

Facilitating Machine Learning Tasks Through Visual Analytics:

A Multi-perspective View

Linhao Meng l.meng1@tue.nl

Input		Model		Output
-------	--	-------	--	--------

00

	Data feat	ures			
	Feature1	Feature2	Feature3	Feature4	
1	25	М	0	True	
2	50	F	1	False	
3	30	Μ	2	True	
4	20	F	0	True	

	Class Probabilities			
	Class-G	Class-B	Class-Y	Class-R
1	0.45	0	0.55	0
2	0.7	0.2	0	0.1
3	0	0.5	0	0.5
4	0.22	0.25 0.28		0.25

 \bigcirc

(Seifert et al. IV 2009)

Standard Approach for Comparison

Feature Projection

Standard Approach for Comparison

Feature Projection

Interaction

An alternative approach

Feature Projection

Combination

- ✓ Preservation of significant data feature structure
- ✓ Intra-cluster arrangement for revealing class probabilities

Combination

✓ Improved separation in ambiguous clusters

Combination

 \checkmark Outliers pushed out from the main clusters

Class-constrained t-SNE

VIS 2023

Class-constrained t-SNE

https://github.com/alicelh/class-constrained-t-SNE

 $C2 = KL(P \parallel Q)$

P: Similarity between instances and classes in the original space

Class Probabilities

R

$C2 = KL(P \parallel Q)$

Q: Similarity between instances and classes in the 2D space

 $\frac{Q_i}{q_{ib}} = \frac{(1 + d_{ib}^2)^{-1}}{Sum}$ $q_{ir} = \frac{(1 + d_{ir}^2)^{-1}}{Sum}$ $q_{ir} = \frac{(1 + d_{ir}^2)^{-1}}{Sum}$ $Sum = (1 + d_{ib}^2)^{-1} + (1 + d_{ir}^2)^{-1} + (1 + d_{iy}^2)^{-1}$ $q_{iy} = \frac{(1 + d_{iy}^2)^{-1}}{Sum}$

$$C2 = \frac{1}{n} \sum_{i=1}^{n} (KL(P_i || Q_i) + \lambda \cdot D)$$

B B B B Cost function: $C_c = C2$ fClass probability structure

I Experiment

- Synthetic dataset •
- **Real-world datasets**
 - **Classifier Analysis**
 - **Document Topic Analysis**

evaluation

Fashion MNIST dataset

- Use scenario
 - Visual interactive labeling

Class-constrained t-SNE

Data Description: The Fashion MNIST dataset is composed of grayscale images of 28x28 pixels. 2000 images are selected, ensuring an equal distribution among ten classes, including T-shirts, trousers, pullovers, etc.

Adjust Parameters

α (structure balance parameter): 0.5

Use Case – Visual Interactive Labeling

Bernard et al. 2018 Learning from the Best - Visual Analysis of a Quasi-Optimal Data Labeling Strategy

Model Comparison

Model Comparison

Model Comparison

Input

Q: Which features are used by different models? Q: Which features are most effective for the task?

Output

Q: What are performance differences? Q: Where do models disagree with each other?

Model Diagnosis

Model Improvement

Q: Why do models (dis)agree with the classification? Q: Which model should I choose?

Model Selection

ModelWise

a visual analytics method to assist data scientists in comparing classification **models wise**ly.

EU RO VIS 2022 ME

ModelWise

https://github.com/alicelh/ModelWise

- Summary statistics
- Detailed performance

Confusion Sankey Diagram

Solution 1: Model Reordering

Expl	anation					
One instance	f1(culmen_length_mm)	 Multiple feature sorting cri Two layout methods 				
			Models		Aligned Layout	
Multiple instances	<u>NN_2 J1</u> -0.5 0 0.5	DT_2 Jt -0.4 -0.2 0 0.2 0.4	LR_2 J1 -0.2 0 0.2	LR_1 J1 -0.2 0 0.2	NN_1 Jr -0.4 -0.2 0 0.2 0.4	DT_1 Jr -0.4 -0.2 0 0.2 0.4
I	culmen_length_mm	culmen_length_mm	culmen_length_mm	culmen_length_mm	culmen_length_mm	culmen_length_mm
tures	culmen_depth_mm	culmen_depth_mm	culmen_depth_mm	culmen_depth_mm	culmen_depth_mm	culmen_depth_mm
Fea	flipper_length_mm	flipper_length_mm	flipper_length_mm	flipper_length_mm	flipper_length_mm	flipper_length_mm
+	body_mass_g	body_mass_g	body_mass_g	body_mass_g	body_mass_g	body_mass_g
				*		

Explanation Projection View

Feature

Case Study

Perioperative Deterioration Prediction

- Normal recovery (negative) versus potential unplanned ICU admission (positive)
- 44 variables
- Four models each with different algorithms and feature sets
 - o Random Forest (RF),
 - Support Vector Machine (SVM)
 - Bayesian Network (BN)
 - Logistic Regression(LR)

Case Study

"I think it is a very nice way to explore what your model is doing. It gives you insight on model improvement, especially if you have different models to compare."

Model Diagnosis

- How does BN perform compared to other models?
- How does BN make classifications?

Model Improvement

• What can be learned from the other models to improve BN?

Who's behind SmartCHANGE?

We are a consortium of 14 international, multidisciplinary partners, with expertise in AI, healthcare, software engineering, social science and communication

Smart • /

調

Empowering Youth: AI Models for a Healthier Future

SmartCHANGE - Introduction

Joseph from Portugal

- 14 year old
- Does moderate and vigorous physical activity for 30 minutes everyday
- Eats two servings of red meat per week and 4 servings of whole grain cereals per day
- Sleeps 6 hours a day
- Plays online games 4 hours a day

Goal:

Estimate Joseph's risk for cardiovascular diseases

Score2

What does SmartCHANGE do?

Behavior Measures

CounterFactual 1

Counterfactual Explanations

Visual explainer

Thanks for listening!

Linhao Meng Stef van den Elzen Anna Vilanova