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Structure and function of interdependent networks

Each network is a complex system with emergent behaviors



Behaviors not predicted a priori from the constituent equations of 
motion. 

Synchronization and 
pattern formation. 

Phase transitions
“Tipping points”

Cascading failures. 

What are emergent collective behaviors? 



A power-law distribution is 
a “scale-free” network

Statistical physics approach to networks

Start with a “random graph”



Calculating properties of the random graph

Caveat: 
Requires 
locally 
tree-like 
structure

Criteria for giant component



Properties of the random graph



Achievements of random graphs

• Epidemic threshold can approach zero!

• Critical thresholds for cascades

• Diffusion and spreading 

• Opinion dynamics, voter models, etc

• Percolation and extent of connectivity 

• Epidemic spreading 



• Non-trivial network structure, “complex networks”:
• Broad-scale degree distributions, 

• Simple nodes/edges (e.g., often binary state)

Statistical physics of networks

 

• Clustering/
triangular closure 

• Community structure 

• Small-worlds



Origin of emergent collective behaviors?

In the network structure?

In the nodal dynamics?

In both? 

Where is the complexity? 



Statistical 
Physics 

Control theory and 
non-linear dynamics

Real-world systems have both complex nodes and complex coupling 

Complex networks with complex nodes

Thank you to the MURI team 





� Emergent interactions:

• Decoupled states – interactions of nodal dynamics & network structure

• BTW meets Kuramoto – sandpile cascades on oscillator networks 

� Controlling complex networks 
A partnership between Statistical Physics and Control Theory

Today’s agenda: complex networks with complex nodes 



Decoupled states:   Phase-amplitude oscillators

Described by slow-time envelope 
dynamics Ai(t)

Nanoelectromechanical membrane, with a “Duffing”-like non-linearity

Experimental collaboration with Micheal 
Roukes and Matt Matheny at Caltech

ARO MURI No. W911NF-13-1-0340



8-node of ring NEMs oscillators



Decoupled NN with emergent NNN order

 

Average |A
i
|=1



Matheny et al., “Exotic states in a simple network of 
nanoelectromechanical oscillators”, Science, 363, March 8, 2019. 

Emergent couplings of higher order 



Linear stability calculations – amplitude dynamics matter

 

• Stable for phase-amplitude oscillators. 

• Although average |A
i
| = 1,  fluctuations are necessary to stabilize the system!

Emenheiser, et al., arXiv:2010.09131

Unstable for phase-only oscillators. 



Admissibility and stability of decoupled states in general



Increasing network complexity

• Challenge: Hyperedges 
of all order contribute to 
the dynamics and the  
stability calculations.

Example higher-order interactions: 
• Chemical reactions
• Co-authorship networks

Hypergraphs – beyond dyadic coupling 



Cluster synchronization on hypergraphs

Simultaneously block-diagonalizing this set of matrices block-diagonalizes the Jacobian.

Anastasiya Salova, R.D., arXiv:2101.05464 Anastasiya Salova, R.D., arXiv:2107.13712

https://github.com/asalova/hypergraph-cluster-sync



BTW sandpile model used to model power grid and brain networks 

The role of nodal dynamics in cascading failures



Self-organized criticality



Sandpile models on networks

 



Self-organized criticality

Extreme events often referred to as “Black Swans” 



Why SOC? – ASPT  

The critical point (at t=t
c
)

Absorbing state phase transition 
R. Dickman, A. Vespignani, and S. Zapperi, Physical Review E 57, 5095 
(1998). 



SOC in power grids and the brain? 

But this neglects the oscillatory nature of the nodes!

Guram Mikaberidze
Initial goal: Leverage interaction to maximize 
synchronization and minimize large cascades.



 

Oscillator dynamics:  The Kuramoto model 

Time evolution of the phase of 
oscillator i

Synchronization phase 
transition at critical coupling



BTW -> KM 
• If a node topples during a cascade its phase is reset at random at the end of the cascade. 
• Discrete dynamics
• Cascade dynamics happens “instantaneously” compared to Kuramoto

 

Coupled BTW-KM 

Motivation: more out-of-phase is more vulnerable 



Emergent periodic oscillations

3-regular random graphs 

• r(t) is the Kuramoto order parameter

• S  is the total load on the system



Emergent 3-phase oscillations

Cascade size distribution in 
each of the three phases 



Self-amplifying cascades kick off a DK

Exponential growth in subsequent size:
“cascade of cascades” 

At the tipping point, a large cascade desynchronizes many nodes, causing an even
larger cascade at the next step. 



Poorly understood, massive events caused by nonlinear 
amplifying mechanisms. (Introduced by D. Sornette, 2009.)

Beyond “Black Swans” -> Dragon Kings



• Bubbles in financial markets; sizes 
of cities; failures in engineered 
systems & nuclear accidents, etc. 

• Self-amplifying mechanism, 
endogenous nature

• Far more likely than Black Swans 
and equally massive

• Theory in its infancy:
– Conjecture: needs 

homogeneous elements with 
large coupling

• Dragon kings have predictability 

Dragon Kings



Analytic calculations

(1) The location of the tipping point 

(2) The frequency of the DK cycle (3) The cascade distribution 
in the buildup phase 

(4) The thermodynamic limit

G. Mikaberidze & R.D.



DKs in SOC! 

Enigmatic “peaks”/”bumps” observed in SOC studies, not explained by finite size

Discrete nature of sandpile model allows driving into the supercritical regime. 



DKs in SOC! 

 



Dragon King taxonomy 

G. Mikaberidze & R.D.



Controlling complex networks with complex nodes



final desired 
state

(Image Y.-Y. Liu)

Classic feedback control theory

Control:   Drive the system from any initial starting configuration 
to any specified end configuration in finite time.  

Feedback control paradigm: 



• Millions of degrees of freedom
• Full control is not feasible 
• Full knowledge may not be  

• Self-organizing systems
• Distributed control
• Cascading failures – SOC and DKs are prevalent 
• Unanticipated response to interventions

       e.g., Noel, Brummitt, RD., Phys. Rev. Lett. 111 (2013)

Classic control tools are not enough 

Network control



• Every degree of freedom?

 

• Macroscopic or microscopic details? E.g., 

– How many people are infected (macroscopic)

– Which particular people are infected (microscopic).

 

• Steer towards some class of behaviors? Avoid certain 
attractors.

What do we want to control?



Starting point:  Linear time invariant

B is a MxN matrix
• N nodes
• M control signals/driver nodes
• Columns are the unit vector of 

each driver nodeWe want to find N
D

 the minimum 
number of driver nodes



Control of  Linear time invariant (LTI) systems



Structural control of LTI systems

C-T Lin, IEEE Trans on 
Automatic Control, 1974



Y.-Y, Liu, A.L. Barabasi, J.-J. Slotine
“Controllability of complex networks”
Nature 2011.

Structural control meets maximum matching

Cavity method from spin glasses 



Insights from structural control:

• Role of degree distribution 
• Control energy 
• Exact controllability 
• Connection to core percolation 
• Control profiles: sources, sinks, 

dilations
• Control of multiplex LTI networks
• Target control  



Real-world:  Massive, non-linear systems

(Image Y.-Y. Liu)

• Possibly only partial knowledge

• Non-linear nodal dynamics

• Self-organization / far from equilibrium



Non-linear dynamics

• dx/dt = F(x,p),  where x is a 3D vector 

• An infinite number of unstable periodic orbits 
typically embedded in a chaotic attractor.

• Stabilize desired orbit by making only small 
time-dependent perturbations of a system 
parameter, p 

Start from the dynamical equations of motion – complex dynamics, low dimensional



“Kicking control”
Exploit basins of attraction and natural phase-space trajectories

Non-linear dynamics – basin structure key

S P Cornelius, WL Kath, and AE Motter. “Realistic control of network dynamics”. 
Nature Communications, 4, 2013.

AE Motter. “Networkcontrology”. Chaos, 25, 2015.



Data driven model discovery

• System identification / network inference
• Discover effective equations of motion from time series data 

• Operator theory                    
(e.g. Koopman operators)

• Map a nonlinear dynamics to 
an infinite dimensional, linear 
dynamics

• Identify the key modes of 
interest

where 



*

Data driven model discovery for control

• Find a sparse (low dimensional) representation, e.g., using SINDy*

• Map out fixed points in the low-dimensional space and develop strategic 

interventions 

2019, Cambridge Univ. Press 



Design small interventions that enhance or delay the onset of 
phase transitions in a complex network.  

“Explosive percolation in random networks”, D Achlioptas, RM 
D’Souza, J Spencer, Science 323 (5920), 1453-1455, 2009. 

Control of phase transitions 



• Tradeoffs and timescales!
• Ignite cascades, no large cascades but also no profit
• Suppress cascades, no failure for a long time, but massive when happens

Control of SOC



Social networks and control interventions

• Cascades



• Simple contagion versus complex contagion?

• Role of influence and attention? (cusp catastrophes) 

• Perhaps people cannot be described by simple equations?

Basic question: What mechanism drives opinion dynamics?

• Diminishing returns vs threshold models? 

Many competing hypothesis!



Opportunities

• Increase network complexity – hypergraphs and multiplex networks

• Driven, far-from-equilibrium models in statistical physics (SOC, KPZ, 
ASEP)

• Activity driven temporal networks 

• ML/AI and data driven model discovery 

• Tradeoffs and timescales

• Hybrid treatments (continuous parts/discrete parts; 

continuafication…)

• Identify a set of paradigmatic problems or benchmark case studies that 
could be used to validate and contrast different approaches to control 
complex systems

Feedback into physics;  statistical treatments in control 



Learn more: 



Conclusions

� Emergent interactions:
• Decoupled states – nodal dynamics & network structure
• BTW meets Kuramoto – sandpile cascades on oscillator networks 
• SOC and Dragon kings – self-amplifying cascades 

� Controlling complex networks:

• Structural control (linear nodal dynamics)
• Non-linear dynamics and basin structure 
• Data driven model prediction 
• Control of phase transitions and SOC

Modern systems are made of interconnected complex systems:                 
Socio-technical, cyber-physical, eco-social. 

Can’t necessarily reduce to a set of interconnected differential equations.



Thank you!

Guram Mikaberidze Anastasiya Salova Jeff Emenheiser

Yang-Yu LiuMario di Bernardo

Matt Matheny

Micheal Roukes


