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Clouds strongly impact the climate

Source: UCAR

Clouds impact Earth’s energy balance and hydrologic cycle

https://scied.ucar.edu/learning-zone/clouds/cloud-types


Ice clouds are poorly understood

8

“The role of thin cirrus clouds for cloud feedback is 
not known and remains a source of possible 

systematic bias…the representation of cirrus in 
GCMs appears to be poor and such clouds are 
microphysically complex.” (IPCC AR5, Ch. 7)

Source: Fir0002/Flagstaffotos

https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf
https://en.wikipedia.org/wiki/File:Cirrus_sky_panorama.jpg


Ice habit (i.e., shape) matters

9Source: Kenneth Libbrecht, snowcrystals.com

● Habit = Shape

● Habit ~ function of temperature and 
supersaturation (i.e., humidity)

● Habit influences:

○ microphysical process rates

○ fall speeds

○ optical properties

● E.g. Ice complexity may induce additional 
cooling effect of -1.1 W m-2 (Jarvinen et al. 
2018)

● For reference: CO2 forcing is ~2 W m-2

http://www.snowcrystals.com/photos/photos.html


Millions of in situ CPI images available
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*CPI = Cloud Particle Imager

Source: Przybylo et al. (2022)

Source: Xiao et al. 2019

Source: SPEC Inc.

2.3 μm 
pixel 
resolution

https://journals.ametsoc.org/view/journals/atot/39/4/JTECH-D-21-0094.1.xml
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019EA000636


Millions of in situ CPI images available
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*CPI = Cloud Particle Imager

Challenge: We have 2-D images but we want 3-D relevant features

Can we use ML for this?

Source: Przybylo et al. (2022)

https://journals.ametsoc.org/view/journals/atot/39/4/JTECH-D-21-0094.1.xml


Part 1: Predicting 3-D properties 
from images (supervised)
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No ground truth? → Use synthetic data
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Source: Pokrifka et al., 2023

A priori geometric model of 
bullet rosette Synthetic 3-D models

Computationally generate 
random variations

Part 1

https://doi.org/10.1175/JAS-D-22-0077.1
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● Bullet rosettes only for this study

● Bullet aspect ratio and angle 
perturbed randomly

● Preliminary sample size: N = 9,000

● PyVista (Python wrapper for VTK)

Part 1



Initial route: single-view 3-D reconstruction
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https://paperswithcode.com/sota/single-view-3d-
reconstruction-on-shapenet

Part 1



3D-R2N2: out of the box implementation
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3D Recurrent Reconstruction 
Neural Network (3D-R2N2): Choy 

et al., 2016

Testing: unseen projections

Inference: CPI images
inferred 

voxelized model

Testing/Inference:

Trained model

Training:

Encoder

(2D-NN)

Decoder

(3D-NN)

Recurrence

(3D-LSTM)

2-D projections from 

training set
corresponding 

voxelized model

3D-R2N2

Part 1

https://arxiv.org/pdf/1604.00449.pdf
https://arxiv.org/pdf/1604.00449.pdf


Maybe explicit reconstruction 
isn’t the way to go…
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Tatarchenko et al. 2019 (CVPR)

“In this work, we set up two 

alternative approaches that perform 
image classification and retrieval 

respectively. These simple baselines 

yield better results than state-of-
the-art methods, both qualitatively 

and quantitatively. We show that 
encoder-decoder methods are 

statistically indistinguishable 

from these baselines, thus 
indicating that the current state of 

the art in single-view object 
reconstruction does not actually 

perform reconstruction but image 

classification.”

Part 1



Back to basics: 
simple supervised learning

18

Training:

Predictions:

- mass
- # arms

- surface area

- etc.

Testing:

unseen data

Trained ML model

Extract 2d features 

from projections
Data in tabular form

X (input): the 2d 

features 

Y (output): e.g., 

effective density, 
surface area, # arms

Train 

models

Part 1



Pipeline to predict 3-D targets
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9,000 
synthetic models

Calculate & save 
target outputs:
(1) # arms, 

(2) effective density

(3) effective surface 

area

9,000 x 24 views
= 216,000 images (samples)

Take 24 random 
projections & calculate 2-D 
features for each 
projection:
(1) Aspect ratio

(2) Elliptical aspect ratio

(3) # extreme points

(4) Contour area

(5) Area ratio

(6) Complexity

(7) Circularity

- 216,000 rows
- 7 feature columns 
(inputs)
- 3 target columns 
(outputs)

Create merged 
tabular dataset

Train model

Test model

80%

20%

Part 1



Random forest regression: 
predicting surface area and mass

20

Part 1



Random forest > linear baseline
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Multiple Linear 
Regression

Random Forest

This indicates some non-
linearities being captured by 

the random forest

R2 = 0.84 R2 = 0.93

R2 = 0.95R2 = 0.86

Part 1
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Confusion matrix for # of bullets 
predicted by random forest

Normalized by row (i.e., each row 
sums up to 1.0)

A perfect predictor would show 1.0 
values in the diagonal

Part 1



We can also use deep learning (if we want)

23

Credit: Arden Dertat

Predict:

• Effective density

• Effective surface 

area

• # arms

• Etc.

Preliminary results:

0.88 (CNN) > 0.86 (RF)

0.93 (CNN) < 0.95 (RF)

Part 1

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


What if we have additional views?
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Schnaiter et al. 2018
Lawson et al. 2006

2D-S probe PHIPS-HALO

Part 1



Pipeline w/ two views
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9,000 

synthetic 
models

Calculate & save 
target outputs:
(1) # arms, 

(2) effective density

(3) effective surface 

area

9,000 x 24 image pairs

= 216,000 image pairs

Take 24 random projection 
pairs & calculate 2-D features 
for each projection image of 
each pair:
(1) Aspect ratio

(2) Elliptical aspect ratio

(3) # extreme points

(4) Contour area

(5) Area ratio

(6) Complexity

(7) Circularity

- 216,000 rows
- 7x2 = 14 feature 
columns (inputs)
- 3 target columns 
(outputs)

Create merged 

tabular dataset

Train model

Test model

80%

20%

View 1 View 2

Part 1



Two view are better than one
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Random Forest
w/ single view

Random Forest
w/ two views

R2 = 0.95R2 = 0.86

R2 = 0.97R2 = 0.89

Part 1



Two view are better than one
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Single view Two views

Part 1



Part 1: Key Points

• A dataset of synthetic bullet rosettes was created

• ML was able to predict effective density and surface 

area with encouraging skill (to be improved)

• The classification of # arms was more challenging

• Inferring 3-D properties from CPI images will allow us 

to improve parameterizations moving forward

28



Part 2: Latent representations of 
ice crystals (unsupervised)
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Initial question:
Can we classify 
crystals in an 
unsupervised 
manner?

30Source: Przybylo et al. (2022)

Part 2

https://journals.ametsoc.org/view/journals/atot/39/4/JTECH-D-21-0094.1.xml


Unsupervised clustering pipeline
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Step 1:
Train VAE with CPI 

images

Step 2:
Unsupervised 

clustering in latent 
space

Part 2



Simple case study: spheres vs. rosettes

32

?

Part 2



Simple case study: Spheres vs. Rosettes
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● Using PyroVED Python package

● Training: 100 images from 
each class

● 2 latent variables

● 28 x 28 resolution

Part 2



Qualitatively inspecting the latent manifold
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Visualizing the latent manifold 

(z = latent variable)
Scatter plot in latent space

Part 2



K-means used to cluster data
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scatter plot in latent 

space w/ true labels

scatter plot in latent 

space w/ predicted labels 

confusion matrix for k-

means clustering

Part 2



What happens with more classes?

36

Part 2



Increasing latent dimension: 2-d → 128-d
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latent_dim = 128

Step 1: Train VAE

Step 2: Reduce Dimensionality 

UMAP used to reduce 
128-d latent code to 2-d Not so great 

Input resolution also 

increased to 224x224

Part 2



Increasing the latent dimensionality alone 
did not improve clustering
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Using latent_dim = 2
Using latent_dim = 128

+ dimensionality reduction w/ UMAP

Part 2



Experimenting with architecture - ResNetVAE
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Resnet18

• N = 100,000 samples (9 classes) 
• Input resolution: 224 x 224
• Mask applied for better geometric isolation

Part 2



Experimenting with architecture - ResNetVAE
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Resnet18

Original

Reconstruction

• N = 100,000 samples (9 classes) 
• Input resolution: 224 x 224
• Mask applied for better shape isolation

Part 2



Results using a ResNetVAE
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1) Train VAE with laten_dim = 128

[N ~ 100,000 samples]

Resnet18

2) Reduce 128-d to 2-d with UMAP

Part 2



We start to see structure and 
disentanglement in the latent space

42

Default Conv-VAE 
w/ latent_dims = 2

ResNetVAE w/ latent_dims = 128 
(+ masked images + UMAP)

Part 2



Can we use representation learning to 
improve/validate our synthetic data?
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1) Train ResNetVAE with 
latent_dim = 128

   - NCPI = 1,700

   - Nsynth = 1,700

2) UMAP: 128-d → 2-d

Part 2



Part 2: Key Points

• Viability of the VAE + k-means pipeline demonstrated 
with a 2-class proof-of-concept

• Unsupervised learning may help us understand the 
distribution of particle shapes at scale, without labels

• Latent representations may be useful in making 
synthetic crystals more realistic 

44



Part 3: Latent metrics for LES 
cirrus simulations (unsupervised)

45



Microphysics represented in 
3 different ways

46

Part 3

Increasing complexity + computational cost



Microphysics represented in 
3 different ways

47

Part 3

How do we compare 
the outputs 

meaningfully?



Microphysics represented in 
3 different ways
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Part 3

How do we compare 
the outputs 

meaningfully?

Observations
e.g., radar, lidar

Source: Huo et al. 2020

https://doi.org/10.1016/j.atmosres.2020.105211


Ensemble of bulk LES cirrus simulations

49

Part 3

• Numerical model: NCAR’s CM1

• Case study: ICEBall field campaign

• Location: Billings, Oklahoma

• Process of interest: depositional growth 

• 2 perturbed parameters (to start)

• 100 member ensemble

• 50 m resolution

• 12.8 km (W) x 12.8 km (L) x 14 km (H) 
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Part 3

Lagrangian LES cirrus simulation

Credit: Kamal Chandrakar (sim), Obin Sturm (viz)



Which variable(s) to use for comparison?
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Part 3

Mass mixing ratio

Mass-weighted fall speed

Number mixing ratio

Mass-weighted particle density



There are large structural differences between 
bulk and Lagrangian microphysics!

52

Mass mixing ratio

Mass-weighted fall speed

Number mixing ratio

Mass-weighted particle density



Is there a way to compare simulations 
in a compressed latent space?

53

input dim: (3x64x64) output dim: (3x64x64)

3-channel, convolutional VAE
- 3 hidden layers
- 16 latent dimensions



Four examples: reconstructions of 
three 2-D variable fields
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Top:
Actual

Bottom:
Reconstruction



2-D projections of the 16-D 
latent manifold

55

Note: z0, z12, z14 are the 3 latent dimensions with highest variance



The time evolution of 3 variables 
represented as a ‘smooth’ spiral manifold
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Pushing it to the extreme: 
reduce latent space to 2-D

57

● Smoothly varying manifold in 2 latent 
dimensions

● Captures most of variability of three 
microphysical variables (qi, mi, rho) with 
only 2 variables!

● Variance along manifold trajectory shows 
when parameters affect variables of 
interest the most



Conclusion
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Part 1: Predicting 3-D properties from images (supervised)

• An ML framework was developed to predict 3-D crystal 

properties of interest from 2-D imagery, using synthetic crystals

Part 2: Latent representations of ice crystals (unsupervised)

• Using a VAE, a ‘structured’ and ‘disentangled’ latent 

representation of crystal shapes was found

Part 3: Latent metrics for LES cirrus simulations (unsupervised)

• Latent variables may be a promising avenue to compare 
disparate simulation outputs in a more objective manner
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