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Helmholtz Association
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Mission: Research towards answering major and pressing questions of science, society, and industry

• 18 national labs

• 46,000 employees

• 14,500 international 

guest researchers

• 6B€/a budget

Forschungszentrum

Jülich



Forschungszentrum Jülich at a glance
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> 7000 staff, 14 Institutes, 1.0B€/a budget, 1.7km2 campus
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Institute of Climate and Energy Systems (ICE)
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Climate Institutes at Jülich

ICE-3: Troposphere (~110 staff)

• Explores the chemistry of the troposphere

• Performs global observations

• Simulates atmospheric chemistry and transport 

processes by numerical models

ICE-4: Stratosphere (~60 staff)

• Chemistry, dynamics, and microphysics of the 

stratosphere and tropopause

• Role of these layers in the climate system



Atmospheric Research at Jülich
From Observations to Process Understanding to Earth System Models: Troposphere and Stratosphere

SAPHIR

SAPHIR-PLUS
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Predictability of 

Air Quality and 

Climate Warming 

in the changing 

Earth and Energy 

systems 

Atmospheric Observations

• Field campaigns with strategic partnerships

• Leading roles in EU infrastructures

Atmospheric Process Understanding

• Holistic understanding by simulation of atmospheric 

processes at atmospheric conditions 

High Quality Data / Instrument Development

• State-of-the art, high-quality (new) instrumentation 

• Provision of quality-controlled FAIR data

• Use of new instruments by (industry) partners

Theory / Earth System Model Development

Digital Twins

• Exascale-ready model development

• Exploring machine learning approaches

• Connecting to energy system modelling

Atmospheric Research at Jülich

Operational chemical 

weather forecast

Copernicus Atmospheric 

Service, IPCC



Bildquelle

Traditional Earth System Modelling
Atmosphere dynamics 

https://www.esm-project.net/news/news/detail/News/what-is-a-climate-model-and-how-does-it-work/


3 - 4 grid cells over Germany, 1 vertical layer ~ 2000  grid cells over Germany, 90 vertical layers

Jülich

Bremen

Current resolution of the DWD weather models: global = 13 km, regional = 2,1 km

Increased compute power

1967 :  0,7 Mflops

1976 : 130 Mflops (Cray-1)

1990 :   23 Gflops (NEC)

2002 :   36 Tflops (NEC)

2009 :     1 Pflops (JUGENE)

2021*:   73 Pflops (JUWELS Booster)

2025*:  >90 Eflops (JUPITER)

* Accelerator technology (GPUs)

Jülich

Bremen

Progress in numerical weather forecasts

1966 2016

Dublin

London

Paris

Madrid

Barcelona

Jülich

Linköping



AtmoRep: A stochastic model of atmosphere dynamics 
Trained using large scale representation learning (Masked Auto-Encoder)

Lessig et al. https://arxiv.org/abs/2308.13280 Martin Schultz, Earth System 

Data Exploration Group, JSC

ECMWF: European Center for Medium Weather Forecast



HClimRep: Helmholtz Foundation Model for Climate Science

• Seasonal-to-decadal AI-based simulations

• First climate-capable foundation model, incorporating 

o multiple grids and resolutions, 

o atmosphere-ocean-sea ice coupling, and a 

o wide range of available data

• Generalization across tasks

o support for prediction, data assimilation, 

o uncertainty quantification, and counterfactual scenarios

• Downstream applications demonstrate potential for future 

climate research and services

Will be the first Earth system foundation model including the 

troposphere, stratosphere, ocean, sea ice, and hydrology

Lead: Jülich, IAS/JSC, Martin Schultz

Project start 2024, duration 36 months

source

https://www.cgd.ucar.edu/sections/oce


FOUNDATION MODELS
State of the Art: Predictive and Generative AI with large Foundation Models

T1

train test

D1 M1 S1

T2

train test

T3

train test

D3 M3 S3

Classic supervised machine learning 

• poor generalization and transfer

• labeled data for each task

• no model re-use

Foundation models: generic transferable learning

1. Self-supervised pre-training of large-scale models

Pre-training (large-scale)

train
… „one model for all tasks“

(foundation model)

Large data,

no labels

MgenericDgeneric

T1

re-train test

Dspecific Mspecific Sspecific

„fine-tune“

…

efficient

T2

re-train test
…

2. Transfer to specific tasks

“transfer large AI 

models to specific 

use cases” 
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FOUNDATION MODELS

• Scaling Laws: larger model, data and compute scale during pretraining lead to stronger generalization and 

transferability

• No change in algorithmic procedure. Just scale up and important generic functions – e.g. generalization - get 

better

Scaling Laws in AI
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Source: Kaplan et al. 2020, https://arxiv.org/abs/2001.08361



Trend: larger models, larger data, larger compute
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Source: https://ourworldindata.org/grapher/artificial-intelligence-training-computation



HAPPENING NOW: JUPITER Ascending
A MODULAR EXASCALE COMPUTER

93 ExaFLOPS of AI  |  1.0 ExaFLOPS for HPC  |  24,000 GH200



JEDI

JUPITER EXASCALE DEVELOPMENT INSTRUMENT



JEDI

• Actual JUPITER node design

o 2× nodes per blade

o 4× Grace-Hopper per node

• Usage

o System management preparations

• JUPITER Research and Early Access Program 

(JUREAP)

o Application porting

Energy efficiency: rank 1 world-wide



JUPITER AI Performance Estimate: 93 exaflop/s
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State of the Art: Predictive and Generative AI with large foundational models

1 day on JUPITER

Source: https://ourworldindata.org/grapher/artificial-intelligence-training-computation



ML-based Fluorescence Retrieval from Optical Satellite Data

Infer Plant Fluorescence from Hyperspectral Imaging Data

• Fluorescence contains information on status of plant photosystem, i.e. photosynthetic activity.

• Available on close range and flat terrain e.g. using spectral fitting method (SFM), i.e. physical model fitting.
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Helmholtz AI project FluoMap with IBG-2: Plant Sciences and German Aerospace Center (DLR)



ML-based Fluorescence Retrieval from Optical Satellite Data

Project goal

• Devise method allowing to use satellite data for SIF retrieval – consider elevation and atmosphere

• High risk: Use spectrally low resolved DESIS data

20

Helmholtz AI project FluoMap with IBG-2: Plant Sciences and German Aerospace Center (DLR)



Hyperspectral imaging sensors: DESIS on ISS and HyPlant for FLEX
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DESIS (DLR Earth Sensing Imaging Spectrometer) on ISS

• Good coverage of earth – high impact in environmental 

sciences

• Lower spatial and spectral resolution than HyPlant dataHyPlant airborne hyperspectral 

imaging sensor. Precursor for FLEX

Operated by FZJ, IBG-2



Spatio-spectral Images from HyPlant
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Line sensor operated in push broom fashion

Flight direction, time t

x



DESIS data as compared to HyPlant imagery
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HyPlant FLUO

(0.5 - 2 m)

DESIS (30 m) Spectral resolution is different

(0.25 vs. 3.5 nm)

DESIS

HyPlant



Sun Induced Fluorescence

• Incoming light Lup goes through optics and is 

detected by digital sensor

 I(,x,t) =  (,x) *Lup (,x,t) + n

  Lup (,x,t) = R(,x,t) Ldown (,x,t) + F(,x,t)

• Measured intensity I

•  sensor optics, sampling 

• Photon ‚shot‘ noise n

• Reflectance R 

• Fluorescence F 
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Image formation

Lup Ldown

Fluorescence F

Ldown 

Reflectance R

Lup

I

Scharr et al. (2021), Remote Sensing

Atmosphere

Lup (,x,t) = Tup(,x,t)(R(,x,t) Ldown (,x,t) + F(,x,t))

Tup
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Self-supervised spectral fitting



Self-supervised spectral fitting of a high-resolution simulation model to 

HyPlant data
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Colors indicate: Atmosphere, surface material, sensor, additional measurements (sun zenith angle etc.)



Encoder and Decoder
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Multi-Layer Perceptron with Skip Connections



Smooth variation

of atmospheric contribution

High frequency spectral variation
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Regularization strategies in the Loss and Architecture

• Inversion under incomplete knowledge of 
physical process is ill-posed.

• Architectural constraint formulation: 
difference in spatial variation of terms 
contributing to radiance signal

Overall residual SNR weighting Physiological constraint Physical constraint



Local Atmospheric Fitting
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Ours

Cogliati et al.

SFM: Spectral Fitting Method (Cogliati, 2019)



Self-supervised spectral fitting of a high-resolution simulation model to 

HyPlant data
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Colors indicate: Atmosphere, surface material, sensor, additional measurements (sun zenith angle etc.)

MODTRAN

Atmospheric 

functions

Surface model

Sensor model

MODTRAN: MODerate resolution atmospheric TRANsmission

Not differentiable



MODTRAN6 based simulation tool to extensively sample the at-

sensor radiance domain of HyPlant and DESIS
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13 parameters

No Physiology

~1-4 min/sample

~0.5M core-h overall

Halton sampling

MODTRAN: MODerate resolution atmospheric TRANsmission



Emulator representing the simulated HyPlant and DESIS data

• Trained ML simulators of at-sensor 

radiances to approximate the generated 

databases

• Tested different models, incl. relatively 

shallow NNs, all trained with L2 loss,

• Best: simple fourth-degree polynomials

32



Emulator instead of Simulation in SFMNN
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SFM: Spectral Fitting Method (Cogliati, 2019)



Integrating self-supervised and supervised approaches for DESIS 

SIF prediction

• Integrate constraint and label-based 

training

• Use supervised SIF predictor for an 

initial guess

• Train an emulator-based SFMNN 

• Estimate residual: SIF residual 

w.r.t. the initial guess
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… + fast emulator with improved correction term for bandwise Δ𝜆



SIF Prediction — Initial guess and combined approach
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combined init.



Data set of 6 DESIS acquisitions quasi-simultaneous with HyPlant

campaigns
HyPlant FLUO

(0.5 - 2 m)

DESIS (30 m) Spectral resolution is different

(0.25 vs. 3.5 nm)

DESIS

HyPlant
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02.09.2024
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Comparison of DESIS with quasi-simultaneous HyPlant data

Coincident data set of DESIS and HyPlant

Point matches with OCO-3 data (global)

HyPlant SFM estimates HyPlant EmSFMNN estimates
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