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Background

Deep learning (DL) weather models can produce
deterministic forecasts with skill comparable to

SOTA physics-based, numerical models. (e.g. Biet
al., 2023, Lam et al., 2023, Chen et al., 2023, Lang et al., 2024)

Many promising probabilistic approaches are on

the horizon (e.g. Kochkov et al., 2024, Price et al., 2024,
Oskarsson et al., 2024)

ECMWEF and NOAA have recently announced their
intention to operationalise data-driven models.

The high-tech race to improve
weather forecasting
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DeepMind Al accurately forecasts
weather — on a desktop computer
i takes less than a mi predi

The machine-learni

Al outperforms conventional weather
forecasting methods for first time

Google DeepMind's model beat world’s leading system in 90% of metrics used and took
only a fraction of the time
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DLWP through time

Advances and prospects of deep learning for
medium-range extreme weather forecasting

Leonardo Olivetti &4 and Gabriele Messori

Abstract

In recent years, deep learning models have rapidly emerged as a stand-alone alternative to physics-based numerical models for
medium-range weather forecasting. Several independent research groups claim to have developed deep learning weather
forecasts that outperform those from state-of-the-art physics-based models, and operational implementation of data-driven
forecasts appears to be drawing near. However, questions remain about the capabilities of deep learning models with respect to
providing robust forecasts of extreme weather. This paper provides an overview of recent developments in the field of deep
learning weather forecasts and scrutinises the challenges that extreme weather events pose to leading deep learning models.
Lastly, it argues for the need to tailor data-driven models to forecast extreme events and proposes a foundational workflow to
develop such models.

How to cite. Olivetti, L. and Messori, G.: Advances and prospects of deep learning for medium-range extreme weather forecasting,
Geosci. Model Dev., 17, 2347-2358, https://doi.org/10.5194/gmd-17-2347-2024, 2024.
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What sparked the recent developments?
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Do global DL models struggle with weather extremes?

Possible issues:
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Possible solutions

Regression p—— Classification
Problem Problem
oble s oble
information do
you want to

gather?

- Ensemble approach for DL weather <
forecasting (e.g. Hu et al., 2023, Price et al., : . '
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Do (deterministic) data-driven models
struggle with weather extremes in practice?
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Do data-driven models beat numerical models in forecasting
weather extremes? A comparison of IFS HRES, Pangu-Weather
and GraphCast

Leonardo Olivetti &4 and Gabriele Messori

Abstract. The last few years have witnessed the emergence of data-driven weather forecast models able to compete and in some
respects outperform physics-based numerical models. However, recent studies question the capability of data-driven models to
provide reliable forecasts of extreme events. Here, we aim to evaluate this claim by comparing the performance of leading data-
driven models in a semi-operational setting, focusing on the prediction of near-surface temperature and windspeed extremes
globally. We find that data-driven models outperform ECMWF's physics-based deterministic model in the average prediction of 10
m windspeed and 2 m temperature, and can also compete with the physics-based model in terms of extremes in most regions.
However, the choice of best model depends strongly on region, type of extreme and sometimes even lead time. Thus, we conclude
that data-driven models may already now be a useful complement to physics-based forecasts in those regions where they display
superior tail performance, but that some challenges still need to be overcome before widespread operational implementation can
take place.

How to cite. Olivetti, L. and Messori, G.: Do data-driven models beat numerical models in forecasting weather extremes? A
comparison of IFS HRES, Pangu-Weather and GraphCast, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1042,
2024.

Initial EGUSphere
preprint

Updated preprint
accepted by GMD
(Paper II in the folder)
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Setup

Deterministic models only, taking IFS HRES
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Can data-driven models compete with physics-based models in
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Main findings

Data-driven models perform best: Data-driven models perform worse:
- for 1-3 day forecasts - for 7-10 day forecasts
- in the Tropics - at higher latitudes
- for temperature extremes - for windspeed extremes
- on the west side of ocean basins - on the east side of ocean-basins and

in the middle of vast land areas
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Some more general takeaways

Global data-driven models produce deterministic forecasts with comparable or

superior skill to IFS HRES in terms of standard performance metrics.

However, they show inconsistencies in forecast quality across regions and lead

times, especially for extremes. This raises questions about fairness and equity.

They also display evident blurring at longer lead times and physical

inconsistencies (see also Bonavita, 2024).
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Bonus: Not only deep learning...
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A Quantile Generalized Additive Approach for Compound
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Abstract

We present an application of quantile generalized additive models (QGAMs) to study
spatially compounding climate extremes, namely extremes that occur (near-)
simultaneously in geographically remote regions. We take as an example wintertime cold
spells in North America and co-occurring wet or windy extremes in Western Europe,
which we collectively term Pan-Atlantic compound extremes. QGAMS are largely novel in
climate science applications and present a number of key advantages over conventional
statistical models of weather extremes. Specifically, they remove the need for a direct
identification and parametrization of the extremes themselves, since they model all
quantiles of the distributions of interest. They thus make use of all information available,
and not only of a small number of extreme values. Moreover, they do not require any a
priori knowledge of the functional relationship between the predictors and the
dependent variable. Here, we use QGAMSs to both characterize the co-occurrence
statistics and investigate the role of possible dynamical drivers of the Pan-Atlantic
compound extremes. We find that cold spells in North America are a useful predictor of
subsequent wet or windy extremes in Western Europe, and that QGAMs can predict
those extremes more accurately than conventional peak-over-threshold models.

Article in JAMES
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Motivation

Sometimes we may want to understand and quantify the effect of a specific driver

on the values in the tail of the distribution of the outcome, i.e. extreme values

Extreme value theory regression requires a number of assumptions, enough sample

size and a clear cut definition of the extremes.

Quantile regression is a natural approach to this question, but assumes linear

relations or requires prior knowledge of the non-linear effects.

L. Olivetti et. al, A quantile generalized additive approach for compound climate extremes: Pan-Atlantic extremes as a case study
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Generalised additive models

Generalised additive models (Hastie and Tibshirani, 1990) are a flexible class of statistical
models requiring very limited knowledge of the relationship between the input and

the output.
g(E(Y)) = Bo + f1(X1) + f2(X2) + -+ fi (Xi)

where E(Y) is the expected value of the outcome, g() is the link function, describing the relationship
between the linear predictor and the expected value of the outcome, B0 is an intercept, and f1(X1) +

f2(X2) + - + fi(Xi) are smooth functions of the predictors.

L. Olivetti et. al, A quantile generalized additive approach for compound climate extremes: Pan-Atlantic extremes as a case study 18




Quantile generalised additive models

Quantile generalised additive models (QGAMS, Fasiolo et al., 2021) extend generalised

additive models to flexibly model a conditional quantile of interest.

Ovix (7) = Tir{Xi) + for (Xa) +: ok fir (Xi)

where QY|X(1) is a conditional quantile of choice of the dependent variable.
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Minimisation problem

Quantile generalised additive models (Fasiolo et al., 2021) minimise a loss function

similar to the pinball loss,

min E {p% (Y — X* )},

where pt* is defined as:

= (T—l)gl(z<0)+)\log(1+eﬁ)

Ptk is the extended log-f loss, which, similarly to the pinball loss, punishes predictions which are further away from the quantile of
interest. 0 > 0 is a scale parameter and A > 0 is a penalty term, meant to prevent excessive functional complexity.
As A approaches 0, prkbecomes equivalent to pr, the pinball loss used in quantile regression (Fasiolo et al.,2021)
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Case study: Pan-Atlantic compound extremes

Several studies e.g. Riboldi et al., 2023, Leeding et al., 2023, Messori et al., 2016
have investigated the relationship between wintertime cold spells

in North America and wet-windy extremes in Europe.

The relationship between the two is likely to be strong, but highly

non-linear and hard to quantify.

L. Olivetti et. al, A quantile generalized additive approach for compound climate extremes: Pan-Atlantic extremes as a case study
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We aim to:

- quantify the association between t2m in North America and wet-windy
extremes in Western Europe

- evaluate its significance

- show that QGAMs as a whole behave “reasonably”’, i.e. can estimate
extreme quantiles with similar skill to conventional models and become

progressively better as more information is added to the models.

L. Olivetti et. al, A quantile generalized additive approach for compound climate extremes: Pan-Atlantic extremes as a case study
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Setup

We build three models of increasing complexity to estimate extreme quantiles of

daily 10m windspeed and accumulated precipitation in South-Western Europe:

A basic model, making predictions as a function of time, latitude,

longitude, and a training-set based seasonal climatology, only.
- Acold spell model, where we include lagged t2m in North America

- A cold spell and jet stream model, where we also include proxies for the

location and strength of the Polar jet stream

L. Olivetti et. al, A quantile generalized additive approach for compound climate extremes: Pan-Atlantic extremes as a case study
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QGAM performance: Daily 10m Wind Speed
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Partial effect

Partial effect
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Conclusions

Quantile general additive models (QGAMs) can model the relationship

between compound climate extremes flexibly and robustly

North American cold spells are significantly associated with wet and

windy extremes in Western Europe

North American cold spells hold some predictive skill for wet or windy

extremes in Western Europe, even when accounting for confounders
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