Complex networks with complex nodes
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Structure and function of interdependent networks

? Banking and Finance
4 Government
Emergency Response
Transportation

Oil and Natural Gas

e Water

Social networks:

Biological & Ecological
Economics & Epidemics

networks

Information and Communication
technology

Each network is a complex system with emergent behaviors



What are emergent collective behaviors?

Behaviors not predicted a priori from the constituent equations of
motion.
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Statistical physics approach to networks

Start with a “random graph”

The Degree distribution, p
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Calculating properties of the random graph

e Configuration models (Bollobas 1980, Molloy and Reed RSA 1995).
Enumerating over all networks with specified degree distribution {px }-

v Start with half-edges.
: \ ./ .& % é Assign a random matching
¢ W W ® to create an instance.

e Generating functions :  Gy(z) = >, pr 2"

? % ng properties —
= 0O+0O + + e
? T T Caveat:

Requires

1 (k) locally
Pe= 90 B — (k) tree-like
structure

Criteria for giant component



Properties of the random graph

e Rate equations / Kinetic theory : A Kinetic View of
Mean-field evolution of clusters/ STATISTICAL
graph structures. PHYSICS

zp(t+1) = F(Z(t))

e.g., “preferential attachment”:

z;, = fraction of nodes of degree k: Fayel L KRapitsgy

SiQrwey Redrjer
QZk(t + ]_) = —-k%];xk_l(t) i %mk(t) Eli Ben-Naim

Cambridge U. Press, 2010

Analyzed for asymptotic properties: N — oo and ¢t — oo.



Achievements of random graphs

e Vulnerability to “hub” removal / resilience to random removal
for broad-scale degree distributions.

* Epidemic spreading
e Epidemic threshold can approach zero!

* Percolation and extent of connectivity

e Critical thresholds for cascades

Diffusion and spreading

* Opinion dynamics, voter models, etc



Statistical physics of networks

* Thermodynamic limit N = o
e Equilibrium / Steady-state behavior
 Ensemble properties

* Simple nodes/edges (e.g., often binary state)

* Non-trivial network structure, “complex networks”:
* Broad-scale degree distributions,

X

* Clustering/
triangular closure * Small-worlds

* Community structure



Origin of emergent collective behaviors?

Where is the complexity?
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Complex networks with complex nodes
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Submit white papers and proposal to Ammy Research Office

Controlling Collective Phenomena in Complex Networks
Thank you to the MURI team  W911NF-13-1-0340.
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Today’s agenda: complex networks with complex nodes

0 Emergent interactions:

e Decoupled states — interactions of nodal dynamics & network structure

* BTW meets Kuramoto — sandpile cascades on oscillator networks

0 Controlling complex networks
A partnership between Statistical Physics and Control Theory



Decoupled states: Phase-amplitude oscillators

Nanoelectromechanical membrane, with a “Duffing”-like non-linearity
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Oscillator Amplitude (mV)
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time

Described by slow-time envelope
dynamics Ai(t)

Experimental collaboration with Micheal
Roukes and Matt Matheny at Caltech




8-node of ring NEMs oscillators

Coupling Feedback

Duffing Nonlinearity ——
dA, A; 1; ‘-f .
———A—|—1&A2A g . PP .
dT A 20A;] 2 : ;

Dissipation Self Feedback



Decoupled NN with emergent NNN order

Interplay of nodal dynamics and coupling structure lead to
decoupled states on ring of N=4m, m € Z.

Average |A |=1



Emergent couplings of higher order

Physical connection
NN Kuramoto-Sakaguchi coupling = ====
Biharmonic phase coupling ~ sssssssssens
NNN Kuramoto-Sakaguchi coupling ~— «sssssssese:
Triadic phase coupling ~ ssssssssnns

Matheny et al., “Exotic states in a simple network of
nanoelectromechanical oscillators”, Science, 363, March 8, 2019.




Linear stability calculations — amplitude dynamics matter

Symmetry subgroups of nodal dynamics and coupling structure
constrain the Jacobian:

4x4
1
x 4
Ringof4m, mE€ Z
4x4
4x4
(a) Our method
-1 —B(1 —¢ %) singy 0 B(1 —¢%)cosp
D, — 4 B(1 — ¢*)sin -1 B(1 — ¢*) cosp 0
=9 dov —B(1 = ¢ %) cosyp 0 —B(1 = ¢ *)siny
—B(1 —¢*) cos dov B(1— ¢*)siny 0

» Stable for phase-amplitude oscillators.

* Although average |A | =1, fluctuations are necessary to stabilize the system!

Unstable for phase-only oscillators.

Emenbheiser, et al., arXiv:2010.09131




Admissibility and stability of decoupled states in general

PHYSICAL REVIEW RESEARCH 2, 043261 (2020)

Decoupled synchronized states in networks of linearly coupled limit cycle oscillators

Anastasiya Salova®©'?" and Raissa M. D’Souza®?3*

'Department of Physics and Astronomy, University of California, Davis, California 95616, USA
2Complexity Sciences Center, University of California, Davis, California 95616, USA
3Department of Computer Science and Department of Mechanical and Aerospace Engineering,
University of California, Davis, California 95616, USA
4Santa Fe Institute, Santa Fe, New Mexico 87501, USA

® (Received 26 June 2020; accepted 27 October 2020; published 19 November 2020)
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Increasing network complexity

Hypergraphs — beyond dyadic coupling

* Challenge: Hyperedges
of all order contribute to
the dynamics and the
stability calculations.

Example higher-order interactions:
* Chemical reactions
e Co-authorship networks



Cluster synchronization on hypergraphs
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Anastasiya Salova, R.D., arXiv:2101.05464

Anastasiya Salova, R.D., arXiv:2107.13712

https://github.com/asalova/hypergraph-cluster-sync




role of nodal dynamics in cascading failures
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BTW sandpile model used to model power grid and brain networks



Self-organized criticality

Bak-Tang-Wiesenfeld PRL 1987: self-organized criticality

Sandpile model on networks

e Start with a network

e Drop units of load ¥ randomly on nodes

e Each node has a threshold.
Here = degree.

e |[oad on a node = threshold
= node topples, moves load to neighbors




Sandpile models on networks

e Start with a network

e Drop units of load ( randomly on nodes

Dissipation, &
e Each node has a threshold.
Here = degree.

e | oad on a node =threshold
= node topples, moves load to neighbors

e Neighbors may topple. Etc.
Cascade (or avalanche) of topplings.

Power-law distribution of avalanche sizes, P(s) ~ s3/2




Self-organized criticality

Power law tails (Universal behavior)

Extreme events often referred to as “Black Swans”

This scaling behavior is robust on networks. (Goh et al. PRL 03, Phys. A
2004/2005, PRE 2005. PLRGs with 2 < v < 3 not mean-field.)

Power law tails seem to characterize the sizes of electrical blackouts, financial
fluctuations, neuronal avalanches, earthquakes, landslides, overspill in water
reservoirs, forest fires and solar flares.

[1] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, [8] G. L. Mamede, N. A. M. Araujo, C. M. Schneider, J. C.
Chaos 17, 026103 (2007). de Aratjo, and H. J. Herrmann, Proc. Natl. Acad. Sci. U.S.A.
[2] X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, Na- 109, 7191 (2012).
ture 423, 267 (2003). [9] P. Sinha-Ray and H. J. Jensen, Phys. Rev. E 62, 3216 (2000).
[3] J. M. Beggs and D. Plenz, J, Neurosci. 23, 11167 (2003). [10] B. D. Malamud, G. Morein, and D. L. Turcotte, Science 281,
[4] D. E. Juanico and C. Monterola, J. Phys. A 40, 9297 (2007). 1840 (1998).
[5] T. Ribeiro, M. Copelli, F. Caixeta, and H. Belchior, PLoS ONE [11] E. T. Lu and R. J. Hamilton, Astrophys. J. 380, L89 (1991).
5,e14129 (2010). [12] M. Paczuski, S. Boettcher, and M. Baiesi, Phys. Rev. Lett. 95,
[6] A. Saichev and D. Sornette, Phys. Rev. E 70, 046123 (2004). 181102 (2005).

[7] S. Hergarten, Natural Hazards and Earth System Sciences 3, [13] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
505 (2003). (1987).



Why SOC? — ASPT

Absorbing state phase transition

R. Dickman, A. Vespignani, and S. Zapperi, Physical Review E 57, 5095
(1998).
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SOC in power grids and the brain?

Image © extremetech Image © Forbes

But this neglects the oscillatory nature of the nodes!

Sandpile cascades on oscillator networks: the BTW model meets

Kuramoto

Guram Mikaberidze' ® and Raissa M. D’'Souza®*

D Department of Mathematics, University of California, Davis, CA, 95616, USA
2 University of California, Davis, CA, 95616, USA

3Santa Fe Institute, Santa Fe, NM, 87501, USA

Chaos 32, 053121 (2022)

Initial goal: Leverage interaction to maximize
synchronization and minimize large cascades. Guram Mikaberidze



Oscillator dynamics: The Kuramoto model

45,' (t) —w;,+k Z Sin(¢j (t) _ ¢z(f)) Time evolution of the phase of

oscillator i

Synchronization phase
transition at critical coupling

- = finite N
— N = o0

Coupled BTW-KM dynamics. Each node has:
* Phase ¢, (KM)
e Capacity ¢c; (BTW)
* Loads; (BTW)



Coupled BTW-KM

Motivation: more out-of-phase is more vulnerable

BTW sandpile => Kuramoto Kuramoto => BTW sandpile

Efi '§;o ég _§;’
BTW -> KM

* If a node topples during a cascade its phase is reset at random at the end of the cascade.
e Discrete dynamics

e Cascade dynamics happens “instantaneously” compared to Kuramoto

KM ->BTW

* Assume a node out-of-sync with its neighbors is more vulnerable so lower its capacity to
hold load. This creates endogenous cascade seeds.

* Continuous dynamics

* Runs for time AT



Emergent periodic oscillations

3-reqular random graphs
* r(t)is the Kuramoto order parameter

* S is the total load on the system
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Emergent 3-phase oscillations
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Self-amplifying cascades kick off a DK

At the tipping point, a large cascade desynchronizes many nodes, causing an even
larger cascade at the next step.

size of the next cascade

Exponential growth in subsequent size:

“cascade of cascades”

size of the next cascade

seed count

BTW sandpile model

size of the current cascade 1le2

leb5
5 1 endogenous seeds
4 exogenous seeds
3 -

104 i

2 -
= 0 1
0 1 1 1 1 1 1

00 02 04 06 08 1.0




Beyond “Black Swans” -> Dragon Kings

DRAGON

KING
@

POWER LAW

Probability —>

Magnitude —

Poorly understood, massive events caused by nonlinear
amplifying mechanisms. (Introduced by D. Sornette, 2009.)



Dragon Kings

Bubbles in financial markets; sizes
of cities; failures in engineered
systems & nuclear accidents, etc.

Self-amplifying mechanism,
endogenous nature

Far more likely than Black Swans
and equally massive

Theory in its infancy:

— Conjecture: needs
homogeneous elements with
large coupling

Dragon kings have predictability

Probability —>

DRAGON

KING
@

POWER LAW

Magnitude —




Analytic calculations

children

active
node

parent

A —a(l-
(Stp,TP) = (L 2?5_ 11>>JNd, 1)

(1) The location of the tipping point

- lo—4 " theory
% e o o theory 10 + simulation
S 154 ¢ simulation
(5] . >
E £ 1072
g 2
“ 1.0 o
@) e o ©
=] le-3
M [ ] ! ] y 4 - . .
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@) % 5
@ ¢ simulation
D 0 O Y 3 - LS € A & ¥ B=FSI=E=Ta]
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o 2. . . .
(2) The frequency of the & (3) The cascade distribution
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0 -l 1 1 1 1 1
0 2 4 6 8 10
A

(4) The thermodynamic limit

G. Mikaberidze & R.D. Chaos 32, 053121 (2022)



DKs in SOC!

Discrete nature of sandpile model allows driving into the supercritical regime.

(a)
®
o
- Q
P ° "
= 2 dissip.
53 S
©
N ciriv. W ciissip. |
© | wawcmwons drlv
o A
00 05 1]0 15 20 25 30 control parameter E
pN
S , cascade size
b 1 102 distribution
1 - — power-law fit
L ‘ﬁ\.ﬁ%\ 10—4 . /
1e-06 [~ T 10_6 i
= (a)

T =TT T =TT T=TTTTT

10! 102 103 104

Enigmatic “peaks”/”bumps” observed in SOC studies, not explained by finite size



DKs in SOC!

DKs can exist even in the € = 0 limit.

Tradeoff between driving impulse and dissipation determines
if there is a DK.

p-value




Dragon King taxonomy

dragon kings

self-organized dragon kings
2" order 1%t order

modaeis or

G. Mikaberidze & R.D.



Controlling complex networks with complex nodes
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Classic feedback control theory

Control: Drive the system from any initial starting configuration
to any specified end configuration in finite time.

' final desired
: state
initial ol
state ~— > x
4

(Image Y.-Y. Liu)

X

. X 3
Feedback control paradigm: 2
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Sensors < /



Classic control tools are not enough

Network control

* Millions of degrees of freedom
* Full control is not feasible
* Full knowledge may not be

* Self-organizing systems
e Distributed control
e Cascading failures — SOC and DKs are prevalent

* Unanticipated response to interventions
e.g., Noel, Brummitt, RD., Phys. Rev. Lett. 111 (2013)



What do we want to control?

* Every degree of freedom?

* Macroscopic or microscopic details? E.g.,
— How many people are infected (macroscopic)

— Which particular people are infected (microscopic).

e Steer towards some class of behaviors? Avoid certain
attractors.



Starting point: Linear time invariant

Linear time-invariant x(t+1)=Ax(t)+ Bu(t)
system:
O 0 0 O
uy (t) a=[%1 0 0 ay
az; 0 0 ay
1 O 0 0 O
uy(t)
b, 0
(0 O
! B=10 o
0 b,
\ B is a MxN matrix

* N nodes
* M control signals/driver nodes

 Columns are the unit vector of
We want to find N the minimum each driver node

number of driver nodes

Driver nodes.




Control of Linear time invariant (LTI) systems

Controllability matrix: C==[B AB A2?B ... A" !B]

Kalman’ s controllability criteria: rankC =N Controllable!

The matrix C is full-row rank (each row linearly independent)
Kalman, J.S.I.A.M. Control (1963)

The controllability Gramian

t
We(t) = / eAt-") BB*eA" (-7 dr

to

If and only if the pair (A,B) is controllable, W, is n
the minimum energy control signal:

u(t) = —B*er MW (ty)[ed M) gy — o),




Structural control of LTI systems

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-19, No. 3, JUNE 1974 201

Structural Controllability

CHING-TAI LIN, MEMBER, IEEE

Abstract—The new concepts of ‘‘structure’’ and ‘‘structural con-
trollability’’ for a linear time-invariant control system (described by
a pair (A,b)) are defined and studied. The physical justification of
these concepts and examples are also given.

The graph of a pair (4,b) is also defined. This gives another way of
describing the structure of this pair. The property of structural con-
trollability is reduced to a property of the graph of the pair (A,b).
To do this, the basic concept of a ‘“cactus’ and the related concept of
a ‘‘precactus” are introduced. The main result of this paper states
that the pair (A4,b) is structurally controllable if an only if the graph
of (A,b) is “‘spanned by a cactus.”” The result is also expressed in a
more conventional way, in terms of some properties of the pair (4,b).

ing entry of (4b) is also fixed (zero). Then one defines the
pair (Ag,bo) to be structurally controllable if and only if there
exists a completely controllable pair (4,b) which has the
same structure as (Ag,by).

The concept of “‘structural controllability” of a pair
(A0,by) makes the meaning of controllability (in the usual
sense) more complete from the physical point of view.
In fact, it is preferred whenever (Aqby) represents an
actual physical system (that involves paramecters only
approximately determined). Actually, the completely
controllable pair (4,b) can be considered as “physically

C-T Lin, IEEE Trans on
Automatic Control, 1974

We treat the nonzero elements in 4 and B as free parameters, and we keep the

zero entries fixed.

Q
N
o O OO

o O OO



Structural control meets maximum matching

nature Y.-Y, Liu, A.L. Barabasi, J.-J. Slotine
§ 4

“Controllability of complex networks”

TAMING Nature 2011.
COMPLEXITY

Matching in Directed Networks

The unmatched nodes are the driver nodes.

Cavity method from spin glasses

5

GOOD: algorithms and analytical tools!



Insights from structural control:

Degree-preserving

Role of degree distribution RO
Control energy Ll R
1 b A

Exact controllability . 3

. . g_) 10 @
Connection to core percolation g . ;

. . - A
Control profiles: sources, sinks, 5w &
dilations SN
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internal Layer |
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Real-world: Massive, non-linear systems

finaldesired

/(' state

(Image Y.-Y. Liu)

e Possibly only partial knowledge
* Non-linear nodal dynamics

* Self-organization / far from equilibrium



Non-linear dynamics

Start from the dynamical equations of motion — complex dynamics, low dimensional

VOLUME 64, NUMBER 11 PHYSICAL REVIEW LETTERS 12 MARCH 1990

Controlling Chaos
Edward Ott,® Celso Grebogi,® and James A. Yorke

University of Maryland, College Park, Maryland 20742
(Received 22 December 1989)

* An infinite number of unstable periodic orbits
typically embedded in a chaotic attractor.

» dx/dt = F(x,p), where x is a 3D vector

 Stabilize desired orbit by making only small
time-dependent perturbations of a system
parameter, p




Non-linear dynamics — basin structure key

|II

“Kicking contro
Exploit basins of attraction and natural phase-space trajectories

(a)

target, x*

Target {
attractor -5
Evolution

following
intervention

Admissible state
perturbations

" /Intervention

[ ]
State before
intervention

S P Cornelius, WL Kath, and AE Motter. “Realistic control of network dynamics”.
Nature Communications, 4, 2013.

AE Motter. “Networkcontrology”. Chaos, 25, 2015.




Data driven model discovery

* System identification / network inference
* Discover effective equations of motion from time series data

ot +1) ~ Ap(r)  where A =arg min |&y— Ad|

AcRIEIXIE]
n n+ 1
M ;1:‘;; M
L ]
States Evolution Operator F(x3)
(M,n, F) J?l F: M= M Flx,)e
¢ Ope rator theory (Finite l.)illl.(‘ll.‘wi()ll“l o F(xy)
(e.g. Koopman Operators) '. and Nonlinear)

* Map a nonlinear dynamics to
an infinite dimensional, linear

Koopman
Eigenfunctions
,\'«)l)()l\'
uenrdooyy
Koopman
Eigenfunctions
.\‘«)P()]\'
ururdooy]

dynamics
F (] 7 KTL';{
* |dentify the key modes of b Kty f/ﬂ
. Observables | Koopman Operator A [ —
Interest ; . : . " L .
(F.n,K) U 7 ﬁ?‘/ K:F —= F » E,:->17 K
- 2 (Infinite Dimen- = ~—
r\f ﬁ sional and Linear) ("j
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Data driven model discovery for control

* Find a sparse (low dimensional) representation, e.g., using SINDy*
* Map out fixed points in the low-dimensional space and develop strategic

interventions

DATA-DRIVEN

SCIENCE AND
ENGINEERING

Machine Learning,
] Dynamical Systems,
(d)  SINDy model and Control
L] L] 7 " L ] L ]

5 Steven L. Brunton * J. Nathan Kutz

......

stable fixed point

Ny A~
e initial values _,&\\ S Tk N

trajectories 2019, Cambridge Univ. Press




Control of phase transitions

Design small interventions that enhance or delay the onset of
phase transitions in a complex network.

e Enhance — similar to ER
but with earlier onset. =
©
Z o
e Delay - é
Extremely abrupt st
o | ——
o

00 05 10 15 20 25 30
t
“Explosive percolation in random networks”, D Achlioptas, RM

D’Souza, J Spencer, Science 323 (5920), 1453-1455, 2009.



Control of SOC

Controlling the BTW model away from the SOC state

Noél, Brummitt, R.D., Phys. Rev. Lett. 111 0780701, 2013

Control parameter pu:
probability grain lands on a node at threshold® e Avoid cascades,
i = 0.05 — larger

AT | —— vy e ey D R
LN Aray uncontrolled (u = ¢, ~ 0.53) cascades when they do
&Sty i
0.001 : H.""-\\ : i::::lr::::ij ::i:: /‘_3'3; DEC.
s By SN H=U0.
= ? pa SEN
.'é oy . \-"l. .
8 probability of 4 \ ‘.‘ ° |gn|te Cascades
:E;_ 107  size O is 1—u A\ \ NH ’
\ ) “u_ = 0.99 — smaller
A\ )
(A ‘.\ cascades, but more
107" by . . A . e
& frequent.

0 1 10 10° 10* 10* 10°

cascade size (number of topplings)

Tradeoffs and timescales!
* lIgnite cascades, no large cascades but also no profit

* Suppress cascades, no failure for a long time, but massive when happens



Social networks and control interventions

Mathematical models of social behavior

Analyze extent of epidemic spreading, product adoption, etc:

INSIDE SCIENCE NEWS SERVICE

e Thresholds models Zeakoks Help Sway Popular Opinions

e Voter models

e Opinion dynamics
(e.g. The Naming game)
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@ Pe rCOl atIO n Image credit: Gabriel Saldana via Flickr | http://bit.ly/1E91jCQ

Rights information: http://bit.ly/1dWcOPS

Enthusiasts can greatly influence the adoption of new ideas.

Originally published: 7

e Game theory o gmepeed oy

A. Waagen, G. Verma, K. Chan, A. Swami, R. D. PRE, 2015.
e Cascades g '

What mechanism makes an individual change their mind?



Basic question: What mechanism drives opinion dynamics?

Many competing hypothesis!

* Diminishing returns vs threshold models?

Prob. of adoption

Prob. of adoption

k = number of friends adopting k = number of friends adopting

Diminishing returns? Critical mass?

* Simple contagion versus complex contagion?
* Role of influence and attention? (cusp catastrophes)

* Perhaps people cannot be described by simple equations?



Feedback into physics; statistical treatments in control

* Increase network complexity — hypergraphs and multiplex networks

* Driven, far-from-equilibrium models in statistical physics (SOC, KPZ,
ASEP)
* Activity driven temporal networks

* ML/AI and data driven model discovery
* Tradeoffs and timescales
* Hybrid treatments (continuous parts/discrete parts;

continuafication...)

 |dentify a set of paradigmatic problems or benchmark case studies that
could be used to validate and contrast different approaches to control
complex systems



Learn more:

nature reviews physics https://doi.org/10.1038/s42254-023-00566-3
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Controlling complex networks
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Conclusions

Modern systems are made of interconnected complex systems:
Socio-technical, cyber-physical, eco-social.

Can’t necessarily reduce to a set of interconnected differential equations.

0 Emergent interactions:

* Decoupled states — nodal dynamics & network structure

 BTW meets Kuramoto — sandpile cascades on oscillator networks
e SOC and Dragon kings — self-amplifying cascades

0 Controlling complex networks:

e Structural control (linear nodal dynamics)
* Non-linear dynamics and basin structure
e Data driven model prediction

e Control of phase transitions and SOC
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