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A short introduction I
Heatwaves



From Oliveira, A., Lopes, A., & Soares, A. (2022). Excess heat factor climatology, trends, and exposure across European functional urban areas. Weather and Climate Extremes, 36, 100455.



Processes

Physical Attribution

• Usually, the results of the succession of events

• Example: cold anomalies in the North Atlantic -> strong sea surface temperature gradient -> Rossby wave train -> 
stationary Jet Stream -> high pressure + extreme temperatures all over Europe (Duchez et al., 2016)

Impacts (non-exhaustive list)

• Health risks and increase in mortality

• Infrastructure strain: pressure on healthcare, energy, water, and transportation systems

• Economic impacts: reduced productivity and agricultural disruptions 

• Social impacts: disrupted daily activities and potential mental health issues, “climatic migration”

• Environmental stress: potential damage to ecosystems, increased wildfire risk 
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DEFINITIONS

• Daily average of max and min 2m air-
temperature

Excess Heat Factor 
(EHF)

• EHF>90th percentile threshold Anomaly

• Anomaly>0 (each calendar-day, using a 15-days 
moving window)

• For at least 3 consecutive days 
Heatwave Event 
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Heatwave Factor
CMIP6 Dataset (GFDL-CM4 - Historical)
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Comparing Heatwaves Drivers 
Between Present and Future 
CMIP6 Climates



Present
(i.e., 

historical)

Future
(e.g., 4xCO2)

Robustness

Project Framework

6) Test across different CMIP6 
models

5) Does it fail? 
(If not: drivers quasi–steady)

5-b) Repeat the same process as for present climate 
and show which patterns changed 

1) 3D, 2D global fields 
potential drivers

2) Extract relevant 
global fields patterns 

for UE heatwaves

3) Causal set of 
features relevant for 

heatwaves 
predictability

4) Prediction of 
European heatwaves 

based on reduced 
feature’s time-series

PLS

Test directly in future climate

Yes

XGBoostPCMCI

9
| Heatwaves | Drivers Past vs Future | Quantile Regression | Causal ML | 



Partial Least Square Regression (PLS)

Objective

• Maximize covariance between the predictor and the target 

Key Elements

• Supervised method

• Suited for datasets where there are more predictor variables than observations and
when multicollinearity exists among predictors

• Achieves dimensionality reduction while preserving information most relevant to the 
prediction task
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Datasets – CMIP6

Heatwave drivers
1. Air temperature 

2. Upper soil moisture (Perkins, 2015; Liu et al.,2020)

3. Meridional and zonal winds (Perkins, 2015)

4. Snow fraction (Zhang et al., 2022)

5. Geopotential (Kornhuber et al. 2019)

6. Precipitation (Liu et al. 2020)

7. Humidity (Liu et al.2020)

8. Sea surface temperature (Duchez et al., 2016; 
Mecking et al. 2019)

CMIP Experiments
1. Historical (1850-2014)

2. ssp585 (future)

CMIP Models
1. GFDL-CM4

2. ACCESS-CM2

3. ???
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(Pre-)Results
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Spatio-temporal Nonlinear 
Quantile Regression for Extreme 
Events



Motivation
Heatwaves trends: more frequent and intense

Challenging to detect and forecast with traditional, parametric indices: few 
observations, spatio-temporal gaps in dataset, variable distribution, non-linear 
dynamics, etc.

 Use of a quantile-based method for measuring feature importance for 
extremes

Maximum temperature detection using atmospheric and surface variables
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Quantile Regression - Pinball Loss
• L2-norm (squared error) prone to 

outliers, big errors are penalized a lot
• L1-norm (MAE) robust to outliers but 

symmetric too
• Pinball (quantile) loss asymmetric, 

quantile specific

1 5
| Heatwaves | Drivers Past vs Future | Quantile Regression | Causal ML | 



ERA5 Dataset
• ERA5 Land 6-hourly --> daily mean

• Variables : 7
• Geopotential (surface, 200hPa, 850hPa)
• Eastward wind (surface, 200hPa, 850hPa)
• Soil water content (1st layer)

• Studied areas : 2
• Western Europe, summer 2002-2004
• Easter Europe, summer 2009-2011

• Spatial resolution: ~9km
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Experimental Setup
• Task: nowcasting daily max temperature prediction

• ML methods: 
• LightGBM (quantile vs normal regression)
• With and without the pinball loss

• 3 models' setup:
• Random pixel-wise spatio-temporal selection (1960-2022) 
• Region 1: western Europe (2002-2004)
• Region 2: eastern Europe (2009-2011)

• Evaluation metrics
• R2 (modified), RMSE
• Explainability - feature ranking (sparsity)
• Using different time-lag for predictors (“forecasting”)
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Quantile LGBM LGBM
quantile

0.5 0.9 0.99
western europe

lag = none 
R2 0.935 0.941 0.938 0.839

RMSE 2.433 3.819 6.134 3.819
western europe

lag = 7 days 
R2 0.783 0.78 0.769 0.392

RMSE 4.452 7.427 11.841 7.427
eastern europe

lag = none
R2 0.938 0.94 0.89 0.844

RMSE 2.427 3.848 6.885 3.848
eastern europe

lag = 7 days
R2 0.764 0.729 0.636 0.3

RMSE 4.76 8.171 12.626 8.171
random pixels europe

lag = none
R2 0.937 0.95 0.944 0.858

RMSE 2.46 3.686 6.152 3.686

Qualitative Results
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Explainability – Features Importance
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Time Improves and Impacts Results
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A short introduction II
Causal ML for Climate 
Sciences



Definitions

• Causal Discovery

“Causal discovery algorithms aim to (infer) find causal structures from 
observational data, typically represented as directed acyclic graphs (DAGs).” 
(Spirtes et al., 2001) 

• Causal Inference

“The  process of determining the independent, actual effect of a particular 
phenomenon that is a component of a larger system." (Pearl, 2009)
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Key Concepts

• Directed Acyclic Graphs (DAGs): Graphical representations of causal relationships 
where nodes represent variables and edges represent causal influences. 

• Structural Causal Models (SCMs): Mathematical models that represent causal 
relationships as a set of structural equations.

• Cofounders: variable that influences both the treatment (driver) and the outcome 
(event), potentially leading to a spurious association between them.

• Topological ordering: representation of causal structures as a system of structural 
equations (i.e., each variable is a function of its parents in the graph)
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Graphical representation of SCMs

Acyclicity

• Temporal ordering: causal relationships inherently imply a
temporal order (i.e., causes precede effects -> cyclicity lead to
ambiguous causal relationships)

• Identifiability: methods that rely on the acyclic nature of the
graph (e.g., backdoor/front-door criterion) can identify sets of
variables that estimate causal effects

• Infinite regress: prevented (i.e., cycles could lead to situations
where A causes B, B causes C, and C causes A -> logical
paradoxes and impossible to determine the true causal
structure).

• Feedback loops: can be represented by "unrolling" the cycle over
time steps (i.e., acyclicity maintained)

Cyclicity
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• Causal Markov condition: Broken (i.e., states that a variable is
independent of its non-descendants given its parents).

• Difficulties in intervention analysis: in causal inference, we often
want to reason about the effects of interventions. Cycles make it
challenging to predict the outcomes of interventions because
changes propagate indefinitely through the cycle.



Causality for Climate Science -
Why?
Conventional climate models sometimes fail to give good prediction of extremes:

• Spatio-temporal gaps in datasets

• Non-linear dynamics and non-Gaussian distribution of variables

• Model parameterization

• High-dimensional and synergistic effects but small size of observed data
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Causality for Climate Science -
Challenges

• Feedback loops: mechanisms that create cyclic 
causal structures (i.e., not DAGs)

• Time-lagged effects: climate processes often involve 
time delays between causes and effects. 

• Non-stationarity: systems can change over time due 
to unobserved drivers. 

2 6
| Heatwaves | Drivers Past vs Future | Quantile Regression | Causal ML | 

EVENT

Driver 1

Driver 2 Driver 3

???

Driver 4



Causality for Climate Science -
Example: PCMCI (J. Runge, et al. 2019)

• Condition selection: PC algorithm identifies relevant 
conditions (potential causal parents) for each variable in 
the time series (i.e., tests for independence between 
variables)
• Removes irrelevant conditions

• Reduces the dimensionality of the problem

• Causal test: MCI test assesses causal relationships 
between variables (i.e., finds autocorrelation in data)
• Removes indirect links and common drivers
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