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Cloud and convection parameterizations limit climate projections
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Cloud processes are complex, non-linear, and multi-scale
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Morrison et al. 2020, JAMES



What don’t we know about cloud processes? 
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Schneider et al. 2017Morrison et al. 2020

We don’t know all 
of the physics

We don’t know how to 
consistently represent 

these processes at 
different scales

We don’t know the 
optimal way to 
represent cloud 

processes in models



Scientific machine learning can help to solve these challenges
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Improved 
Earth System 

Understanding!

• Emulation of computationally expensive models
• Hybrid-physics machine learning models
• Neural ordinary differential equations
• Data-driven reduced order modeling 
• Equation discovery



What don’t we know about cloud processes? 
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We don’t know all 
of the physics

We don’t know how to 
consistently represent 

these processes at 
different scales

1 um

Schneider et al. 2017Morrison et al. 2020

We don’t know the 
optimal way to 
represent cloud 

processes in models



Understanding how ice crystals grow in the atmosphere is fundamental for 
constraining the radiative effects of clouds, cloud lifetimes, and the 
distribution of water vapor in the atmosphere– all of which have important 
climate effects.

How do ice crystals grow in the atmosphere?
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1 um

Pruppacher and Klett, 1997

The functional dependence of 𝛂D is uncertain 
(typically assumed to be a constant value)

Single crystal 
ice mass 
growth rate



Observational data sets to study depositional ice growth

8 | Learning Cloud Processes Across Scales Using Machine Learning

Levitation diffusion chamber experiments
• Single ice crystals, constant temperature and supersaturation
• 307 experiments [Harrison et al. 2016; Pofrika et al. 2020; 2023]

K. Lamb and J. Harrington. “Discovering How Ice Crystals Grow with Neural ODE’s and Symbolic Regression.” Submitted, NeurIPS ML4Physics Workshop.



Physics-informed machine learning for depositional ice growth 
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1 um

We want to know the structure of single 
particle mass growth rate but observations 
provide constraints on ice mass

Neural ordinary differential equations 
(NODEs) perform efficient backpropagation 
through typical numerical ODE solvers 
[Chen et al. 2018]

Karniadakis et al. 2021, Nat. Rev. Phys.

K. Lamb and J. Harrington. “Discovering How Ice Crystals Grow Using Neural ODE’s and Symbolic Regression.” Submitted, NeurIPS ML4Physics Workshop.



NODE optimized to ice mass growth rates (synthetic data w/ known functional form)

10 | Learning Cloud Processes Across Scales Using Machine Learning

Optimize NODE model against 307 synthetic ice mass  
time series to learn the functional dependence of 𝛂D 
 Minimize distance between model and observations 

K. Lamb and J. Harrington. “Discovering How Ice Crystals Grow Using Neural ODE’s and Symbolic Regression.” Submitted, NeurIPS ML4Physics Workshop.
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Optimize NODE model against 307 real ice mass  time 
series to learn the functional dependence of 𝛂D 
 Minimize distance between model and observations 

NODE optimized to ice mass growth rates (real data w/ unknown functional form)

K. Lamb and J. Harrington. “Discovering How Ice Crystals Grow Using Neural ODE’s and Symbolic Regression.” Submitted, NeurIPS ML4Physics Workshop.
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Optimize NODE model against 307 real ice mass  time 
series to learn the functional dependence of G/Gc
 Minimize distance between model and observations 

NODE optimized to ice mass growth rates (real data w/ unknown functional form)

K. Lamb and J. Harrington. “Discovering How Ice Crystals Grow Using Neural ODE’s and Symbolic Regression.” Submitted, NeurIPS ML4Physics Workshop.



Trained Neural Network

13 | Learning Cloud Processes Across Scales Using Machine Learning

Learned functional dependence for ice growth using symbolic regression

K. Lamb and J. Harrington. “Discovering How Ice Crystals Grow Using Neural ODE’s and Symbolic Regression.” Submitted, NeurIPS ML4Physics Workshop.
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PySR library [Cranmer, 2023]



What don’t we know about cloud processes? 
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We don’t know all 
of the physics

We don’t know how 
to represent these 

processes in models

We don’t know how to 
consistently represent these 
processes at different scales

Schneider et al. 2017Morrison et al. 2020, JAMES



How can we efficiently represent a spectrum of droplets in models?
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Figure 3. Representation of cloud and precipitation particle distributions in the three main 
types of microphysics schemes: bulk (left), bin (center), and particle-based Lagrangian 

(right). The horizontal axes show particle diameter or mass, and the vertical axes show the 
number density distribution for the bulk and bin diagrams and “multiplicity” for the 

Lagrangian particle-based diagram, which is the actual number of particles that each super-
particle represents. The size of the blue super-particles in this diagram represents the size or 

mass of a super-particle. Note that almost all current bulk schemes represent particle 
distributions using analytic functions, although some earlier schemes did not make any 
assumptions about the cloud particle distribution and only considered bulk cloud water 

content. 
 
  

Morrison et al. 2020

Computational expense
Fidelity

4-6 parameters ~30-70 parameters ~100’s parameters

• Droplet size distribution (DSD) – spectrum of droplets of various sizes in a cloud
• Details are important for cloud radiative effects and the initiation and timing of precipitation 
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Typical microphysical process rate representation in bulk schemes
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Cloud droplets Rain

Self-collection

Auto-conversion

Accretion

Typical bulk microphysical process rates:
• power laws of cloud and rain momentsMicrophysical process rates

Khairoutdinov and Kogan, 2000Morrison et al. 2020



Typical approach to develop a bulk cloud microphysics scheme
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Computational expense
Fidelity

Limitations:
• A priori DSD representation (cloud and rain moments)
• Microphysical process rates with assumed functional forms 
Structural and parametric uncertainty (artificial threshold between cloud and rain is known to be problematic)

Khairoutdinov and Kogan, 2000

Assume some functional form for bulk microphysical process rates, use higher fidelity (bin or superdroplet) simulations as the 
ground truth, fit best parameters 



Our approach: reduced order modeling to learn latent “bulk” scheme
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Apply ROM to model with higher fidelity (bin or superdroplet) microphysics scheme
• Reduced order (“latent”) representation of the DSD
• Microphysical process rates acting on latent representation of DSD (“latent dynamics”)

Input DSD Predicted DSD

Latent space 
representation

Ground truth data: TAU bin microphysics scheme [Tzivion et al. 1987, 1989; Feingold et al. 1988]. 
• 1D kinematic driver model, simulating a column of air under action of sinusoidal updraft 
• 16 cases with different initial conditions for aerosol concentration, updraft speeds (~231000 samples)



How many variables do we need to represent collision-coalescence?
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How many degrees of freedom are needed to accurately predict the future 
state of a physical system? [Chen et al. 2022, Nat. Comp. Sci.] 

Intrinsic dimension = topological dimension of lower dimensional “latent” 
manifold approximates # of independent degrees of freedom needed

IDcc =  3 (the minimum number of independent 
variables needed to parameterize collision coalescence)
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K.D. Lamb, M. van Lier Walqui, S. Santos, H. Morrison. ”Reduced Order Modeling for Linearized Representations of Microphysical Process Rates, JAMES.



What do the latent variables represent in terms of the DSD?
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K.D. Lamb, M. van Lier Walqui, S. Santos, H. Morrison. ”Reduced Order Modeling for Linearized Representations of Microphysical Process Rates, JAMES.

Cloud moments (qc)

Rain moments (qr)

Latent variables 



Where is microphysical information lost in the cloud?
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• Train decoder to reconstruct DSD from typical bulk representations of the DSD (cloud and rain moments)
• Compare with reconstructions for latent variables from VAE
• Latent variables capture early stages of rain formation better than moments
• Latent variables more accurately reconstruct the DSD than moments

Average metrics for 10 random initializations 
of models evaluated on test data sets:

Representation Variables MSE reconstruction loss

Latent variables L0, L1, L2 2.6e-4 ± 5.1e-4

Typical bulk 
variables

qc, qr, Nc, Nr 6.0e-4 ± 13.5e-4

K.D. Lamb, M. van Lier Walqui, S. Santos, H. Morrison. ”Reduced Order Modeling for Linearized Representations of Microphysical Process Rates, JAMES.

We don’t necessarily need more complexity in 
our models!



What can dimensionality reduction tell us about the evolution of clouds?
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In real clouds, local droplet size distributions differ substantially from mean across the cloud [Allwayin et al. 2024]
Eagles LES simulations of stratocumulus cases with bin microphysics scheme
Color visualizes 3 latent variables projected onto RGB

J. Will, A. Jenney, K.D. Lamb, M.S. Pritchard, C. Kaul, P.-L. Ma, K. Pressel, J. Shpund, M. van Lier-Walqui, S. Mandt, “Understanding and Visualizing Droplet Distributions 
in Simulations of Shallow Clouds”, Neurips ML4Physics Workshop, 2023.



What don’t we know about cloud processes? 
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We don’t know all 
of the physics

We don’t know how to 
consistently represent these 
processes at different scales

Schneider et al. 2017Morrison et al. 2020, JAMES

We don’t know the 
optimal way to represent 
cloud processes in models



Parameterizing sub-grid-scale clouds and convection is challenging
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Climate model grid ~ 100km 

ISS view

• Quasi-equilibrium hypothesis assumes there is a separation of scales between the large (grid scale) and small (sub-
grid-scale) [Arakawa and Schubert, 1974]

• Most climate models rain too little and too often [Stevens et al. 2010]
• Do we need stochastic parameterizations of deep convection to represent unresolved physics? [Majda et al. 2002; 

Khouider et al. 2003]
Arakawa, 2004
.
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Convection typically becomes more organized over time
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Bony et al. 2015
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(temperature) and hydrological (rainfall) sensitivity through pro-
cesses currently missing or poorly represented in climate models — 
for instance convective-scale organization, or processes related to 
the distribution of clouds at mid to upper levels. Might the current 
crude representation of convective mixing processes in models be 
missing important cloud feedback mechanisms?

 ese ideas could be tested by suppressing or altering processes 
in comprehensive models in ways that are guided by results from 
observations or more fundamental models. One could then ask to 
what extent the broader implications of such processes are consistent 
with other things we know. So doing would help explain how much 
of the model spread can be attributed to di erences in convective 
parameterizations, or whether poor parameterizations (or simply 
the absence of critical processes) are skewing predictions of the sys-
tem’s behaviour. Increasingly specific ideas could also guide the col-
lection and analysis of Earth observations, for instance through field 
experiments focusing on undisturbed conditions in the maritime 
tropics or improved space-based estimates of lower-tropospheric 
water vapour.

What controls the position, strength and variability of storm 
tracks? Extratropical storms draw their energy from the tem-
perature contrast between the Equator and poles.  ey are asso-
ciated with the familiar high- and low-pressure systems of the 
mid-latitudes, with their attendant temperature fronts, precipi-
tation and sometimes severe weather. Most extratropical storms 
develop, organize and decay in spatially localized regions known 
as ‘storm tracks’.  e storm tracks tend to be roughly aligned with 

the global jet streams (upper-level eastward wind currents) and 
are major components of the general circulation through their 
role in the meridional transport of energy, moisture and momen-
tum, and in the modification of Earth’s energy budget through 
associated patterns of clouds (Fig. 2).

 e jets and the storms interact with each other symbiotically, 
giving rise to low-frequency variations. One feature of this variabil-
ity is the emergence of persistent ‘blocking events’, which e ectively 
reroute storms away from their usual tracks. Blocking events can be 
associated with summer heat waves and winter cold snaps over the 
blocked region, as well as unusual storminess away from the block. 
Year-to-year variability in the position of the storm tracks is associ-
ated with large swings in temperature: monthly averaged tempera-
tures in the upper mid-west of the United States, for instance, can 
vary by more than 10 °C from one year to the next as the storm 
tracks shi . Likewise, unusual persistence in the path of succes-
sive storms can lead to widespread flooding, as was the case for 
the United Kingdom in the winter of 2013/14, or to unseasonably 
pleasant weather.

 e chaotic variations of the storm tracks become manifest 
as natural weather and climate variability on decadal timescales, 
which makes it difficult to attribute a change in any given year to 
changes in the climate. But models and theory do suggest that the 
storm tracks are sensitive to external forcing, for instance changes 
in meridional temperature gradients. Near the surface, temperature 
gradients are expected to weaken as surface warming is stronger 
near the poles; alo , temperature gradients will strengthen as the 
stratosphere cools and the tropical upper troposphere warms.  ese 
changes have opposing e ects on the latitude of the storm tracks19, 
but, on balance, models suggest that the storm tracks will shi  
polewards with warming. Support for this line of thinking arises 
from a discernible poleward shi  of summertime precipitation in 
the Southern Hemisphere, which has been attributed to cooling in 
the polar stratosphere resulting from the depletion of ozone there20. 
But these shi s are not uniform with longitude, particularly in the 
Northern Hemisphere where zonal asymmetries are fundamental 
to an understanding of storm-track location21. Changes in the zonal 
asymmetry of the jet can lead to equatorward shi s in regions22 even 
if, on average, the jet is displaced polewards.

Even for changes in the jets that models robustly simulate, 
understanding remains poor. Uncertainty in future projections is 
not surprising, as models also exhibit large biases in the simulation 
of the present day, with storm tracks located too far equatorward 
and, in the Northern Hemisphere, too zonally oriented23. Progress 
in developing a narrative for future storm-track changes is likely to 
depend on progress in understanding the origins and implications 
of these biases.

 eoretical understanding of extratropical storms is largely based 
on dry dynamics, but the water that flows through these storms 
also plays a fundamental role in determining their evolution. Half 
of the poleward transport of energy within storm tracks is accom-
plished by the latent heat component, meaning that moisture is vital 
in setting the temperature gradients upon which storms grow.  e 
release of latent heat within the warm sector of storms and in frontal 
regions has long been understood as an important and additional 
energy source for cyclogenesis. But the myriad ways in which clouds 
couple to the storm tracks are just beginning to be appreciated, for 
instance through their radiative e ects. As the clouds embedded 
within the storm tracks shi , there are systematic implications for 
the radiation budget and its influence on the temperature gradients 
that give rise to the storms in the first place24,25.  e development of 
a hierarchy of modelling approaches is advancing understanding of 
how moist processes such as those embedded along frontal systems, 
interactions with ocean circulations, and cloud radiative e ects 
influence both storm development and the structure of the storm 
tracks. Because storm tracks are large enough to be resolved across 
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Figure 1 | What role does convection play in cloud feedbacks? a, Shallow 
convective clouds, with tops around 2.5 km, photographed over the tropical 
North Atlantic. Climate models are very sensitive to how such clouds 
are coupled to the larger-scale circulation, the vertical distribution of 
water vapour, surface turbulent fluxes and atmospheric radiation. b, This 
coupling links regions of shallow convective clouds to remote areas of deep 
convection (hints of which can also be seen in the backgr ound of a). Image 
in a courtesy of Bjorn Stevens. 
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(temperature) and hydrological (rainfall) sensitivity through pro-
cesses currently missing or poorly represented in climate models — 
for instance convective-scale organization, or processes related to 
the distribution of clouds at mid to upper levels. Might the current 
crude representation of convective mixing processes in models be 
missing important cloud feedback mechanisms?

 ese ideas could be tested by suppressing or altering processes 
in comprehensive models in ways that are guided by results from 
observations or more fundamental models. One could then ask to 
what extent the broader implications of such processes are consistent 
with other things we know. So doing would help explain how much 
of the model spread can be attributed to di erences in convective 
parameterizations, or whether poor parameterizations (or simply 
the absence of critical processes) are skewing predictions of the sys-
tem’s behaviour. Increasingly specific ideas could also guide the col-
lection and analysis of Earth observations, for instance through field 
experiments focusing on undisturbed conditions in the maritime 
tropics or improved space-based estimates of lower-tropospheric 
water vapour.

What controls the position, strength and variability of storm 
tracks? Extratropical storms draw their energy from the tem-
perature contrast between the Equator and poles.  ey are asso-
ciated with the familiar high- and low-pressure systems of the 
mid-latitudes, with their attendant temperature fronts, precipi-
tation and sometimes severe weather. Most extratropical storms 
develop, organize and decay in spatially localized regions known 
as ‘storm tracks’.  e storm tracks tend to be roughly aligned with 

the global jet streams (upper-level eastward wind currents) and 
are major components of the general circulation through their 
role in the meridional transport of energy, moisture and momen-
tum, and in the modification of Earth’s energy budget through 
associated patterns of clouds (Fig. 2).

 e jets and the storms interact with each other symbiotically, 
giving rise to low-frequency variations. One feature of this variabil-
ity is the emergence of persistent ‘blocking events’, which e ectively 
reroute storms away from their usual tracks. Blocking events can be 
associated with summer heat waves and winter cold snaps over the 
blocked region, as well as unusual storminess away from the block. 
Year-to-year variability in the position of the storm tracks is associ-
ated with large swings in temperature: monthly averaged tempera-
tures in the upper mid-west of the United States, for instance, can 
vary by more than 10 °C from one year to the next as the storm 
tracks shi . Likewise, unusual persistence in the path of succes-
sive storms can lead to widespread flooding, as was the case for 
the United Kingdom in the winter of 2013/14, or to unseasonably 
pleasant weather.

 e chaotic variations of the storm tracks become manifest 
as natural weather and climate variability on decadal timescales, 
which makes it difficult to attribute a change in any given year to 
changes in the climate. But models and theory do suggest that the 
storm tracks are sensitive to external forcing, for instance changes 
in meridional temperature gradients. Near the surface, temperature 
gradients are expected to weaken as surface warming is stronger 
near the poles; alo , temperature gradients will strengthen as the 
stratosphere cools and the tropical upper troposphere warms.  ese 
changes have opposing e ects on the latitude of the storm tracks19, 
but, on balance, models suggest that the storm tracks will shi  
polewards with warming. Support for this line of thinking arises 
from a discernible poleward shi  of summertime precipitation in 
the Southern Hemisphere, which has been attributed to cooling in 
the polar stratosphere resulting from the depletion of ozone there20. 
But these shi s are not uniform with longitude, particularly in the 
Northern Hemisphere where zonal asymmetries are fundamental 
to an understanding of storm-track location21. Changes in the zonal 
asymmetry of the jet can lead to equatorward shi s in regions22 even 
if, on average, the jet is displaced polewards.

Even for changes in the jets that models robustly simulate, 
understanding remains poor. Uncertainty in future projections is 
not surprising, as models also exhibit large biases in the simulation 
of the present day, with storm tracks located too far equatorward 
and, in the Northern Hemisphere, too zonally oriented23. Progress 
in developing a narrative for future storm-track changes is likely to 
depend on progress in understanding the origins and implications 
of these biases.

 eoretical understanding of extratropical storms is largely based 
on dry dynamics, but the water that flows through these storms 
also plays a fundamental role in determining their evolution. Half 
of the poleward transport of energy within storm tracks is accom-
plished by the latent heat component, meaning that moisture is vital 
in setting the temperature gradients upon which storms grow.  e 
release of latent heat within the warm sector of storms and in frontal 
regions has long been understood as an important and additional 
energy source for cyclogenesis. But the myriad ways in which clouds 
couple to the storm tracks are just beginning to be appreciated, for 
instance through their radiative e ects. As the clouds embedded 
within the storm tracks shi , there are systematic implications for 
the radiation budget and its influence on the temperature gradients 
that give rise to the storms in the first place24,25.  e development of 
a hierarchy of modelling approaches is advancing understanding of 
how moist processes such as those embedded along frontal systems, 
interactions with ocean circulations, and cloud radiative e ects 
influence both storm development and the structure of the storm 
tracks. Because storm tracks are large enough to be resolved across 
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convective clouds, with tops around 2.5 km, photographed over the tropical 
North Atlantic. Climate models are very sensitive to how such clouds 
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coupling links regions of shallow convective clouds to remote areas of deep 
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• Convection organizes at different scales and becomes more organized over time
• Should climate model deep convection schemes include a parameter for cloud organization at the sub-grid 

scale [Mapes and Neale, 2011]? 



DYAMOND & DYAMOND 2 Intercomparison Projects
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Stevens et al. 2019

• DYnamics of the Atmospheric general circulation Modeled on Non-hydrostatic Domains [Stevens et al. 2019]
• Model intercomparison project for global storm-resolving models 
• Deep convection does not need to be parametrized (grid scale ~ 2-4 km)
• Winter: Simulations of 40 days & nights initialized on 20 January 2020
• Specified sea-surface temperature (atmospheric experiment only)
• Global SAM [Khairoutdinov, Blossey, and Bretherton, 2022]



How can we parametrize sub-grid-scale cloud organization?
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There are many different metrics for cloud spatial organization 
[Janssens et al. 2021]

Which one should we use?

S. Shamekh, K. Lamb, Y. Huang, P. Gentine. Implicit Learning of convective organization explains precipitation stochasticity. PNAS, 2023
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Tropical rain belts cannot be understood without understand-
ing the roles of the clouds within them. Over the ocean these rain 
belts are tied to the warmest sea surface temperatures, which favour 
sustained rising motion as seen in the rising branch of the Hadley 
and Walker circulations.  e high clouds in the rain belts have a 
strong e ect on short-wave radiation because of the amount of 
condensate, and on long-wave radiation because of their height. 
 ese radiative e ects influence both sea surface temperature and 
atmospheric circulation.  e breadth of the subsiding branches of 
tropical over-turning circulations determines the prevalence of low 
clouds within the broader tropics. Any climate forcing that leads 
to a change in strength, width or location of a tropical rain belt is 
thus potentially associated with a cloud feedback, which will in 
turn influence the patterns of temperature change and circulation 
response to the forcing.

Local interactions between the atmosphere and the upper ocean 
or the land surface have long been recognized to play a role in deter-
mining the position of the rain belts. Recent work, however, has 
emphasized that changes in the rain belts’ location and intensity are 
intimately coupled to circulations on a variety of scales. Mesoscale 
convective circulations appear to influence the polewards extent of 
the monsoon in ways that are just starting to be understood30, and 
planetary scale circulations connect the rain belts to processes in 
distant extratropical locations31. Newly developed energetic frame-
works have proved to be a useful way to understand these connec-
tions32. Models suggest that high-latitude heat sources, for example, 
drive atmospheric heat transport through the mid-latitudes and into 

the tropics.  ere, the Hadley cell responds by transporting energy 
away from — and moisture towards — the source of heat.  is 
causes tropical rain belts to be displaced towards a heat input, even 
from a great distance.  is type of tropical–extratropical interaction 
may help explain the double-ITCZ problem in climate models, a 
longstanding bias associated with an overly pronounced southern 
ITCZ: a deficit in cloudiness over the Southern Ocean warms the 
entire Southern Hemisphere, causing excessive precipitation within 
the southern tropics and driving a stronger ITCZ in the Southern 
Hemisphere33.  is process probably explains why cooling in one 
hemisphere by aerosols or ice-sheet expansion pushes the tropical 
rain bands toward the opposite hemisphere34.

Historical evidence also supports the view that tropical rain 
bands may be fairly mutable. Most strikingly, in the Sahara, vegeta-
tion and lake indicators, as well as many examples of rock art, docu-
ment periods such as the early and mid-Holocene when the African 
monsoon extended much further north than today (see Box 2). 
Although much of this change would seem to be due to changes 
in insolation driven by precession of the Earth’s orbit, this factor 
alone is insufficient to explain the shi  in today’s climate models, 
even when vegetation feedbacks are taken into account35. Past ITCZ 
shi s may be poorly simulated at other time periods as well, for 
example the Last Glacial Maximum36. Insufficient understanding, 
and uncertainties in past climate reconstructions, make it difficult 
to assess modelled responses. Hence, developing the right story line 
for future changes in tropical rain bands will be a challenge, one 
that seems unlikely to be met without coordinated e orts using a 
hierarchy of models to work through specific hypotheses motivated 
by more robust evidence of past changes.

What role does convective aggregation play in climate? Satellite 
imagery o ers inexhaustible opportunities to admire the vast vari-
ety of ways in which moist convection is organized: from randomly 
scattered small clouds, to clusters of convective cells forming in 
arcs, bands or whirls on mesoscales, and to large-scale cloud sys-
tems which trace circulations on synoptic and planetary scales.  e 
propensity of convection to aggregate and organize has long been 
related to the variability of weather and to the occurrence of extreme 
rainfall events.  e idea that the organization of moist convection 
might play a role in the dynamics of the climate system is not a new 
one. Insights from field studies dating to the dawn of the satellite 
era have suggested that tropical convective clusters a ect vertical 
profiles of atmospheric heating significantly enough to influence 
circulations on much larger scales37.

Idealized numerical studies have led to renewed interest in the 
subject of organization.  ese studies demonstrate that convection 
can aggregate spontaneously even in the absence of external drivers 
(Fig. 4), leading to the concept of ‘self-aggregation’38.  ese stud-
ies, and observational analyses inspired by them, suggest that the 
degree of aggregation of a given amount of convection influences 
the mean atmospheric state: an atmosphere in which convection 
is more aggregated is drier, clearer, and more efficient at radiat-
ing heat to space38,39. High-resolution cloud-resolving simulations 
further suggest that self-aggregation might increase with temper-
ature40. If so, convective aggregation could feed back on climate 
changes driven by other influences, and may contribute to changes 
in extreme events.

 e tendency of deep convection to organize may also influence 
the general atmospheric circulation. Because convection o en 
organizes in a way that modulates the energetics of the atmosphere, 
the presence of organization on scales of a few tens to several hun-
dreds of kilometres may influence the strength of larger-scale ver-
tical motions and perhaps the structure of the tropical rain belts. 
Another hypothesis is that long-standing unsolved problems such as 
the mechanisms behind the existence and properties of the Madden–
Julian Oscillation (a 30–60-day oscillation of rainfall patterns in 
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Figure 4 | What role does convective aggregation play in climate? In 
models, convective organization can exhibit a random distribution ( a) or 
evolve spontaneously towards an aggregated state (b)42, increasingly so 
with increasing temperature40. c, In observations (relative humidity profiles 
from AIRS satellite measurements), the middle troposphere is drier in an 
atmosphere in which the same amount of precipitation is concentrated in a 
smaller number of convective clusters39. Figure reproduced with permission 
from a,b, ref. 42, AMS; c, ref. 39, AMS.
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Use neural networks to investigate variability in predicted precipitation

28 | Learning Cloud Processes Across Scales Using Machine Learning

S. Shamekh, K. Lamb, Y. Huang, P. Gentine. Implicit Learning of convective organization explains precipitation stochasticity. PNAS, 2023

Is precipitation at the climate grid 
scale predictable from large scale 
variables only?

Or do we also need to include some 
additional information from the sub-
grid-scale? 

If so, what information do we need?



Org. parameter improves prediction of precipitation extremes

29 | Learning Cloud Processes Across Scales Using Machine Learning

S. Shamekh, K. Lamb, Y. Huang, P. Gentine. Implicit Learning of convective organization explains precipitation stochasticity. PNAS, 2023



Org. parameter also improves spatial correlation of precipitation

30 | Learning Cloud Processes Across Scales Using Machine Learning

S. Shamekh, K. Lamb, Y. Huang, P. Gentine. Implicit Learning of convective organization explains precipitation stochasticity. PNAS, 2023

B
Baseline-NN

Org.-NN



Org. parameter is related organization of sub-grid-scale convection

31 | Learning Cloud Processes Across Scales Using Machine Learning

S. Shamekh, K. Lamb, Y. Huang, P. Gentine. Implicit Learning of convective organization explains precipitation stochasticity. PNAS, 2023

More organized convection

Org. parameters can be predicted from their own history

This suggests we don’t need stochastic parameterizations of 
deep convection



What don’t we know about cloud processes? 

32 | Learning Cloud Processes Across Scales Using Machine Learning

We don’t know all 
of the physics

We don’t know how to 
consistently represent 

these processes at 
different scales

1 um

Schneider et al. 2017Morrison et al. 2020, JAMES

We don’t know the 
optimal way to represent 
cloud processes in models

Physics-informed machine learning can 
improve constraints on processes that 
are observationally challenging to 
constrain. This can reduce structural 
uncertainty in our cloud microphysical 
models.

[Lamb and Harrington, submitted 
NeurIPS ML4Physics.]

Reduced-order modeling of the cloud 
microphysical state is a promising 
method for learning simplified bulk 
microphysical models.

It can be used to connect the 
microscopic evolution of the cloud to 
its macroscopic evolution.

[Lamb et al. 2024; Will et al. 2023; 
Sturm et al. in prep.]

We can learn sufficient information 
from the sub-grid-scale to predict 
precipitation at the climate scale using 
machine learning. 

This suggests that we don’t need 
stochastic parameterizations of deep 
convection. 

[Shamekh, Lamb, Yu, Gentine, 2023]



33 | Learning Cloud Processes Across Scales Using Machine Learning

Links to publications

Contact: kl3231@columbia.edu

K.D. Lamb, M. van Lier Walqui, S. Santos, H. Morrison. “Reduced Order Modeling for 
Linearized Representations of Microphysical Process Rates, JAMES.

S. Shamekh, K. Lamb, Y. Huang, P. Gentine. Implicit Learning of convective 
organization explains precipitation stochasticity. PNAS, 2023

J. Will, A. Jenney, K.D. Lamb, M.S. Pritchard, C. Kaul, P.-L. Ma, K. Pressel, J. Shpund, 
M. van Lier-Walqui, S. Mandt, “Understanding and Visualizing Droplet Distributions 
in Simulations of Shallow Clouds”, Neurips ML4Physics Workshop, 2023.

K.D. Lamb & J.Y. Harrington “Discovering How Ice Crystals Grow using Neural ODE’s and 
Symbolic Regression”, submitted.
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