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The domain science perspective:

2Immerzeel et al., 2019
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We only manage snow as well as we measure it.
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We only manage snow as well as we measure it.

How is snow measurement impacted by climate 
change?
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Snow pillow network in the western US 
(excluding Alaska)

Snow Telemetry 
(SNOTEL)
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In what decade will half of measurements be below 10% of the historical 
mean peak snow water equivalent?

Cowherd et al. "Climate change-resilient snowpack estimation in the Western United States.”
Communications Earth & Environment 5.1 (2024): 337.
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Snow distribution 
by decade from 
downscaled 
projections in 
volume units
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Snow distribution 
by decade from 
downscaled 
projections by 
proportion
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𝚺𝚺ajSWEj + e = SWEi

for j in-basin 
SNOTEL 
stations

What we do in the catchments:



“These predictions depend on the presence of 
measurable snowpack, as well as a consistent 
relationship between observed peak snow conditions 
and streamflow.” -Livneh and Badger 2020

14

Current 
management 
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Are snowpack patterns changing faster?
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Are snowpack patterns changing faster?

2008
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Are snowpack patterns changing faster?

2008

SWEI = Snow Water Equivalent Index
Anything below -0.8 is considered snow drought

Cowherd et al., 2023 ERL
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Are snowpack patterns changing faster?
0.97

R2

How similar are 
spatial patterns of 
snowpack to the 
previous 30 years?

0.77
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When snowpack patterns change, can we 
use those measurements to make 
accurate predictions about the rest of the 
basin?
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We only manage snow as well as we measure it.

How is snow measurement impacted by climate change?
A: Climate change makes it harder to use snow 
observations in traditional frameworks
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We only manage snow as well as we measure it.

How is snow measurement impacted by climate change?
A: Climate change makes it harder to use snow 
observations in traditional frameworks

… because those frameworks do not reflect the 
underlying processes that control snow distribution
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A U-Net can be a set of 
convolutions that represents why 
snow is distributed across a region

Cowherd et al., 2024

Presentatörsanteckningar
Presentationsanteckningar
Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) vol. 9351 234–241 (Springer International Publishing, 2015).
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Try again, this time with the U-Net:

Cowherd et al., 2024
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A U-Net can be a set of 
convolutions that represents why 
snow is distributed across a region

Cowherd et al., 2024

Presentatörsanteckningar
Presentationsanteckningar
Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) vol. 9351 234–241 (Springer International Publishing, 2015).
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A U-Net can be a set of 
convolutions that represents why 
snow is distributed across a region

Cowherd et al., 2024

Random 0-10 
day lag

Presentatörsanteckningar
Presentationsanteckningar
Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) vol. 9351 234–241 (Springer International Publishing, 2015).
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U-Net Pros:
1. Works well with only snow pillow input 
2. Multi-scale model for a multi-scale process
3. Robust to climate change
4. Robust to loss of observation
5. As high-resolution as your elevation map
6. Technically data-driven, theoretically physics-

informed

U-Net Cons:
1. Computationally expensive*
2. Extra work to make it explainable
3. Not inherently physical
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Interpreting models: Connecting regional processes to local observations

In real life: 
Regional snow amounts are distributed 
locally by elevation, latitude, topographic 
position, vegetation, albedo variations, local 
clouds, subsequent rain, etc. 

NASA

NASA

https://www.google.com/url?sa=i&url=https%3A%2F%2Fearthobservatory.nasa.gov%2Fimages%2F152673%2Fa-surprisingly-average-year-for-sierra-snowpack&psig=AOvVaw1ARUFVIu1r9sJ-KjbSMptO&ust=1729165786900000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCPDumdjqkokDFQAAAAAdAAAAABAR
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Interpreting models: Connecting regional processes to local observations

In the training data:
Numerically connecting 1-degree scale 
atmospheric states to sub-10-km-scale 
snowpack.
- Some direct representation of processes
- Some parameterization
- Some missing
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Interpreting models: Connecting regional processes to local observations

In the neural network:
We try to learn a set of 
convolutions that represent 
snow processes.
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Machine learning for climate-resilient* measurement 
interpretation

How will 
the climate 
change?

What are we measuring that 
reflects this change?

Rahimi, Stefan, et al. "An overview of the western United States dynamically downscaled 
dataset (WUS-D3)." Geoscientific Model Development 17.6 (2024): 2265-2286.

Presentatörsanteckningar
Presentationsanteckningar
Numerical models are telling us that measurements may be used in ways that are misleading in the future



Summary

Climate change-driven nonstationarity introduces unique challenges in interpreting 
measurements, especially for management
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Machine learning techniques – when appropriately matched to the environmental 
system – can make measurements more useful. Sometimes it is mandatory.
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Summary

Climate change-driven nonstationarity introduces unique challenges in interpreting 
measurements, especially for management

Snowpack is a sentinel for climate-hydrology feedbacks

Machine learning techniques – when appropriately matched to the environmental 
system – can make measurements more useful. Sometimes it is mandatory.

Machine learning is a useful tool for bridging observations and simulations 
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Photo: Jeremy Snyder/LBL EESA

Thank you!

Contact: cowherd@berkeley.edu
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