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Motivation

• Current situation with ML models
• Learn hidden relationships in data
• Excellent performance classification and anomaly detection

• Our goals in fusion with VA:
• Classification alone is not enough (lacking trust, validation, and 

understanding)
• Leverage machine learning for valuable insights
• Enhance ML systems with domain knowledge
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System
framework
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Our case study in cybersecurity

Data 
• Network data provided in the form of PCAP files
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Network data is often compared to an onion with a header for each layer, followed by the payload. 



Our case study in cybersecurity

• Data 
• Network data provided in the form of PCAP files

• User
• Administrators
• Cybersecurity professionals
• Malware analysts

• Tasks
• Develop and enforce security policies and procedures 
• Optimize Quality of Service (QoS) 
• Manage network resources
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Progress on our framework 

VA VA+ML+XAI(local) VA+ML+XAI(global)
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Visual Analytics for Network Packet Captures

• Visual analytics system for analyzing PCAP data
• Parsing of PCAP files  
• Interlinked visualization of 
• network statistics, including:      

• Network graph      
• Timeline view      
• Bar charts      
• Listing of IP addresses 
and protocols
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ML Integration into the Framework
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ML Integration into the Framework

• Researched and compared different ML approaches
• 1D-CNN model achieved the best performance (confirmed by the field of 

network research)

• Applied 1D-CNN and evaluated 
• Experimenting with hidden layer depth and width 
• Adjusted convolutional filter sizes

• Created a custom dataset
• Includes novel and modern application classes (youtube, facebook …)
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Local XAI Integration into the Framework

• Network packets resemble images, they are one-dimensional, and 
neighboring bits are frequently related.

• XAI methods from image processing are suitable 
• Class Activation Maps 
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Local XAI Integration into the Framework

CAM Calculation:
• The predicted class score is mapped back to the previous convolutional layer 

to create the CAMs. The resulting CAM is a sum of all convolutional feature 
maps of the last convolutional layer multiplied by the weights of output layer.

• Computationally cheap
• calculated directly 

on the resulting trained model
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Local XAI Integration into the Framework

14

• Overview of all packets with predicted 
class

• Packets can be viewed in raw format or 
as a folded tree structure showing all 
segments

• Investigation of the most impactful 
bytes in a PCAP file for a predicted 
application class.



Local XAI Integration into the Framework
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Findings:

• The model can be simplified 
without significant performance 
loss
• Since the end of the packet is 

usually encrypted

• Misleading features
• Sequence number



Global XAI Integration into the Framework
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• Position of each unit of information 
remains constant, lies in its ability to 
aggregate local explanations for features 
across all sample



Global XAI Integration into the Framework
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Global XAI Integration into the Framework
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Planned: CGF Submission 2025



Global XAI Integration into the Framework
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Global XAI Integration into the Framework
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Enhancement with domain knowledge
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Present work:
• Data Drift 

• maintain model accuracy over time 
• Evaluation in the domain is challenging due to limited background in simplified 

ML concepts
• Challenges in labeling
• Data drift is difficult for domain experts to understand and interpret
• Increased complexity when all components (labeling, drift, XAI) are 

combined



Enhancement with domain knowledge

22



Enhancement with domain knowledge
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Future work:
• Model Improvement      

• Applying active learning to iteratively improve the model with 
informative samples

• Creation of a more robust model 
• For that we need also a solid dataset as well 

• Automatic Rule Extraction/Creation using XAI and raw data
• Providing guidance to help experts overcome the complexity 



Thank you for your attention!
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