 + 2MD2)2

(2Kp �D2)2

Fig. 5: Time evolution of the KL divergence when the
perturbed kernels f̃1 and f̃2 shown in the inset are used to
compute the control action, instead of the nominal kernel f .

(a) (b)

Fig. 6: Effects of a macroscopic integral action when (a)
agents possess limited sensing with � = 0.1⇡ and (b) when
their interaction kernel is perturbed and set equal to f̃2. We
compare the cases of Ki = 0 and Ki = 0.1, for Kp = 10.

between the distribution of the agents and the desired density
as the kernel becomes more different than the nominal one (f̃2
being the worst case). Our numerical results confirm that the
steady-state mismatch decreases as Kp increases. Specifically,
choosing Kp > 100, yields a value of D1

KL lower than 0.05.

VI. ADDING A MACROSCOPIC INTEGRAL ACTION

In all the examined cases, some bounded mismatch between
the desired and steady-state distribution of the agents remains,
especially when Kp is low. To resolve this issue, we explored
the addition to the macroscopic control law in (13) of an inte-
gral action Ki

R ⌧
0 e(x, ⌧) d⌧, with Ki being a positive control

gain. Such a modified control action is then descretized as
in (18). We observe that the resulting control strategy still
ensures convergence, while reducing the steady-state error due
to discretization and the presence of perturbations. (See Fig.
6 for some representative cases.)

These findings suggest the advantages of adding an integral
action to compensate for disturbances and perturbations within
a continuification-based control strategy.

VII. CONCLUSIONS

We investigated the stability and robustness properties of
a continuification control strategy for a set of agents in a
ring. We quantified the extent to which the approach presented
in [14] is affected by (i) limited sensing capabilities of the
agents; (ii) presence of spatio-temporal disturbances; and (iii)

structural perturbations of the interaction kernel. In all cases,
we establish the mathematical proofs of semiglobal asymptotic
or bounded convergence – the latter in the form of a residual
steady-state mismatch that can be made arbitrarily small by
increasing the control gain. We also reported preliminary
results about the addition of a spatio-temporal integral action
at the macroscopic level.
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• The derivation can be applied almost as is to higher dimensions but..

• To uniquely derive            from           , we need an extra condition

Extension to higher dimensions 17

⇢t(x, t) +r · [⇢(x, t) (V(x, t) +U(x, t))] = 0
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Discretization in higher dimensions 18

• The problem can be recast as a Poisson equation in terms of a scalar potential 

• This PDE can be solved using Fourier series expansion 

• From the potential we can derive the flux    , and 

• We then finalize the discretization by a spatial sampling 
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Numerical validation 19



Hybrid experimental platform 20

• We built an experimental platform for validating control solutions for swarm 
robotics 

• The platform is hybrid (part of the agents are virtualized) and allows to run full-
scale experiments with large scale systems (time and costs)



Experimental validation (4 robots, 96 virtual agents) 21

• An inner control loop is embedded on the robots to deal with their kinematic 
constraints

• The periodicity assumption is adapted considering a fictitiously extended domain

Monomodal regulation Monomodal tracking Multimodal tracking



• The approach seems to work well but there are many open 
problems:

• How do you find closures of the ABMs?

• Can you ensure control actions are local when discretized?

• How do you better characterize convergence?

• We are currently exploring the use of physics-informed 
learning methods to find closures (see e.g. work by Kevrekidis, Siettos et al)

Remarks 22



• So far we looked at how to control a complex system

• What if the complex system acts as the controller rather than being the system we 
wish to control?

• Can we engineer the collective behaviour of a complex system to perform a 
control task?

Complex systems for control 23



• A paradigmatic example is the shepherding problem 

• Here a group of agents, the herders, need to steer the collective dynamics of 
another group of agents, the targets, in some desired way

The shepherding problem

© F. Auletta



• Observed in biological systems (e.g dolphins hunting fish [Haque et al, 2011,Int. 
J. Bio-Inspired Comp], ants collecting aphids [Oliver et al,2007,Proc. R. Soc. B]

• Technological applications: search & rescue, crowd control, oil cleanup
[Long et al, 2021, IEEE Emerging Comp applications]

Relevance



• In these situations the emerging collective behaviour of a complex system must 
be controlled by the driving the emerging behaviour of another complex system

A complex system performing a control task



• The crucial problem is the design of the herders’ dynamics so as to achieve the 
desired goal

• Herders must cooperate with each other and collectively implement decision-
making strategies 

• An intuitive solution is to rely on formation control 
or pre-computed optimal control solutions

• Or use virtual attractive/repulsive forces related 
to their relative positions with each other 
and the targets

Deciding the herding behaviour

A Pierson, M Schwager, Controlling noncooperative herds with robotic herders, IEEE Trans Robotics 2018
R.A. Licitra, Z Bell, W Dixon, Single-agent indirect herding of mutliple targets with uncertain dynamics”, IEEE Trans Robotics, 2019
D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model”, Math Models Methods Appl Sci, 2020 



• All existing solutions are based on two key assumptions:

1. Targets’ cohesiveness (e.g. flocking)
[Pierson et al, IEEE T. Robotics, 2017; Licitra et al 2019]

2. Herders’ Unlimited sensing
[Auletta et al, Auton, Rob., 2022]

Two key assumptions



Key research question

• Also, current solutions do not exploit a crucial feature of complex systems..

• ..their ability of exhibiting emerging collective behaviour from simpler agent 
behaviour

• In this spirit, shepherding solutions should not be engineered into the model but 
could emerge out of the herders following simpler local engagement rules

Can local simpler feedback rules solve the global herding control problem 
in the presence of limited sensing and non-flocking targets?

F. Auletta, D. Fiore et al , "Herding stochastic autonomous agents via local control rules and online global target selection strategies", Autonomous Robots, 2022

https://link.springer.com/article/10.1007/s10514-021-10033-6


• A group of agents, the herders, is tasked with the goal of collecting and coralling 
another group of agents, the targets towards some goal region in the plane

• M targets, N herders initially distributed as shown

The planar shepherding problem

A. Lama, MdiB, ”Shepherding and herdability in complex multiagent systems”, PRL, under review, 2023



Herders’ local dynamics
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Shepherding can be successful



The herdability problem

• Under what conditions on the repulsion zone, the sensing area and the density of 
the targets can we achieve herdability of a given number of targets?

S. Ruf, M. Egerstedt, J Shamma, ,”Herding complex networks”, online communication; Di Pasquale, Valcher, Automatica, 2023 



• We look for the minimum number of herders !∗ " necessary to herd M  targets

Herdability conditions
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⇠ < 1



• We define the herdability graph

• Assume that if there is a path on 
G between a and e the herder is 
theoretically able to switch from
a to e

• Then study herdability in term of
its percolation

The herdability graph

$"#(&, () = 1

if ," − ,# ≤ (

A. Lama, MdiB, ”Shepherding and herdability in complex multiagent systems”, PRL, under review, 2023



• We study when G becomes initially 
connected

• Percolation at " = /"$%& ∼ '
(!

• We use this as an estimate of the 
transition observed in the herdability
diagrams

• Also, we can capture the scaling of 
the threshold wrt to ( and 1)* ..

• ..and explain the observations and the 
scaling observed in the numerical 
experiments

Percolation analysis

" is the fraction of nodes in the largest connected component



• Complex systems can be controlled by devising multi-scale feedback control 
strategies comprising sensing, computing and actuation

• Continuification-based approaches might be a solution

• Also, complex systems can solve control tasks 
where the control strategy emerges out 
of simple local rules of interaction

• Shepherding is a great paradigmatic example..

• ..where emerging behaviour needs to arise from
a complex system in order to solve a control task

Conclusions 37



• How do we engineer local rules of interaction for
more complex tasks than shepherding?

• What if the targets actively escape from herders?

• What if the herders actively seek targets?

• Can we use multi-agent reinforcement learning?

• Can we use a continuification approach?

• Can we prove convergence?

• Lots of opportunities for further research!

Challenges and open problems 38
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