

A DEEP-LEARNING-BASED METHOD FOR THE RETRIEVAL OF SUN-INDUCED PLANT FLUORESCENCE FROM AIRBORNE AND SPACEBORNE HYPERSPECTRAL IMAGERY

Hanno Scharr, Data Analytics and Machine Learning, Forschungszentrum Jülich

Helmholtz Association

Mission: Research towards answering major and pressing questions of science, society, and industry

Jülich

- 18 national labs
- 46,000 employees
- 14,500 international guest researchers
- 6B€/a budget ullet

Forschungszentrum Jülich at a glance

> 7000 staff, 14 Institutes, 1.0B€/a budget, 1.7km² campus

Institute of Climate and Energy Systems (ICE)

Climate Institutes at Jülich

- Explores the chemistry of the troposphere
- Performs global observations
- Simulates atmospheric chemistry and transport processes by numerical models

ICE-4: Stratosphere (~60 staff)

- Chemistry, dynamics, and microphysics of the stratosphere and tropopause
- Role of these layers in the climate system

Atmospheric Research at Jülich

From Observations to Process Understanding to Earth System Models: Troposphere and Stratosphere

Forschungszentrum

Atmospheric Research at Jülich

Atmospheric Observations

- Field campaigns with strategic partnerships
- Leading roles in EU infrastructures

Theory / Earth System Model Development

- Exascale-ready model development
- Exploring machine learning approaches
- Connecting to energy system modelling

Operational chemical weather forecast **Copernicus Atmospheric** Service, IPCC Predictability of Air Quality and Climate Warming in the changing Earth and Energy systems

Holistic understanding by simulation of atmospheric processes at atmospheric conditions

High Quality Data / Instrument Development

- State-of-the art, high-quality (new) instrumentation
- Provision of quality-controlled FAIR data
- Use of new instruments by (industry) partners

Traditional Earth System Modelling

Atmosphere dynamics

<u>Bildquelle</u>

Variables: $\{\mathbf{v}, p, T, \rho, q\}$ $\frac{d}{dt}\mathbf{v} = -2\mathbf{\Omega} \times \mathbf{v} - \frac{1}{\rho}\nabla_3 p + \mathbf{g} + \mathbf{F}$ Conservation of momentum (Navier-Stokes) $C_v \frac{d}{dt} \left(\rho q\right) + p \frac{d}{dt} \left(\frac{1}{\rho}\right) = J \qquad \qquad \begin{array}{c} \text{Conservation of energy} \\ \text{(1st Law of Thermodyna)} \end{array}$ (1st Law of Thermodynamics) $\frac{\partial}{\partial t} (\rho) = -\nabla_3 \cdot (\rho \mathbf{v})$ $\frac{\partial}{\partial t} = -\nabla_3 \cdot (\rho \mathbf{v}q) + \rho (E - C)$ Conservation of air mass Continuity of water vapor mass Equation of state $p = \rho RT$ (Ideal gas law)

Progress in numerical weather forecasts

Current resolution of the DWD weather models: global = 13 km, regional = 2,1 km

Increased compute power

1967 : 0,7 Mflops 1976 : 130 Mflops (Cray-1) 1990 : 23 Gflops (NEC) 2002: 36 Tflops (NEC) 2009 : 1 Pflops (JUGENE) 2021*: 73 Pflops (JUWELS Booster) 2025*: >90 Eflops (JUPITER)

* Accelerator technology (GPUs)

AtmoRep: A stochastic model of atmosphere dynamics

Trained using large scale representation learning (Masked Auto-Encoder)

~

Lessig et al. https://arxiv.org/abs/2308.13280

Forecasting

Climate projections

Downscaling

Martin Schultz, Earth System Data Exploration Group, JSC

HClimRep: Helmholtz Foundation Model for Climate Science

Will be the first Earth system foundation model including the troposphere, stratosphere, ocean, sea ice, and hydrology

- Seasonal-to-decadal AI-based simulations
- First climate-capable foundation model, incorporating
 - o multiple grids and resolutions,
 - o atmosphere-ocean-sea ice coupling, and a
 - $\circ\;$ wide range of available data
- Generalization across tasks
 - \circ support for prediction, data assimilation,
 - \circ uncertainty quantification, and counterfactual scenarios
- **Downstream applications** demonstrate potential for future climate research and services

Lead: Jülich, IAS/JSC, Martin Schultz Project start 2024, duration 36 months

source

FOUNDATION MODELS

Classic supervised machine learning

State of the Art: Predictive and Generative AI with large Foundation Models

D_1 S_1 M₁ train test T₁ train test T_2 train test T_3 D_3 M_3 S_3

- poor generalization and transfer
- labeled data for each task
- no model re-use

1. Self-supervised pre-training of large-scale models

FOUNDATION MODELS

Scaling Laws in Al

- Scaling Laws: larger model, data and compute scale during pretraining lead to stronger generalization and transferability
- No change in algorithmic procedure. Just scale up and important generic functions e.g. generalization get better

Forschungszentrum

Trend: larger models, larger data, larger compute

Source: https://ourworldindata.org/grapher/artificial-intelligence-training-computation Mitglied der Helmholtz-Gemeinschaft

HAPPENING NOW: JUPITER Ascending

A MODULAR EXASCALE COMPUTER

93 ExaFLOPS of AI | 1.0 ExaFLOPS for HPC | 24,000 GH200

Bundesministerium für Bildung und Forschung

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

ParTec

an atos business

Member of the Helmholtz Association

JUPITER EXASCALE DEVELOPMENT INSTRUMENT

JEDI

JEDI

Energy

Energy efficiency: rank 1 world-wide

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/ s)	Power (kW)	Efficiency (GFlops/ watts)
1	189	JEDI - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, ParTec/EVIDEN EuroHPC/E7 J	19,584 4.50 JUNE 2024	4.50 2024	67 TOP	72.733 500
		Germany				The List.

JUPITER AI Performance Estimate: 93 exaflop/s

State of the Art: Predictive and Generative AI with large foundational models

18

Source: https://ourworldindata.org/grapher/artificial-intelligence-training-computation Mitglied der Helmholtz-Gemeinschaft

ML-based Fluorescence Retrieval from Optical Satellite Data

Helmholtz AI project FluoMap with IBG-2: Plant Sciences and German Aerospace Center (DLR)

Infer Plant Fluorescence from Hyperspectral Imaging Data

- Fluorescence contains information on status of plant photosystem, i.e. photosynthetic activity.
- Available on close range and flat terrain e.g. using spectral fitting method (SFM), i.e. physical model fitting.

ML-based Fluorescence Retrieval from Optical Satellite Data

Helmholtz AI project FluoMap with IBG-2: Plant Sciences and German Aerospace Center (DLR)

Project goal

- Devise method allowing to use satellite data for SIF retrieval consider elevation and atmosphere
- High risk: Use spectrally low resolved DESIS data

Hyperspectral imaging sensors: DESIS on ISS and HyPlant for FLEX

HyPlant airborne hyperspectral imaging sensor. Precursor for FLEX Operated by FZJ, IBG-2

Mitglied der Helmholtz-Gemeinschaft

DESIS (DLR Earth Sensing Imaging Spectrometer) on ISS

- Good coverage of earth high impact in environmental sciences
- Lower spatial and spectral resolution than HyPlant data

21

Spatio-spectral Images from HyPlant

Line sensor operated in push broom fashion

Forschungszentrum

DESIS data as compared to HyPlant imagery

DESIS (30 m)

Spectral resolution is different (0.25 vs. 3.5 nm)

HyPlant FLUO

Sun Induced Fluorescence

Image formation

• Incoming light L_{up} goes through optics and is detected by digital sensor

 $I(\lambda, x, t) = \phi(\lambda, x) * L_{up}(\lambda, x, t) + n$

$$L_{\rm up}(\lambda, x, t) = T_{\rm up}(\lambda, x, t)(R(\lambda, x, t) L_{\rm down}(\lambda, x, t) + F(\lambda, x, t))$$

Atmosphere

L_{down}

up

 $L_{\rm up}$

- Measured intensity I
- ϕ sensor optics, sampling
- Photon ,shot' noise n
- Reflectance R
- Fluorescence F

Scharr et al. (2021), Remote Sensing

Self-supervised spectral fitting

Self-supervised spectral fitting of a high-resolution simulation model to HyPlant data

Colors indicate: Atmosphere, surface material, sensor, additional measurements (sun zenith angle etc.)

Encoder and Decoder

Multi-Layer Perceptron with Skip Connections

Dimensionality reduction

	Dims.	Rep.	D_p
Encoder e_{in} Decoders d_v	(100, 100, 50) (100, 50, 50, 50)	$(3, 3, 3) \\ (3, 1, 1, 1)$	$(0.1,\ 0,\ 0)\ (0,\ 0,\ 0)$

Inversion under incomplete knowledge of

physical process is **ill-posed**.

contributing to radiance signal

Architectural constraint formulation:

difference in spatial variation of terms

28

Regularization strategies in the Loss and Architecture

Smooth variation of atmospheric contribution

Х

Local Atmospheric Fitting

SFM: Spectral Fitting Method (Cogliati, 2019)

Self-supervised spectral fitting of a high-resolution simulation model to HyPlant data

MODTRAN6 based simulation tool to extensively sample the atsensor radiance domain of HyPlant and DESIS

Mitglied der Helmholtz-Gemeinschaft

MODTRAN: MODerate resolution atmospheric TRANsmission

Emulator representing the simulated HyPlant and DESIS data

- Trained ML simulators of at-sensor radiances to approximate the generated databases
- Tested different models, incl. relatively shallow NNs, all trained with L2 loss,
- Best: simple fourth-degree polynomials

Emulator instead of Simulation in SFMNN

Mitglied der Helmholtz-Gemeinschaft

JÜLICH

Forschungszentrum

Integrating self-supervised and supervised approaches for DESIS SIF prediction Measurement Network Prediction Loss

- Integrate constraint and label-based training
- Use supervised SIF predictor for an initial guess
- Train an emulator-based SFMNN
- Estimate residual: SIF residual w.r.t. the initial guess

$$f = f_{\text{init}} + n_{\text{res}}(x)$$
, with $n_{\text{res}}(x) \in [\Delta f_{\min}, \Delta f_{\max}]$

... + fast emulator with improved correction term for bandwise $\Delta \lambda$

SIF Prediction — Initial guess and combined approach

3.0

3.5

Data set of 6 DESIS acquisitions quasi-simultaneous with HyPlant

campaigns

HyPlant FLUO (0.5 - 2 m)

DESIS (30 m)

Spectral resolution is different (0.25 vs. 3.5 nm)

Comparison of DESIS with quasi-simultaneous HyPlant data

Point matches with OCO-3 data (global)-

-Coincident data set of DESIS and HyPlant

A DEEP-LEARNING-BASED METHOD FOR THE RETRIEVAL OF SUN-INDUCED PLANT FLUORESCENCE FROM AIRBORNE AND SPACEBORNE HYPERSPECTRAL IMAGERY

Hanno Scharr, Data Analytics and Machine Learning, Forschungszentrum Jülich

