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Motivation

* Current situation with ML models
* Learn hidden relationships in data
* Excellent performance classification and anomaly detection

* Qur goals in fusion with VA:

* Classification alone is not enough (lacking trust, validation, and
understanding)

* Leverage machine learning for valuable insights
* Enhance ML systems with domain knowledge
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Our case study in cybersecurity

Data
* Network data provided in the form of PCAP files

Ethernet P TCP

Header Header Header DAIA

Network data is often compared to an onion with a header for each layer, followed by the payload.



Our case study in cybersecurity

* Data
* Network data provided in the form of PCAP files

* User
* Administrators
* Cybersecurity professionals
* Malware analysts

* Tasks
* Develop and enforce security policies and procedures
* Optimize Quality of Service (QoS)
* Manage network resources



Progress on our framework

VA VA+ML+XAl(local) VA+ML+XAl(global)




Visual Analytics for Network Packet Captures

NetCapVis:
Web-based Progressive Visual Analytics for Network Packet Captures
Alex Ulmer* David Sessler’ Jorn Kohlhammer?
Visual analytics system for analyzing PCAP data Toshnische Unvereitat Darmetadt, Germany

Parsing of PCAP files

Interlinked visualization of

network statistics, including:
* Network graph

Timeline view

Bar charts

Listing of IP addresses

and protocols




ML Integration into the Framework
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ML Integration into the Framework

* Researched and compared different ML approaches

* 1D-CNN model achieved the best performance (confirmed by the field of
network research)

* Applied 1D-CNN and evaluated
* Experimenting with hidden layer depth and width
* Adjusted convolutional filter sizes

* Created a custom dataset
* Includes novel and modern application classes (youtube, facebook ...)
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Local XAl Integration into the Framework

* Network packets resemble images, they are one-dimensional, and
neighboring bits are frequently related.

* XAl methods from image processing are suitable
* Class Activation Maps
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B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba,
"Learning Deep Features for Discriminative Localization," 11
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)




Local XAl Integration into the Framework

CAM Calculation:

* The predicted class score is mapped back to the previous convolutional layer
to create the CAMs. The resulting CAM is a sum of all convolutional feature
maps of the last convolutional layer multiplied by the weights of output layer.

 Computationally cheap class

* calculated directly {;\ 4 WL vimeo
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.... CAM Value: 0.02 {relative) £ -516.95 {absolute)
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Local XAl Integration into the Framework

Overview of all packets with predicted
class

Packets can be viewed in raw format or
as a folded tree structure showing all
segments

Investigation of the most impactful
bytes in a PCAP file for a predicted
application class.

Visualization Of Class Activation Maps To Explain Al Classification Of
Network Packet Captures

Igor Cherepanov® Alex Ulmer® Jonathan Geraldi Joewono * Jorn Kohlhammer®

Fraunhofer IGD
Technische Universitat Darmstadt, Germany
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Local XAl Integration into the Framework

Findings:

* The model can be simplified
without significant performance
loss

* Since the end of the packet is
usually encrypted

* Misleading features
* Sequence number

. Accuracy
Input Size
ISCX2016 IVA2022 VNAT2023
130 0.9726 0.9872 0.9985
150 0.9800 0.9853 0.9969
170 0.9758 0.9887 0.9989
200 0.9655 0.9836 0.9976
1500 0.9586 0.9781 0.9975
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Global XAl Integration into the Framework

* Position of each unit of information
remains constant, lies in its ability to
aggregate local explanations for features
across all sample

Ethernet P TCP
Header Header Header DAIA




Global XAl Integration into the Framework
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Global XAl Integration into the Framework

Towards the Visualization of Aggregated Class Activation Interactive Analysis of Global Explanations using Aggregated Class
Maps to Analyse the Global Contribution of Class Features Activation Maps for Network Data

TIgor Cherepanov!®, David Sessler!®, Alex Ulmer!®, Hendrik Liicke-Ticke!®, and Jérn
Kohlhammer!:2
1 I Chcrcpannv' LD Sessler! . AL Ulmer ! .F. Wagncr' , T. May ! LI Kohlhammer!2
Fraunhofer 1GD, 64283 Darmstadt, Germany
% Technische Universitit Darmstadt, 64289 Darmstadt, Germany
{igor.cherepanov, david.sessler, alex.ulmer, hendrik.luecke-tieke,
joern.kohlhammer}@igd.fraunhofer.de

!Fraunhofer IGD, Germany
Ty Darmstadt, Germany
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Global XAl Integration into the Framework
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Global XAl Integration into the Framework

Analysis and Refinement of global CAMs Feature Impact: 00 -o Sequential Viridis Show Impact Value Variability CAM Cell Size:
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Enhancement with domain knowledge

Present work:

* Data Drift
* maintain model accuracy over time
* Evaluation in the domain is challenging due to limited background in simplified
ML concepts

* Challenges in labeling
* Data drift is difficult for domain experts to understand and interpret

* Increased complexity when all components (labeling, drift, XAl) are
combined
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Enhancement with domain knowledge
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Enhancement with domain knowledge

Future work:

* Model Improvement

* Applying active learning to iteratively improve the model with
Informative samples

 Creation of a more robust model
 For that we need also a solid dataset as well

* Automatic Rule Extraction/Creation using XAl and raw data
* Providing guidance to help experts overcome the complexity
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Thank you for your attention!
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