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A short introduction |
Heatwaves
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From Oliveira, A., Lopes, A., & Soares, A. (2022). Excess heat factor climatology, trends, and exposure across European functional urban areas. Weather and Climate Extremes, 36, 100455.



Processes

Physical Attribution
» Usually, the results of the succession of events

« Example: cold anomalies in the North Atlantic -> strong sea surface temperature gradient -> Rossby wave train ->
stationary Jet Stream -> high pressure + extreme temperatures all over Europe (Duchez et al., 2016)

Impacts (non-exhaustive list)

» Health risks and increase in mortality

 Infrastructure strain: pressure on healthcare, energy, water, and transportation systems

» Economic impacts: reduced productivity and agricultural disruptions

» Social impacts: disrupted daily activities and potential mental health issues, “climatic migration”

« Environmental stress: potential damage to ecosystems, increased wildfire risk
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DEFINITIONS

2 LR g [SEIREEo 0] . Dajly average of max and min 2m air-
(EH F) temperature

- EHF>90% percentile threshold

- Anomaly>0 (each calendar-day, using a 15-days

Heatwave Event moving window)
* For at least 3 consecutive days
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Heatwave Factor
CMIP6 Dataset (GFDL-CM4 - Historical)

Heatwave Factor [days]
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Comparing Heatwaves Drivers
Between Present and Future
CMIP6 Climates




Project Framework

4) Prediction of
XGBoosty EUropean heatwaves
based on reduced
feature’s time-series

1) 3D, 2D global fields 2) Extract relevant

_ ; global fields patterns IP(‘-"
Pr((?sent potential drivers for UE heatwaves
ie.,

historical) . : :
Test directly in future climate

5) Does it fail?

Euture (If not: drivers quasi—steady)

(e.g., 4xC0O2)

6) Test across different CMIP6

models
Robustness
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Partial Least Square Regression (PLS)

Objective

« Maximize covariance between the predictor and the target

Key Elements

» Supervised method

« Suited for datasets where there are more predictor variables than observations and
when multicollinearity exists among predictors

« Achieves dimensionality reduction while preserving information most relevant to the
prediction task
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Datasets - CMIP6

Heatwave drivers

—_—

Air temperature

Snow fraction (Zhang et al., 2022)
Geopotential (Kornhuber et al. 2019)
Precipitation (Liu et al. 2020)
Humidity (Liu et al.2020)
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Mecking et al. 2019)

Upper soil moisture (Perkins, 2015; Liu et al.,2020)

Meridional and zonal winds (Perkins, 2015)

Sea surface temperature (Duchez et al., 2016;

CMIP Experiments
1. Historical (1850-2014)
2. ssp585 (future)

CMIP Models
1. GFDL-CM4
2. ACCESS-CM2
3. 7?
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Spatio-temporal Nonlinear
Quantile Regression for Extreme
Events




Motivation

Heatwaves trends: more frequent and intense
Challenging to detect and forecast with traditional, parametric indices: few
observations, spatio-temporal gaps in dataset, variable distribution, non-linear
dynamics, etc.

> Use of a quantile-based method for measuring feature importance for

extremes
Maximum temperature detection using atmospheric and surface variables

| Heatwaves | Drivers Past vs Future | Quantile Regression | Causal ML |

14




Quantile Regression - Pinball Loss

. L2-porm (.squared error) prqne to L.(y,2) = (y — 2)T ify =z
outliers, big errors are penalized a lot .
- L1-norm (MAE) robust to outliers but =(z-y)A-1 ifys<z

symmetric too

- Pinball (quantile) loss asymmetric,
quantile specific

L2 norm L1 norm (50th) Quantile loss (90th)

4 2 0 2 4

Error Error Error
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ERAS Dataset

ERAS monthly meas 2m lemperature - January 2016

ERAS Land 6-hourly --> daily mean

Variables : 7
Geopotential (surface, 200hPa, 850hPa)
Eastward wind (surface, 200hPa, 850hPa)
Soil water content (1st layer)

Studied areas : 2
Western Europe, summer 2002-2004
Easter Europe, summer 2009-2011

(O (opemics  CSECMWF

Spatial resolution: ~9km
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Experimental Setup

Task: nowcasting daily max temperature prediction

Mean maximum temperature summer 2003

ML methods: -
LightGBM (quantile vs normal regression)
With and without the pinball loss

3 models' setup: % " {%@ Ji- j““ '
- Random pixel-wise spatio-temporal selection (1960-2022) Q AR
Region 1: western Europe (2002-2004) <

Region 2: eastern Europe (2009-2011)

Evaluation metrics
R? (modified), RMSE
Explainability - feature ranking (sparsity)
Using different time-lag for predictors (“forecasting”)
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Qualitative Results

Quantile LGBM

LGBM

quantile

western europe
lag = none

western europe
lag = 7 days

eastern europe
lag = none

eastern europe
lag = 7 days

random pixels europe
lag = none
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Features importance score
(normalized)

Explainability - Features Importance

LightGBM

(western europe, 2002-2004, timelag = 0 days)

QuantileLightGEM
(western europe 2002-2004, timelag = 0 days)
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Time Improves and Impacts Results

QuantileLightGBEM
LightGBM (western europe 2002-2004, timelag = 7 days)
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A short introduction li
Causal ML for Climate

Sciences




Definitions

« Causal Discovery

“Causal discovery algorithms aim to (infer) find causal structures from
observational data, typically represented as directed acyclic graphs (DAGS).”
(Spirtes et al., 2001)

e Causal Inference

“The process of determining the independent, actual effect of a particular
phenomenon that is a component of a larger system." (Pearl, 2009)
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Key Concepts

 Directed Acyclic Graphs (DAGs): Graphical representations of causal relationships
where nodes represent variables and edges represent causal influences.

« Structural Causal Models (SCMs): Mathematical models that represent causal
relationships as a set of structural equations.

« Cofounders: variable that influences both the treatment (driver) and the outcome
(event), potentially leading to a spurious association between them.

» Topological ordering: representation of causal structures as a system of structural
equations (i.e., each variable is a function of its parents in the graph)
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Graphical representation of SCMs

Acyclicity

Temporal ordering: causal relationships inherently imply a
temporal order (i.e., causes precede effects -> cyclicity lead to
ambiguous causal relationships)

Identifiability: methods that rely on the acyclic nature of the

graph (e.g., backdoor/front-door criterion) can identify sets of
variables that estimate causal effects

Infinite regress: prevented (i.e., cycles could lead to situations
where A causes B, B causes C, and C causes A -> logical
paradoxes and impossible to determine the true causal
structure).

Feedback loops: can be represented by "unrolling" the cycle over
time steps (i.e., acyclicity maintained)

Cyclicity

Causal Markov condition: Broken (i.e., states that a variable is
independent of its non-descendants given its parents).
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Causality for Climate Science -
Why?

Conventional climate models sometimes fail to give good prediction of extremes:
» Spatio-temporal gaps in datasets
« Non-linear dynamics and non-Gaussian distribution of variables

* Model parameterization

» High-dimensional and synergistic effects but small size of observed data

25




Causality for Climate Science -
Challenges

» Feedback loops: mechanisms that create cyclic
causal structures (i.e., not DAGS)

» Time-lagged effects: climate processes often involve
time delays between causes and effects.

» Non-stationarity: systems can change over time due
to unobserved drivers.
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Causality for Climate Science -
Example: PCMCI (J. Runge, et al. 2019)

» Condition selection: PC algorithm identifies relevant i "
conditions (potential causal parents) for each variable in x m. :*
the time series (i.e., tests for independence between i : : :
variables) x
« Removes irrelevant conditions
* Reduces the dimensionality of the problem ~ I_:VICII_z

- Causal test: MCl test assesses causal relationships X: a7
between variables (i.e., finds autocorrelation in data) X3 =i :
* Removes indirect links and common drivers i
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