

Data assimilation for Earth system models; challenges and ML remedies

Tomas Landelius and colleagues

Outline

- My hobbies and DA background
- DA in operational NWP
- Machine learning and Variational methods
- Probabilistic DA with generative models
- Sequential Monte Carlo or KF in latent space
- Foundation models and DA
- Liouville, Fokker-Planck and DA on quantum computers?
- ML NWP projects at SMHI

\$ whoami

PhD from LiU (1997)

TD-Gammon

by **Bill Robertie**

https://www.idi.ntnu.no/emner/it3105/materials/rl/cartpole-brownlee-2005.pdf

Reinforcement learning with local LQR

$$r(x_k, y_k) = x_k^T P(x_k) x_k + y^T R(x_k) y_k$$

= $x_k^T \sum \alpha_i(x_k) P_i x_k + y_k^T \sum \alpha_i(x_k) R_i y_k$

DA in operational NWP

3D- and 4D-Var

EnVar, EnKF or hybrid methods

$$\mathbf{x}^{a}(t) = \mathbf{x}^{f}(t) + \mathbf{K}[\mathbf{y}^{o} - \mathcal{H}\mathbf{x}^{f}(t)],$$
$$\mathbf{K} = \mathbf{P}^{f}\mathcal{H}^{T}(\mathcal{H}\mathbf{P}^{f}\mathcal{H}^{T} + \mathbf{R})^{-1},$$
$$\mathbf{x}^{f}(t+1) = \mathcal{M}[\mathbf{x}^{a}(t)].$$

$$\mathbf{P}_{\text{hybrid}} = \boldsymbol{\beta} \mathbf{P}^{s} + (1 - \boldsymbol{\beta}) \mathbf{P}^{f}$$

$$\mathbf{P}^{f} \mathcal{H}^{\mathrm{T}} \equiv \frac{1}{N_{\mathrm{ens}} - 1} \sum_{i=1}^{N_{\mathrm{ens}}} (\mathbf{x}_{i}^{f} - \overline{\mathbf{x}^{f}}) (\mathcal{H} \mathbf{x}_{i}^{f} - \overline{\mathcal{H} \mathbf{x}^{f}})^{\mathrm{T}},$$
$$\mathcal{H} \mathbf{P}^{f} \mathcal{H}^{\mathrm{T}} \equiv \frac{1}{N_{\mathrm{ens}} - 1} \sum_{i=1}^{N_{\mathrm{ens}}} (\mathcal{H} \mathbf{x}_{i}^{f} - \overline{\mathcal{H} \mathbf{x}^{f}}) (\mathcal{H} \mathbf{x}_{i}^{f} - \overline{\mathcal{H} \mathbf{x}^{f}})^{\mathrm{T}},$$

Dealing with O(10^16)

Diagonalize with spectral transform

 $\mathbf{B} = \mathbf{L}^{\mathrm{T}} \boldsymbol{\Sigma}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Sigma} \mathbf{L}$

EnKF with localization

$$\mathbf{K} = [\rho \circ (\mathbf{P}^{f} \mathcal{H}^{\mathrm{T}})][\rho \circ (\mathcal{H} \mathbf{P}^{f} \mathcal{H}^{\mathrm{T}}) + \mathbf{R}]^{-1}$$

DA challenges and remedies?

High dimensional state space

- MLWP models that can generate O(10^6) ensemble members
- Latent space DA

Nonlinear dynamics (clouds, snow, ...)

- Monte-Carlo filtering
- Koopman operators

Non-Gaussian errors

- Transport methods; Diffusion models, Normalizing flows, ...

MLWP for limited area models

Probabilistic Weather Forecasting with Hierarchical GNN (LiU, SMHI, DMI, MS)

Stretched grid and LAM using ECMWF Anemoi (deterministic so far)

Py4Cast (Météo France)

AICON LAM (DWD)

NVIDIA StormCast (US)

NVIDIA CorrDiff downscaling (Taiwan)

YingLong (Academy, China)

MetMamba (PERSKY Tech, China)

... probably more

Performance at km scale?

REGIONAL DATA-DRIVEN WEATHER MODELING WITH A GLOBAL STRETCHED-GRID

Thomas Nils Nipen a*		Håvard Homleid Haugen ^{a*}		Magnus Sikora Ingstad a*		
Even Marius Nordhagen a*		Aram Farhad Shafiq Salihi		ni ^{a*} Pa	a* Paulina Tedesco a*	
Ivar Ambjørn Seierstad a*	Jørn	Kristiansen a	Simon Lang ^b	Mihai Alexe	Jesper Dramsch	
Baudouin Raoult ^b		Gert Mertes b		Matthew Chantry ^b		

Kilometer-Scale Convection Allowing Model Emulation using

Jaideep Pathak^{*1}, Yair Cohen^{*1}, Piyush Garg^{*1}, Peter Harrington^{*2}, Noah Brenowitz¹, Dale Durran^{1,3}, Morteza Mardani¹, Arash Vahdat¹, Shaoming Xu^{†4}, Karthik Kashinath¹, Michael Pritchard¹

Generative Diffusion Modeling

ML and Variational DA

ML model with gradients for 4D-Var

$$J(x_0, \eta) = (x_0 - x_b)^T B^{-1}(x_0 - x_b) + \sum_{i=0}^N (y_i - H(x_i))^T R^{-1}(y_i - H(x_i)) + (\eta - \eta_b)^T Q^{-1}(\eta - \eta_b)$$
$$x_i = M(x_{i-1}) + \eta$$

When M is given by an ML model we can calculate the gradients

and find the optimum $\operatorname{argmin}_{(x_0,\eta)} J(x_0,\eta)$

PREDICTABILITY LIMIT OF THE 2021 PACIFIC NORTHWEST HEATWAVE FROM DEEP-LEARNING SENSITIVITY ANALYSIS

A PREPRINT

P. Trent Vonich *1.2 and ⁹ Gregory J. Hakim ¹¹
 ¹Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
 ²Air Force Institute of Technology, Wright-Patterson AFB, OH, USA

Dynamics with auto differentiation via Pytorch / JAX

https://doi.org/10.5194/egusphere-2022-943 Preprint. Discussion started: 28 September 2022 © Author(s) 2022. CC BY 4.0 License.

Pace v0.1: A Python-based Performance-Portable Implementation of the FV3 Dynamical Core

Johann Dahm^{1,*}, Eddie Davis^{1,*}, Florian Deconinck^{1,*}, Oliver Elbert^{1,*}, Rhea George^{1,*}, Jeremy McGibbon^{1,*}, Tobias Wicky^{1,*}, Elynn Wu^{1,*}, Christopher Kung², Tal Ben-Nun³, Lucas Harris⁴, Linus Groner⁵, and Oliver Fuhrer^{1,6}

*These authors contributed equally to this work and are listed in alphabetical order.

¹Allen Institute of Artificial Intelligence, Seattle, U.S.A.

²Global Modeling and Assimilation Office, NASA, Greenbelt MD, U.S.A.

³Department of Computer Science, ETH Zurich, Zurich, Switzerland

⁴Geophysical Fluid Dynamics Laboratory, NOAA, Princeton NJ, U.S.A.

⁵Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland

⁶Federal Institute of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland

FVM Code adaptation approach : Built on GT4Py + DaCe

Python Domain Specific Language (DSL) for Weather and Climate HPC code generation

GT4Py : GridTools for Python

- + Portable across CPU and GPU (Nvidia, AMD) architectures
- Modularization of the code (dycore, physical packages) and OOP (Object Oriented Programming)
- + Used by ICON (Exclaim), COSMO, and NOAA (FV3GFS)

DaCe : Data Centric Parallel Programming

- Generating high-performance code for parts out of GT4Py
- DaCeML : Merging AI and Physics based models
 - Model inference using ONNX
 - Bindings with Pytorch

Towards a Portable Model for All-scale Predictions (PMAP) : FVM

Loïc Maurin, Fabrice Voitus

CNRM/GMAP/ALGO, Météo-France

April 18th, 2024

B from MLWP ensemble or generative model

Given K samples $\mathcal{E}^K = (v^1, v^2, \cdots, v^K)$ from p(v), we construct an easy-to-sample *conditional* distribution

$$\hat{p}(\boldsymbol{v}) = p(\boldsymbol{v}; \mathcal{E}^K),$$

SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models

Lizao Li Google Research lizaoli@google.com Robert Carver* Google Research carver@google.com

Ignacio Lopez-Gomez* Google Research ilopezgp@google.com

Fei Sha[†] Google Research fsha@google.com John Anderson Google Research janders@google.com

Or model B using SPDEs (So's talk on message passing)

Deformed SPDE models, with an application to spatial modeling of significant wave height

Anders Hildeman, David Bolin, and Igor Rychlik

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Sweden

Probabilistic DA with generative models

Score-based diffusion models

Score based DA (more general challenge from So)

 $\nabla_x \log p(x(t)|y) = \nabla_x \log p(x(t)) + \nabla_x \log p(y|x(t))$ $p(y|x(t)) = \mathcal{N}(y|\mathcal{A}(\hat{x}), \Sigma_y(t))$

> Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales

Peter Manshausen^{1,2}, Yair Cohen¹, Jaideep Pathak¹, Mike Pritchard^{1,3}, Piyush Garg¹, Morteza Mardani¹, Karthik Kashinath¹, Simon Byrne¹, Noah Brenowitz¹

> ¹NVIDIA, Santa Clara, CA, USA ²University of Oxford, Oxford, UK ³University of California Irvine, Irvine, CA, USA

Data assimilation in a latent space

Gaussian errors via transport methods

Combine autoencoder with normflow/diffusion

x(t+1) = f(x(t)) + e(t)

"Optimal" SMC (nonlinear with Gaussian noise)

$$\hat{p}^{N}(x_{t}|y_{1:t}) = \sum_{i=1}^{N} w_{t}^{i} \delta_{x_{t}^{i}}(x_{t})$$
$$\tilde{w}_{t} = p(y_{t}|x_{t-1}^{i}) w_{t-1}^{i}$$

$$x_t = f(x_{t-1}) + v_t$$

$$x_t | x_{t-1} \sim \mathcal{N}(f(x_{t-1}), Q), \quad y_t | x_t \sim \mathcal{N}(Cx_t, R)$$

$$p(y_t|x_{t-1}) = \mathcal{N}(y_t|Cf(x_{t-1}), R + CQC^T)$$

Koopman operator and Kalman filter in latent space

$$\mathbf{x}_{t+1} = F(\mathbf{x}_t)$$
$$\mathcal{K}f(\mathbf{x}_t) \triangleq (f \circ F)(\mathbf{x}_t) = f(\mathbf{x}_{t+1})$$

Neural operators to model infinite dimensional Koopman operator

$$\mathcal{K}f(\mathbf{x}_t) = f(\mathbf{x}_{t+1}) = \sum_{1 \le i \le d} b_i \phi_i(\mathbf{x}_t)$$

Foundation models and DA

Foundation Models

Foundation Models provide task-independent but widely applicable machine learning models for a domain or system (Bommasani, 2021).

Big players are interested

IBM and NASA (Prithvi WxC)

Microsoft (ClimaX and Aurora)

Google (TimesFM, not spatio-temporal)

ECMWF EU project Weather Generator

(not so big) Jua (raised \$16M)

Self supervised learning

Mask out in time (forecast) or modality (assimilation)

Obs only AtmoRep and a new take on data assimilation

DATA DRIVEN WEATHER FORECASTS TRAINED AND INITIALISED DIRECTLY FROM OBSERVATIONS

A PREPRINT

Anthony McNally	Christian Lessig	Peter Lean	Eulalie Boucher	Mihai Alexe				
Ewan Pinnington	Matthew Chantry	Simon Lang	Chris Burrows	Marcin Chrust				
Florian Pinault	Ethel Villeneu	ve Nie	els Bormann	Sean Healy				
European Centre for Medium-Range Weather Forecasts (ECMWF)								

July 23, 2024

Representational DA - end of DA as we know it?

Examples

Liouville, Fokker-Planck and DA on quantum computers?

Model the evolution of a parameterized pdf, e.g. GMM?

p(x(t), w(t)), w(t+1) = f(w(t))

Possible to model both p and f with neural networks? How to train? No need for Monte-Carlo. Can evaluate p(x) directly.

Liouville, Fokker-Planck and Perron-Frobenius

$$\frac{dx(t)}{dt} = f(x(t)) + \eta$$

$$\frac{\partial}{\partial t}\rho(x,t) = -\nabla_x \cdot [f(x)\rho(x,t)] + \frac{D}{2}\nabla_x^2[\rho(x,t)]$$

 $\frac{\partial}{\partial t}\rho(x,t) = H\rho(x,t)$

Modelling the evolution of the probability distribution

Schrödinger

$$rac{\delta}{\delta t}|\Psi
angle=rac{1}{i\hbar}H|\Psi
angle$$

von Neumann

$$rac{\delta
ho}{\delta t} = rac{1}{i \hbar} [H,
ho]$$

Liouville

$$rac{\delta
ho}{\delta t} = -\{
ho, H\}$$

Simulate evolution on quantum computer

Algorithm: Quantum simulation

Inputs: (1) A Hamiltonian $H = \sum_k H_k$ acting on an N-dimensional system, where each H_k acts on a small subsystem of size independent of N, (2) an initial state $|\psi_0\rangle$, of the system at t = 0, (3) a positive, non-zero accuracy δ , and (3) a time t_f at which the evolved state is desired.

Outputs: A state $|\tilde{\psi}(t_f)\rangle$ such that $|\langle \tilde{\psi}(t_f)|e^{-iHt_f}|\psi_0\rangle|^2 \ge 1-\delta$.

Runtime: $O(\text{poly}(1/\delta))$ operations.

Data assimilation with Perron-Frobenius operator

$$\boldsymbol{\rho}(x_k|\boldsymbol{z}_{1:k}) = \frac{\boldsymbol{\rho}(z_k|x_k)\boldsymbol{\rho}(x_k|\boldsymbol{z}_{1:k-1})}{\boldsymbol{\rho}(z_k|\boldsymbol{z}_{1:k-1})}$$

$$\rho(x_k|\mathbf{z}_{1:k-1}) = \int \rho(x_k|x_{k-1}, \mathbf{z}_{1:k-1}) \rho(x_{k-1}|\mathbf{z}_{1:k-1}) \, \mathrm{d}x_{k-1},$$

$$\rho(z_k|\mathbf{z}_{1:k-1}) = \int \rho(z_k|x_k) \rho(x_k|\mathbf{z}_{1:k-1}) \, \mathrm{d}x_k.$$

 $\rho(x_k|z_{1:k-1}) = S(t_k - t_{k-1})\rho(x_{k-1}|z_{1:k-1}).$ S is Perron-Frobenius op.

Approximating with FVM (solve on quantum computer?)

FVM methods preserve continuity i.e. total probability.

Markov operator by satisfying Courant-Friedrichs-Lewy (CFL) condition.

Solve linear equation system, e.g. with HHL algorithm on a quantum computer.

Numerical approximation of the Frobenius-Perron operator using the finite volume method

RICHARD A. NORTON*, Department of Mathematics and Statistics, University of Otago, 730 Cumberland Street, Dunedin, New Zealand, *Corresponding author: richard.norton@otago.ac.nz

AND

COLIN FOX AND MALCOLM E. MORRISON Department of Physics, University of Otago, 730 Cumberland Street, Dunedin, New Zealand.

Time to get back to reality...

Ongoing/upcoming ML NWP projects at SMHI

CAISA towards coupled atmosphere - sea/ice data assimilation (ML obop)

OWGRE improved NWP for renewable energy (MLWP, generative)

Destination Earth Programme

- DE_330 On-demand Extremes Digital Twin (MLWP, generative)
- DE_371 Machine Learning for Earth system Digital Twins (generative, interp)

ECMWF ML pilot project (MLWP, generative)

EU Horizon WeatherGenerator (Foundation models, generative)

