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Outline

I Background and motivating examples
I Problem: Collective decision-making in presence of antagonism

• Social networks as signed networks
• The notion of frustration
• Analysis of proposed model for collective decision-making over signed networks
• Application: Process of government formation over signed parliamentary networks

I Problem: Design of energy-efficient smart homes
• Smart homes as cooperative networks
• Application: Study of social influence at KTH Live-In Lab
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Background

Context: Interpretation of urban systems as cyber-physical-human systems (CPHS)

[Control for Societal Scale Challenges: Road Map 2030, eds. Annaswamy, Johansson, Pappas (2023)]
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Motivating examples
Characterize models of (human) decision-making within interconnected communities...
...and how they adapt during the interaction with smart technologies

1. From collaborative to antagonistic collective decision-making systems

%,

2. Design of energy-efficient smart homes
• Building automation and control of energy-efficient smart homes
• Integrated real-life experimental building infrastructure: KTH Live-In Lab

Cyber
systems

Physical
systems

Human
systems
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Outline

I Motivating examples
I Problem: Collective decision-making in presence of antagonism

• Social networks as signed networks
• The notion of frustration
• Analysis of proposed model for collective decision-making over signed networks
• Application: Process of government formation over signed parliamentary networks

I Problem: Design of energy-efficient smart homes
• Smart homes as cooperative networks
• Application: Study of social influence towards sustainability at KTH Live-In Lab

In collaboration with: Claudio Altafini, Linköping University, Sweden
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Problem: Collective decision-making in presence of antagonism

Application: Social networks
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1. Model for collective decision-making
• x : vector of opinions
• equilibrium points: possible decisions

2. Signed networks
• Positive weight: cooperative interaction
• Negative weight: antagonistic interaction
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Model for collective decision-making over cooperative networks

ẋ = −∆x + πAψ(x)

I n agents, x ∈ Rn vector of opinions
I “inertia” of the agents: ∆ = diag{δ1, . . . , δn}, δi > 0
I interactions between the agents:

unsigned (connected) network G(A)

.

.

.

xi

agent i neighbors of i

ψi(xi)

ψ(x) = [ψ1(x1) . . . ψn(xn)]T

I π > 0 scalar parameter

[Gray, Leonard, et al., IEEE TCNS (2018)]
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https://ieeexplore.ieee.org/document/8265165


Model for collective decision-making over cooperative networks

ẋ = −∆x + πAψ(x) (?)

I π = “social effort” or “strength of commitment” among the agents
I equilibria = decisions

Assumption: δi = ∑
j aij ⇒ L = ∆− A: Laplacian of G(A)

Task: Study qualitative behavior of (?) as social effort parameter π is varied
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Model for collective decision-making over signed networks

Task: Study the decision-making process in a community of agents
where both cooperative and antagonistic interactions coexist

Model: ẋ = −∆x + πAψ(x), π: social effort between the agents

Assumptions: G(A) is a signed network
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Signed networks and signed Laplacian matrix

A =


0 + + 0 +
+ 0 + + −
+ + 0 0 −
0 + 0 0 −
+ − − − 0


⇒

⇒

δ1

. . .

δ5

L =


1 − − 0 −
− 1 − − +
− − 1 0 +
0 − 0 1 +
− + + + 1



Signed Laplacian:

L = ∆− A

∆ = diag{δ1, . . . , δn} : δi =
n∑

j=1
|aij | > 0 ∀ i

Focus on:

normalized signed Laplacian: L = I −∆−1A

Re

Im
1 2

Λ(L) = spectrum of L
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Structural balance

A connected signed graph G(A) is structurally
balanced if V = V1 ∪ V2 such that every edge:
• between V1 and V2 is negative
• within V1 or V2 is positive

[F. Harary, Mich. Math. J. (1953)]

Lemma: G(A) is structurally balanced iff

I ∃ signature matrix S = diag{s1, . . . , sn}, si = ±1,
s.t. SLS has all nonpositive off-diagonal entries

I λ1(L) = 0
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− 1 − + +
− 1 +

+ + 1 −
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−1

−1

S = diag{1, 1, 1, −1 , −1}

⇒ SLS =


1 − −
− 1 − − −
− − 1 −
− − 1 −
− − 1


G(A) structurally balanced G(A) structurally unbalanced

Re

Im
1 2

0 = λ1(L) ∈ Λ(L)

Re

Im
1 2

0 < λ1(L) ∈ Λ(L)
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Example: Parliamentary systems

Structurally
balanced
network

Structurally
unbalanced
network

p1
p2

p1

p2

p3

p4

p5

p6

p7
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Frustration index and algebraic conflict

Task: characterize the graph distance from structurally balanced state

I Frustration Index
(computation: NP-hard problem)
ε(G) = min

S=diag{s1,...,sn}
si =±1

1
2 ·
∑
i 6=j

[ |L|+ SLS ]ij︸ ︷︷ ︸
=e(S): “energy functional”

I Algebraic Conflict

ξ(G) = λ1(L)

=⇒
λ1(L) good

approximation of ε(G)

[Fontan and Altafini, IEEE CDC (2018)]
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https://ieeexplore.ieee.org/document/8619615


Model for collective decision-making over signed networks

ẋ = −∆x + πAψ(x)

I n agents, x ∈ Rn vector of opinions
I “inertia” of the agents: ∆ = diag{δ1, . . . , δn}, δi > 0
I interactions between the agents:

+

+

+

+

+

−

−

−

signed (connected) network G(A)

.

.

.

xi

agent i neighbors of i

ψi(xi)

ψ(x) = [ψ1(x1) . . . ψn(xn)]T

I π > 0 “social effort” (or “strength of commitment”)

[Fontan and Altafini, IEEE TAC (2021)]
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https://ieeexplore.ieee.org/document/9591259


Task

ẋ = −∆x + πAψ(x) = ∆
(−x + πHψ(x)

)
(?)

I Normalized adjacency matrix H = ∆−1A = I − L
I Dynamical interpretation: (?) is monotone ⇔ G(A) is structurally balanced ⇔ λ1(L) = 0

Investigate how:
I the social effort parameter π affects the existence and stability of the equilibrium

points of the system (?)
Tool: bifurcation theory (L = I − H has simple eigenvalues)

I the presence of antagonistic interactions affects the behavior of (?)
Tool: signed networks theory (frustration)
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Bifurcation analysis: Structurally balanced networks
ẋ = ∆

(−x + πHψ(x)
)
, x ∈ Rn

π < 1: x = 0 only eq. point (GAS)
Not enough commitment: Deadlock

π = 1: pitchfork bifurcation
I x = 0 saddle point
I new equilibria: x∗, −x∗ (loc. AS ∀π > 1)

Right commitment: Two alternative decisions x∗

π = π2 =
1

1−λ2(L) : pitchfork bifurcation
I new equilibria (stable/unstable for π > π2)

Overcommitment: Several decisions
Bifurcation diagram

[Fontan and Altafini, IEEE TCNS (2018)]
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Bifurcation analysis: Structurally unbalanced networks

ẋ = ∆
(−x + πHψ(x)

)
, x ∈ Rn

With: π1 = 1
1− λ1(L) , π2 = 1

1− λ2(L)

π < π1: Not enough commitment
π < π1: Deadlock

π = π1: Right commitment
π = π1: Two alternative decisions x∗

π = π2: Overcommitment
π = π2: Several decisions

Bifurcation diagram

[Fontan and Altafini, IEEE TAC (2021)]
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Interpretation of the results as we vary the frustration

I π1 = 1
1−λ1(L) depends on the frustration

(λ1(L) ≈ frustration)
I π2 = 1

1−λ2(L) depends on the topology,
independent from the frustration

Then, the higher the frustration:
I the higher the social effort

needed to achieve a decision
I the smaller the interval for which only

two alternative decisions exist

π1 π2

signed graph dynamical system

zero
frustration

low
frustration

high
frustration

π

eq
u
il
ib
ri
a

π

eq
u
il
ib
ri
a

π

eq
u
il
ib
ri
a
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Application: Government formation in parliamentary democracies

18



Duration of government negotiation phase

Question: can we use our model to explain this behavior?

19



Dynamics of the formation of a government
I Signed network: parliament
I Social effort: duration of the government negotiation phase
I Decision: vote of confidence of the parliament

λ1(L) ∼ frustration + π1 ∼ duration of negotiations + π1 = 1
1−λ1(L)

⇒ duration of negotiations ∼ frustration

pitchfork bifurcation
π1 =

1
1−λ1(L) election day government is sworn in

signed graph dynamical system parliamentary network

low
frustration

high
frustration

π

eq
u
il
ib
ri
a

π1

π

eq
u
il
ib
ri
a

π1

negotiation time
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Frustration vs duration of government negotiations

Task: show that the government formation process is influenced
by the frustration of the parliamentary network

I Data: elections in 29 European countries (election years: 1978 - 2020)
I Method: Pearson’s correlation index (r), frustration vs duration of negotiations

Example: German elections

[Fontan and Altafini, Scientific Reports (2021)]
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https://www.nature.com/articles/s41598-021-84147-3


Construction of the parliamentary networks

Definition: complete, undirected, signed graph in which each MP is a node

p1

p2

p3

p4

p5

p6

p7

party grouping
weight selection

MP=

all-against-all
collaboration: MPs belong to the same party

rivalry: MPs belong to different parties

unweighted:
aij ∈ {−1,+1}
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Are the parliamentary networks structurally balanced?
p1

p2
Structurally balanced
parliamentary network

The parliamentary networks have (in general) nonzero frustration..
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Correlation for all 29 European countries
Duration of the government negotiations vs frustration of the parliamentary networks
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More complex scenarios: Coalitions and ideological differences

p1

p2

p3

p4

p5

p6

p7

party grouping
weight selection

pre-electoral coalitions
collaboration: MPs belong to

the same party or
pre-electoral coalition

rivalry: otherwise

far left left center right far right

edges weights: “rile” index

rile (manifesto database)

far left left center-left center center-rightright far right

edges weights: (optimized) left-right grid

optimized

Example:
Italian
elections

Results on average correlation for all 29 European countries:
0.42 (all-against-all), 0.32 (rile), 0.69 (optimized)

⇒ Frustration correlates well with duration of government negotiations
25



Outline

I Motivating examples
I Problem: Collective decision-making in presence of antagonism

• Social networks as signed networks
• The notion of frustration
• Analysis of proposed model for collective decision-making over signed networks
• Application: Process of government formation over signed parliamentary networks

I Problem: Design of energy-efficient smart homes
• Smart homes as cooperative networks
• Application: Study of social influence at KTH Live-In Lab

In collaboration with: M. Farjadnia, J. Llewellyn, C. Katzeff, M. Molinari, V. Cvetkovic, and K. H. Johansson,
KTH Royal Institute of Technology, Sweden
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Problem: Design of energy-efficient smart homes

I Context: Building sector accounts for more than 40% of the final energy use
I Challenges for control in smart buildings:

The behavior of occupants have large effects on building energy use

BP

Nurse

Lifestyle:
Behavioral
patterns

7%
25%11%

57%

� Cooking
� DHW
� Electric

Appliances
� HVAC

Energy consumption
in residential buildings

Social interactions towards
a sustainable lifestyle

[A. Fontan et al., IFAC WC (2023)]

Bidirectional interactions between
tenants and environmental conditions

[M. Farjadnia, A. Fontan, et al., IEEE CCTA (2023)]

Data-driven
control of

HVAC systems
[Farjadnia et al.,

Eur. J.
Control (2023)]

[Fontan et al., IFAC WC (2023); Farjadnia et al., IEEE CCTA (2023); Farjadnia et al., Eur J Control (2023)]
27
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Problem formulation

Design longitudinal experimental study of social influence in behavioral changes
towards sustainability, to be implemented in the KTH Live-In Lab

Combining several factors..
I Modeling household and energy use behavior

[Wilson and Dowlatabadi (2007), Peng et al. (2012);..]
I Planning ad hoc social interventions on habits

[Steg and Vlek (2009); Frederiks et al. (2015);..]
I Designing new technologies and infrastructures

(flexible Live-In Laboratories)
[Intille et al. (2006); Das et al. (2020);..]

..and proposing a social network perspective:

BP

Nurse

Experimental design as collective (household) decision-making process
with interconnected tenants of KTH Live-In Lab as the decision-makers

28
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Exploring diffusion of sustainable behaviors:
Smart homes as social networks

Approach Observe how tenants’ sustainability scores change over time given that:
I Tenants are encouraged to exchange opinions with their neighbors
I Tenants can observe the average household sustainability score

Experimental campaign based on the interpretation:
I Smart home: Social network of interacting tenants
I Lifestyle choices: Decisions ∼ sustainability score
I Intuition: Feedback on global state (household) to reduce

observed discrepancy between lifestyle choices and opinions on
environmental responsibility

29



Experimental setup

Campaign run at the KTH Live-In Lab, state-of-the-art platform of building testbeds
I Apartments with extensive sensing, data collection, and control capabilities
I Redesignable apartment layout allowing various experimental environments
I Interaction capability with and between occupants

(experiments involving 4 apartments and 5 tenants)

C• Magnetic sensors• Temperature sensors• RH sensors• CO2 sensors

Other quantitative:
light, motion,
outside temperature,
and VOC

Qualitative: surveys

P H

30
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Design of the case study

Preparatory phase of the project (winter 2022-spring 2023)
I Small group of participants
I Short time period
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Preliminary results (I/II)
Summary of actions on sustainability practices Q# (grouped in 5 dimensions)

32



Preliminary results (II/II)

Actions yi ,q(k) and sustainability score
of tenant i of the KTH Live-In Lab

Sustainability scores of all tenants and
average household sustainability score
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Conclusions

Context Urban systems as CPHS
Focus Human decision-making within interconnected communities
Two motivating applications
1. Political decision-making

• Government formation process as collective decision-making system over signed
parliamentary networks

• We show that the frustration of the parliamentary networks correlates well with the
duration of government negotiation phase

2. Decision-making in smart homes
• Smart homes as social networks
• Design of experimental study, to investigate the dynamics of tenants’ sustainability scores
• Ongoing/future directions (to implement at the KTH Live-In Lab):

I Theoretical analysis on impact of campaigns and incentives design
I Compare surveys’ data with sensor data collected at KTH Live-In Lab

Thank you for your attention!
Angela Fontan, angfon@kth.se, angelafontan.github.io
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