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Machine learning is a subfield of artificial intelligence (Al) that focuses on developing
algorithms and statistical models that enable computers to learn from and make predictig

or decisions based on data, without being explicitly programmed.

In other words, machine learning involves the use of algorithms that can automatical
improve their performance by learning from data. This is achieved through a proce,
training, in which a computer program is given a large dataset and uses it to iden

and relationships within the data.

Once the algorithm has been trained, it can be used to make predictions or g

new data that it has not seen before, based on the patterns and relationsh;j



How does Al work?
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€he New Hork Times

Opinion

OP-ED CONTRIBUTOR

How to Make Al That’s Good for People I worry, however, that enthusiasm for A.I. is preventing us
By Fel-Fei L from reckoning with its looming effects on society. Despite

March7, 2018 its name, there is nothing “artificial” about this technology — it is
made by humans, intended to behave like humans and affects
humans. So if we want it to play a positive role in
tomorrow’s world, it must be guided by human concerns.

tf Giethisarticie 2> []

I call this approach “"human-centered A.1I.” It consists of three
goals that can help responsibly guide the development of
intelligent machines.

Elisa Macellari
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My research explores how we can design visualization-empowered

Human-Al interactions that support diverse data tasks.
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Emotion-Oriented Visual Summarization
of Classroom Videos

Haipeng Zeng, Xinhuan Shu, Yanbang Wang, Yong Wang, Liguo Zhang,
Ting-Chuen Pong, Huamin Qu
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Emotion analysis in classroom videos

How to carry out

Al

Exploring students’ emotion can help
both teachers and parents know about
students’ learning status and further
help teachers improve teaching.

It is not easy for teachers to quickly
capture and explore many students’
emotions in the classroom.

, informative, emotion analysis?

VIS

Human
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Face Detection

Face Recognition

Emotion Recognition

Factor Extraction

Al

Al recognizes emotions
of individual students,
but the model output

has uncertainties.
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Misidentified anger emotion
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Lessons Learned

* Integrate the model uncertainty into emotion analysis

* Model performance heavily relies on the representative-

ness of the training datasets
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Automatic Generation of Metaphoric
Glyph-based Visualization

x

Lu Ying, Xinhuan Shu, Dazhen Deng, Yuchen Yang, Tan Tang,
Lingyun Yu, Yingcai Wu
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Metaphoric Glyph-based Visualization (MGV)

Popularity
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How to Create MGVs?

Entry  Primary Secondary Base Base Base HP Special  Special Base Heightof Weightof
number  Type Type Attack Defense Attack Defense Speed Objects Objects

70 grass poison 90 50 65 85 45 55 6.4 1

49 bug poison 65 60 70 90 75 90 12.5 1.5
33 normal flying 30 55 52 58 62 60 15 0.8
71 grass poison 105 65 80 100 70 70 15.5 1.7
45 grass poison 80 85 75 110 90 50 18.6 1.2
48 bug poison 55 50 60 40 55 45 30 1

12 bug flying 45 50 60 90 80 70 32 1.1
22 normal flying 90 65 65 61 61 100 38 1.2
84 normal flying 85 45 35 35 35 75 39.2 1.4
94 ghost poison 65 80 60 170 95 130 40.5 1.5
72 water poison 40 35 40 50 100 70 45.5 0.9
62 water  fighting 95 95 90 70 90 70 54 1.3
42 poison flying 80 70 75 65 75 90 55 1.6
34 poison ground 102 77 81 85 75 85 62 1.4

Pokemon data
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How to Create MGVs?

Challenge #1: How to select an appropriate visual metaphor?

Entry Primary Secondary Base Base Base HP Special = Special Base Heightof Weightof
number  Type Type Attack Defense Attack Defense Speed Objects Objects
70 grass poison 90 50 65 a5 45 55 6.4 1
49 bug poison 65 60 70 30 73 20 12.5 15
83 normal flying 90 55 52 58 62 60 15 0.8
71 grass poison 105 65 80 100 70 70 15.5 1.7
45 grass poison 80 85 75 110 90 50 18.6 1.2
48 bug poison 55 50 60 40 55 as 30 1
12 bug flying 45 50 60 90 20 70 32 11
22 normal flying 90 65 65 61 61 100 38 1.2
34 normal flying 85 45 35 35 35 75 39.2 14
94 ghost poison 65 30 60 170 95 130 40.5 15
72 water poison 40 35 40 50 100 70 45.5 0.9
62 water fighting 95 95 90 70 30 70 54 1.3
42 poisan flying 80 70 75 65 75 30 55 1.6
34 poison ground 102 77 81 85 75 85 62 14

Pokemon data



How to Create MGVs?

Challenge #2: How to embed metaphors into glyph-based visualization design?

Entry Primary Secondary Base Base Base HP Special = Special Base Heightof Weightof 80
number  Type Type Attack Defense Attack Defense Speed Objects Objects
70 grass poison 90 50 65 85 45 55 6.4 1
49 bug poison 65 60 70 30 73 20 12.5 15 @
33 normal flying 90 55 52 58 62 60 15 0.8 . 0 60
71 grass poison 105 65 20 100 70 70 15.5 17 2 —@— "@—
45 grass poison 80 85 75 110 90 50 18.6 12 a
48 bug poison 55 50 60 40 55 a5 30 1 — O _@—
12 bug flying a5 50 60 30 20 70 0 11 I ‘5 40 - —@-_@)_
22 normal flying 90 65 65 61 61 100 38 1.2 = @ _@_
34 normal flying 85 45 35 35 35 75 39.2 14 R=l
94 ghost poison 65 80 60 170 95 130 40.5 15 % 20
72 water poison 40 35 40 50 100 70 45.5 0.9 @
62 water  fighting 95 95 90 70 90 70 54 13 —@—
42 poisan flying 80 70 75 65 75 30 55 1.6 —@—
34 poison ground 102 77 81 85 75 85 62 14 0
0 0.8 1.0 1.2 1.4 1.6

Weight of Objects

Pokemon data
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How to Create MGVs?

Challenge #2: how to embed metaphors into glyph-based visualization design?

LW ]

A\

Entry Primary Secondary Base Base Base HP Special = Special Base Heightof Weightof 80
number  Type Type Attack Defense Attack Defense Speed Objects Objects
70 grass poison 90 50 65 a5 45 55 6.4 1
49 bug poison 65 60 70 30 73 20 12.5 15
83 normal  flying 90 55 52 58 62 60 15 0.8 AI o 60 _@-
71 grass poison 105 65 20 100 70 70 15.5 17 2 —@— -
45 grass poison 80 85 75 110 S0 50 18.6 1.2 a
48 bug poison 55 50 60 40 55 a5 30 1 — O _@_
12 bug flying a5 50 60 %0 80 70 32 11 I ‘5 40 - —@-_©_
22 normal flying 90 65 65 61 61 100 38 12 = @ _@_
84 normal flying 85 45 35 35 35 75 39.2 14 R=l
94 ghost poison 65 80 60 170 95 130 40.5 15 % 20
72 water poison 40 35 40 50 100 70 45.5 0.9 @
62 water  fighting 95 95 90 70 90 70 54 1.3 —@—
42 poison flying 80 70 75 65 75 90 55 1.6 —@—
34 poison ground 102 77 81 85 75 85 62 14 0
0 0.8 1.0 1.2 1.4 1.6

Weight of Objects

Pokemon data
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MGV Generation Model

Select Metaphoric Images Construct

Render

21



MGV Generation Model

Select Metaphoric Images Construct

1. It is semantically related to the data.

2. Itis a vector image with a relatively simple structure.

Render
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MGV Generation Model

Construct Render

1. It is semantically related to the data.

2. Itis a vector image with a relatively simple structure.
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MGV Generation Model

Render
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MGV Generation Model
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Lessons Learned

* Assigning the labor-intensive part to the
machine and providing the connectors of
subjective decisions to human beings.

* Al can enumerate possibilities, which
serendipitously result in promising design.
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Humans may learn
from Al
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Interactive Pattern Explanation for
Network Visualizations

»

Xinhuan Shu, Alexis Pister, Junxiu Tang,
Fanny Chevalier, Benjamin Bach

o
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Information visualization: perception for design [Ware, 201 9]
Visualization analysis and design [Munzner, 2014]

From datatoviz.

Designand Comparative Evaluation of Visualization Onboarding Methods [Stoiber et al., 2021]
The State of the Art in Visualizing Multivariate Networks[Nobre et al. 201 9]
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It’s essential to quickly

spotand interpret

Visual Patterns



Visualization Literacy

“the ability to confidently use a given data visualization to translate

questions specified in the data domain into visual queries in the visual
domain, as well as in the visual domain as

properties in the data domain.”
A principled way of assessing visualization literacy [Boy et al. 2014]

“the ability to make meaning from and , trends,

and correlations in visual representations of data”
Data visualization literacy [Borner et al. 2019]

“detects salient , translates them into conceptual

information structures”
Seeking patterns of visual pattern discovery for
knowledge building [Andrienko et al. 2022]



Research problem

How to support people to quickly
Spotand interpret Visual Patterns



Interactive Pattern Explanations

Explaining visual patterns and their data patterns on-demand in user-defined parts of visualization.
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Interactive Pattern Explanations
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Interactive Pattern Explanations
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Interactive Pattern Explanations
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Evaluation

Qualitative Study:
* Weran a within-subject design with 12 participants, asking them to learn and interpret three
network visualizations in an open-ended way.
Quantitative Study:
e Werana between-subject design with 20 participants to measure how many patterns people

can accurately identify after learning adjacency matrices.
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Adjacency matrices are table representations of networks. Nodes are represented both as

ows and columns. Node labels are shown for rows and columns. Coloring the cell at the ao

ntersection between their row and column indicates relations between two nodes. Darker
lors indicate stronger connections between nodes.

Text-only Cheatsheet Pattern Explainer



Results:

* Increase the number of patterns people identify correctly.

Evaluation

e Number of patterns identified correctly and in total

0 Participant confidence

0 5 10 15 20 25 30 35 1 2 3 4 5
after training
30.8 after testing
—e= 238
_9.7_ . after tralr-ung LA
18.5 after testing
—— 2.1
Pattern Explainer Cheat sheets Failure
Condition Sum #SL #Hub #Bridge #Fan #Clique #Cluster
Pattern Explainer 21.8 19 2.4 2.7 1.1 8.0 5.7
Cheat sheets 9.7 1.3 09 0.7 0.7 3.6 2.5




Evaluation

* Results:
* Increase the number of patterns people identify correctly.
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* Results:
* Increase the number of patterns people identify correctly.

e Number of patterns identified correctly and in total o Participant confidence
0 5 10 15 20 25 30 35 1 2 3 4 5
after training
218 0.8 after testing
’ —-= 2.8
after trainin
- ® 9 e e 2,4
[ 18.5 after testing
—— 2.1
Pattern Explainer Cheat sheets Failure

Condition Sum #SL | #Hub #Bridge #Fan #Clique #Cluster
Pattern Explainer 21.8 19 | 2.4 2.7 1.1 8.0 5.7
Cheat sheets 9.7 1.3 [ 09 0.7 0.7 3.6 2.5




Evaluation

Results:
* Increase the number of patterns people identify correctly.

* Appreciate the in-situ and on-the-fly explanations.

“Interactive pattern explanations put the theoretic concepts into
practice.”

“Cheat sheets could not directly apply to the visualization. |
got more confused about whether my understanding of this
cheat sheet was right.”




Lessons Learned

* In-context and on-the-fly explanations can help
novices improve visualization (data) literacy.

 Personalized, guided, and progressive tutorials
- Pros | °9) ~ O
are promising for Al-assisted education. e\~
Weak Strong

Al Capabilities
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From Data to Dialog:

Visualization-empowered Human-Al
Collaboration
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