# Collective decision-making on networked systems: from social networks to smart homes

Angela Fontan angfon@kth.se

Division of Decision and Control Systems KTH Royal Institute of Technology, Sweden



# digital futures

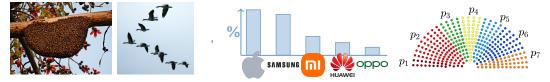


- Background and motivating examples
- ▶ Problem: Collective decision-making in presence of antagonism
  - Social networks as signed networks
  - The notion of frustration
  - Analysis of proposed model for collective decision-making over signed networks
  - Application: Process of government formation over signed parliamentary networks
- ► Problem: Design of energy-efficient smart homes
  - Smart homes as cooperative networks
  - Application: Study of social influence at KTH Live-In Lab



Context: Interpretation of urban systems as cyber-physical-human systems (CPHS)




<sup>[</sup>Control for Societal Scale Challenges: Road Map 2030, eds. Annaswamy, Johansson, Pappas (2023)]



### Motivating examples

Characterize models of (human) decision-making within interconnected communities... ...and how they adapt during the interaction with smart technologies

1. From collaborative to antagonistic collective decision-making systems



- 2. Design of energy-efficient smart homes
  - Building automation and control of energy-efficient smart homes
  - Integrated real-life experimental building infrastructure: KTH Live-In Lab

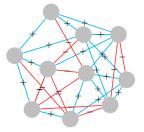






- Motivating examples
- ▶ Problem: Collective decision-making in presence of antagonism
  - Social networks as signed networks
  - The notion of frustration
  - Analysis of proposed model for collective decision-making over signed networks
  - Application: Process of government formation over signed parliamentary networks
- ► Problem: Design of energy-efficient smart homes
  - Smart homes as cooperative networks
  - Application: Study of social influence towards sustainability at KTH Live-In Lab

In collaboration with: Claudio Altafini, Linköping University, Sweden




# Problem: Collective decision-making in presence of antagonism

#### Application: Social networks



$$\dot{x} = f(x, \text{network}, \pi)$$



- 1. Model for collective decision-making
  - x: vector of opinions
  - equilibrium points: possible decisions
- 2. Signed networks
  - Positive weight: cooperative interaction
  - Negative weight: antagonistic interaction



### Model for collective decision-making over cooperative networks

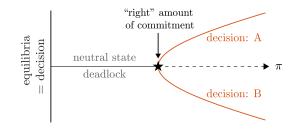
$$\dot{x} = -\Delta x + \pi A \psi(x)$$

- *n* agents,  $x \in \mathbb{R}^n$  vector of opinions
- ▶ "inertia" of the agents:  $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$ ,  $\delta_i > 0$
- ► interactions between the agents:



•  $\pi > 0$  scalar parameter



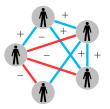

#### Model for collective decision-making over cooperative networks

$$\dot{x} = -\Delta x + \pi A \psi(x)$$
 (\*)

- $\pi$  = "social effort" or "strength of commitment" among the agents
- ► equilibria = decisions

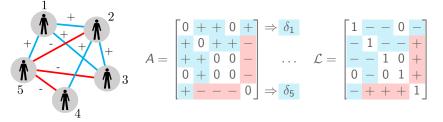
**Assumption**:  $\delta_i = \sum_j a_{ij} \Rightarrow L = \Delta - A$ : Laplacian of  $\mathcal{G}(A)$ 

**Task:** Study qualitative behavior of ( $\star$ ) as social effort parameter  $\pi$  is varied






**Task:** Study the decision-making process in a community of agents where **both cooperative and antagonistic interactions coexist** 


**Model:**  $\dot{x} = -\Delta x + \pi A \psi(x)$ ,  $\pi$ : social effort between the agents

**Assumptions**: G(A) is a signed network





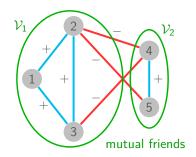
#### Signed networks and signed Laplacian matrix



Signed Laplacian:

Focus on:

normalized signed Laplacian:  $\mathcal{L} = I - \Delta^{-1}A$ 




#### Structural balance

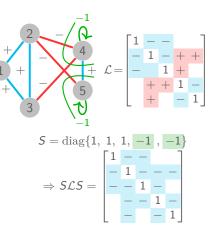
A connected signed graph  $\mathcal{G}(A)$  is structurally balanced if  $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$  such that every edge:

- between  $\mathcal{V}_1$  and  $\mathcal{V}_2$  is negative
- within  $\mathcal{V}_1$  or  $\mathcal{V}_2$  is positive

[F. Harary, Mich. Math. J. (1953)]






#### Structural balance

A connected signed graph  $\mathcal{G}(A)$  is structurally balanced if  $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$  such that every edge:

- between  $\mathcal{V}_1$  and  $\mathcal{V}_2$  is negative
- within  $\mathcal{V}_1$  or  $\mathcal{V}_2$  is positive
- [F. Harary, Mich. Math. J. (1953)]

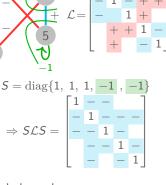
#### **Lemma:** $\mathcal{G}(A)$ is structurally balanced iff

- ∃ signature matrix S = diag{s<sub>1</sub>,..., s<sub>n</sub>}, s<sub>i</sub> = ±1, s.t. SLS has all nonpositive off-diagonal entries
- $\lambda_1(\mathcal{L}) = 0$





#### Structural balance


A connected signed graph  $\mathcal{G}(A)$  is structurally balanced if  $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$  such that every edge:

- between  $\mathcal{V}_1$  and  $\mathcal{V}_2$  is negative
- within  $\mathcal{V}_1$  or  $\mathcal{V}_2$  is positive
- [F. Harary, Mich. Math. J. (1953)]

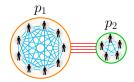
**Lemma:**  $\mathcal{G}(A)$  is structurally balanced iff

- ► ∃ signature matrix S = diag{s<sub>1</sub>,..., s<sub>n</sub>}, s<sub>i</sub> = ±1, s.t. SLS has all nonpositive off-diagonal entries
- $\lambda_1(\mathcal{L}) = 0$

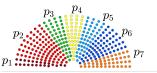






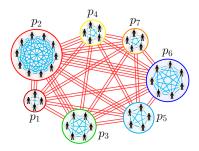

#### Example: Parliamentary systems

Structurally balanced network




tot government seats

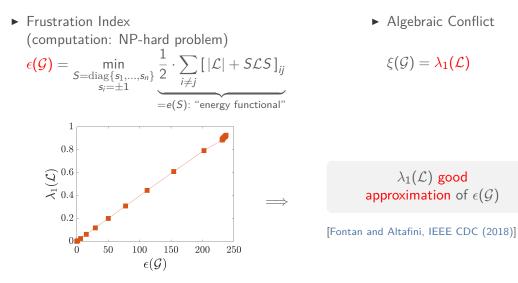
tot opposition




Structurally unbalanced network



tot government seats

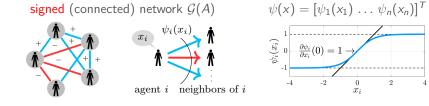

tot opposition



#### 12

### Frustration index and algebraic conflict

Task: characterize the graph distance from structurally balanced state






#### Model for collective decision-making over signed networks

$$\dot{x} = -\Delta x + \pi A \psi(x)$$

- *n* agents,  $x \in \mathbb{R}^n$  vector of opinions
- ▶ "inertia" of the agents:  $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}$ ,  $\delta_i > 0$
- ► interactions between the agents:



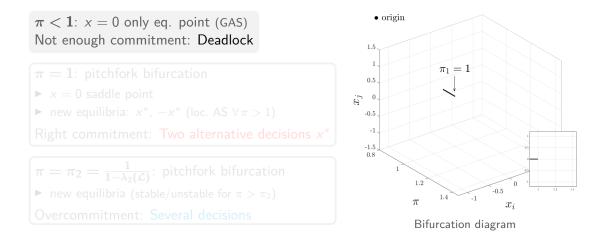
•  $\pi > 0$  "social effort" (or "strength of commitment")

<sup>[</sup>Fontan and Altafini, IEEE TAC (2021)]



$$\dot{x} = -\Delta x + \pi A \psi(x) = \Delta (-x + \pi H \psi(x)) \qquad (\star)$$

- Normalized adjacency matrix  $H = \Delta^{-1}A = I \mathcal{L}$
- Dynamical interpretation: (\*) is monotone  $\Leftrightarrow \mathcal{G}(A)$  is structurally balanced  $\Leftrightarrow \lambda_1(\mathcal{L}) = 0$


#### Investigate how:

- the social effort parameter π affects the existence and stability of the equilibrium points of the system (\*)
  Tool: bifurcation theory (L = I − H has simple eigenvalues)
- the presence of antagonistic interactions affects the behavior of (\*) Tool: signed networks theory (frustration)



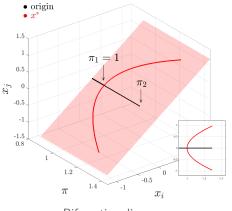
#### Bifurcation analysis: Structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$





#### Bifurcation analysis: Structurally balanced networks


$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$

 $\pi < 1: x = 0$  only eq. point (GAS) Not enough commitment: Deadlock

- $\pi = 1$ : pitchfork bifurcation
- ► x = 0 saddle point
- new equilibria:  $x^*$ ,  $-x^*$  (loc. AS  $\forall \pi > 1$ )

Right commitment: Two alternative decisions  $x^*$ 

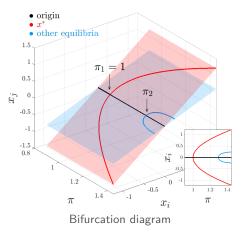
 $\pi = \pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}: \text{ pitchfork bifurcation}$   $\blacktriangleright \text{ new equilibria (stable/unstable for } \pi > \pi_2)$ Overcommitment: Several decisions



Bifurcation diagram



#### Bifurcation analysis: Structurally balanced networks


$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$

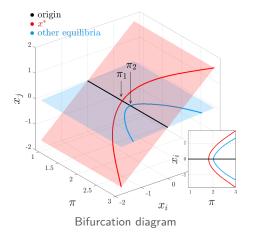
 $\pi < 1$ : x = 0 only eq. point (GAS) Not enough commitment: Deadlock

- $\pi = 1$ : pitchfork bifurcation
- ► x = 0 saddle point
- new equilibria:  $x^*$ ,  $-x^*$  (loc. AS  $\forall \pi > 1$ )

Right commitment: Two alternative decisions  $x^*$ 

 $\pi = \pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}$ : pitchfork bifurcation • new equilibria (stable/unstable for  $\pi > \pi_2$ ) Overcommitment: Several decisions






#### Bifurcation analysis: Structurally unbalanced networks

$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$

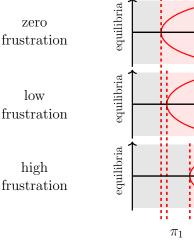
With: 
$$\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}, \ \pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}$$

- $\pi < \pi_1$ : Not enough commitment Deadlock
- $\pi = \pi_1$ : Right commitment Two alternative decisions  $x^*$
- $\pi = \pi_2$ : Overcommitment Several decisions



[Fontan and Altafini, IEEE TAC (2021)]




### Interpretation of the results as we vary the frustration

#### SIGNED GRAPH DYNAMICAL SYSTEM

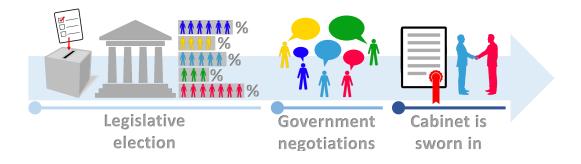
- $\pi_1 = \frac{1}{1 \lambda_1(\mathcal{L})}$  depends on the frustration  $(\lambda_1(\mathcal{L}) \approx \text{frustration})$
- $\pi_2 = \frac{1}{1 \lambda_2(\mathcal{L})}$  depends on the topology, independent from the frustration

Then, the higher the frustration:

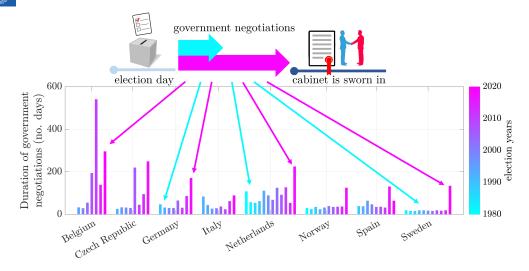
- the higher the social effort needed to achieve a decision
- the smaller the interval for which only two alternative decisions exist



 $\pi$ 


 $\pi$ 

 $\pi$ 


 $\pi_2$ 

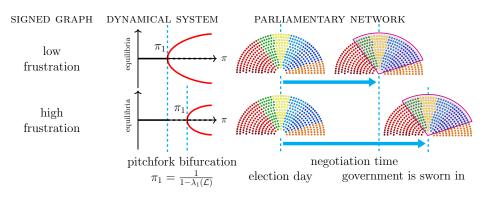


# Application: Government formation in parliamentary democracies



# Duration of government negotiation phase



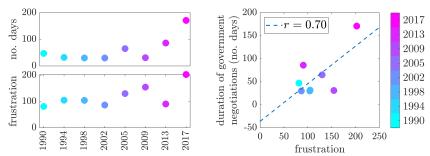

Question: can we use our model to explain this behavior?



# Dynamics of the formation of a government

- ► Signed network: parliament
- ► Social effort: duration of the government negotiation phase
- ► Decision: vote of confidence of the parliament

 $\lambda_1(\mathcal{L}) \sim \text{frustration} + \pi_1 \sim \text{duration of negotiations} + \pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}$  $\Rightarrow \text{ duration of negotiations} \sim \text{frustration}$ 




# Frustration vs duration of government negotiations

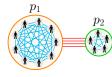
**Task**: show that the government formation process is influenced by the frustration of the parliamentary network

- ► Data: elections in 29 European countries (election years: 1978 2020)
- ▶ Method: Pearson's correlation index (r), frustration vs duration of negotiations

Example: German elections

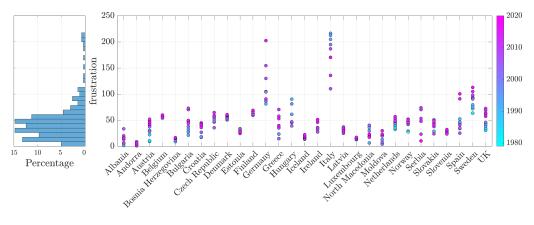





### Construction of the parliamentary networks

Definition: complete, undirected, signed graph in which each MP is a node

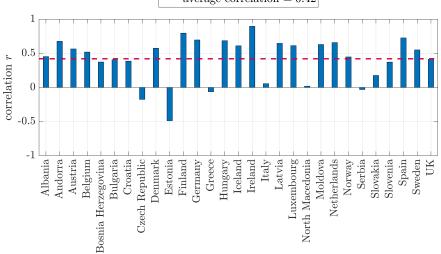
PARTY GROUPING WEIGHT SELECTION  $p_2$   $p_3$   $p_4$   $p_5$   $p_7$   $p_6$   $p_7$   $p_7$ p


rivalry: MPs belong to different parties

# Are the parliamentary networks structurally balanced?

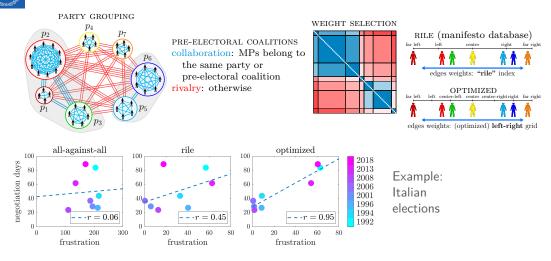


Structurally balanced parliamentary network


The parliamentary networks have (in general) nonzero frustration..






### Correlation for all 29 European countries

Duration of the government negotiations vs frustration of the parliamentary networks

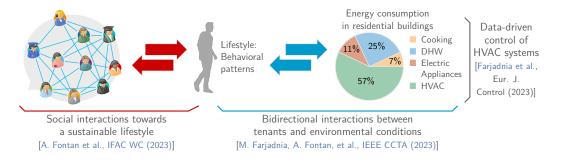


- average correlation = 0.42

# More complex scenarios: Coalitions and ideological differences

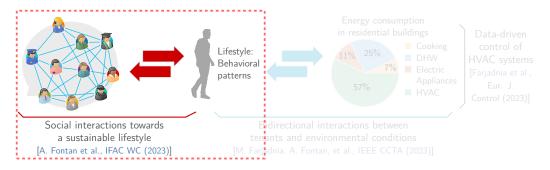


Results on average correlation for all 29 European countries: 0.42 (all-against-all), 0.32 (rile), 0.69 (optimized) ⇒ Frustration correlates well with duration of government negotiations




- Motivating examples
- ▶ Problem: Collective decision-making in presence of antagonism
  - Social networks as signed networks
  - The notion of frustration
  - Analysis of proposed model for collective decision-making over signed networks
  - Application: Process of government formation over signed parliamentary networks
- ► Problem: Design of energy-efficient smart homes
  - Smart homes as cooperative networks
  - Application: Study of social influence at KTH Live-In Lab

In collaboration with: M. Farjadnia, J. Llewellyn, C. Katzeff, M. Molinari, V. Cvetkovic, and K. H. Johansson, KTH Royal Institute of Technology, Sweden


# Problem: Design of energy-efficient smart homes

- ► Context: Building sector accounts for more than 40% of the final energy use
- Challenges for control in smart buildings:
  The behavior of occupants have large effects on building energy use



# Problem: Design of energy-efficient smart homes

- ► Context: Building sector accounts for more than 40% of the final energy use
- Challenges for control in smart buildings:
  The behavior of occupants have large effects on building energy use



[Fontan et al., IFAC WC (2023); Farjadnia et al., IEEE CCTA (2023); Farjadnia et al., Eur J Control (2023)]



#### Problem formulation

Design longitudinal experimental study of social influence in behavioral changes towards sustainability, to be implemented in the KTH Live-In Lab

#### Combining several factors..

- Modeling household and energy use behavior [Wilson and Dowlatabadi (2007), Peng et al. (2012);...]
- Planning ad hoc social interventions on habits [Steg and Vlek (2009); Frederiks et al. (2015);..]
- Designing new technologies and infrastructures (flexible Live-In Laboratories)
   [Intille et al. (2006); Das et al. (2020);..]



.. and proposing a social network perspective:

Experimental design as collective (household) decision-making process with interconnected tenants of KTH Live-In Lab as the decision-makers



#### Problem formulation

Design longitudinal experimental study of social influence in behavioral changes towards sustainability, to be implemented in the KTH Live-In Lab

Combining several factors..

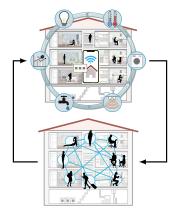
- Modeling household and energy use behavior [Wilson and Dowlatabadi (2007), Peng et al. (2012);...]
- Planning ad hoc social interventions on habits [Steg and Vlek (2009); Frederiks et al. (2015);..]
- Designing new technologies and infrastructures (flexible Live-In Laboratories)
   [Intille et al. (2006); Das et al. (2020);..]



.. and proposing a social network perspective:

Experimental design as collective (household) decision-making process with interconnected tenants of KTH Live-In Lab as the decision-makers




Exploring diffusion of sustainable behaviors: Smart homes as social networks

Approach Observe how tenants' sustainability scores change over time given that:

- ► Tenants are encouraged to exchange opinions with their neighbors
- ► Tenants can observe the average household sustainability score

Experimental campaign based on the interpretation:

- ► Smart home: Social network of interacting tenants
- $\blacktriangleright$  Lifestyle choices: Decisions  $\sim$  sustainability score
- Intuition: Feedback on global state (household) to reduce observed discrepancy between lifestyle choices and opinions on environmental responsibility

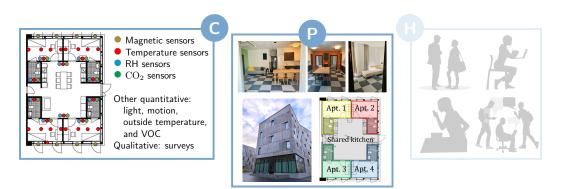




- Apartments with extensive sensing, data collection, and control capabilities
- Redesignable apartment layout allowing various experimental environments
- Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)



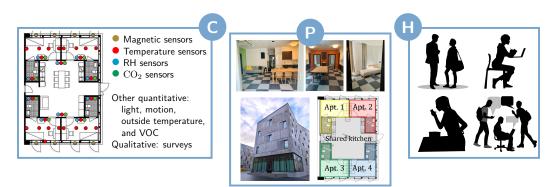



- ► Apartments with extensive sensing, data collection, and control capabilities
- Redesignable apartment layout allowing various experimental environments
- Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)





#### Experimental setup


- ► Apartments with extensive sensing, data collection, and control capabilities
- ► Redesignable apartment layout allowing various experimental environments
- Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)





#### Experimental setup

- ► Apartments with extensive sensing, data collection, and control capabilities
- ► Redesignable apartment layout allowing various experimental environments
- Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)





- ► Small group of participants
- ► Short time period





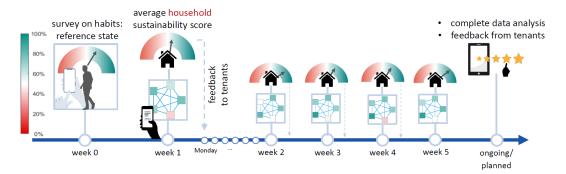
- ► Small group of participants
- ► Short time period





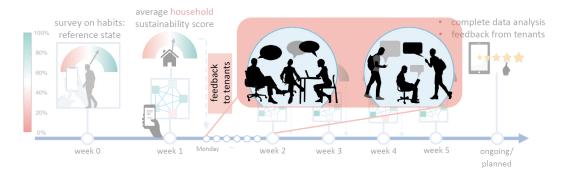
- ► Small group of participants
- ► Short time period





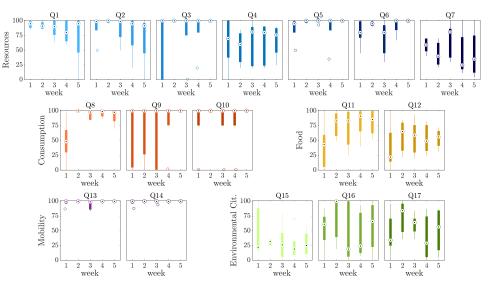

- ► Small group of participants
- ► Short time period






- ► Small group of participants
- ► Short time period





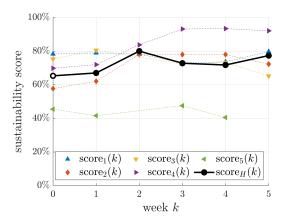

- ► Small group of participants
- ► Short time period





Summary of actions on sustainability practices Q# (grouped in 5 dimensions)






# Preliminary results (II/II)

Actions  $y_{i,q}(k)$  and sustainability score of tenant *i* of the KTH Live-In Lab

100% actions  $y_{i,q}(1)$ 80% 60% 40% 20%0% 5 6 7 8 9 10 11 12 13 14 15 16 17 2 3 4 sustainability practices  $q = 1, \ldots, 17$ 100% -80%  $score_i(k)$ 60%40%20% 0% 2 3 4 5week kEnvironmental Cit. Resources Food Mobility Consumption

Sustainability scores of all tenants and average household sustainability score





#### **Context** Urban systems as CPHS

Focus Human decision-making within interconnected communities

#### Two motivating applications

- 1. Political decision-making
  - Government formation process as collective decision-making system over signed parliamentary networks
  - We show that the frustration of the parliamentary networks correlates well with the duration of government negotiation phase
- 2. Decision-making in smart homes
  - Smart homes as social networks
  - Design of experimental study, to investigate the dynamics of tenants' sustainability scores
  - Ongoing/future directions (to implement at the KTH Live-In Lab):
    - ▶ Theoretical analysis on impact of campaigns and incentives design
    - $\blacktriangleright\,$  Compare surveys' data with sensor data collected at KTH Live-In Lab

#### Thank you for your attention!

Angela Fontan, angfon@kth.se, angelafontan.github.io