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Challenging problems in environment & sustainability

• Challenging (computational) problems in
environment and sustainability

• Modelling and forecasting of very complex,
high-dimensional processes (e.g., weather, oceans)

• “System of systems”, e.g., ecosystems, nuclear
fusion

• Data problems: large, scarce, multimodal

• Solving some of these problems can have a positive
effect on people and planet

• Early-warning systems (e.g., natural disasters,
tipping points)

• Clean energy (e.g., nuclear fusion)
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Scientific simulation as shared computational backbone

• Seemingly disjoint areas, such as nuclear fusion, weather, and ocean
modelling, share a computational backbone

• AI as transformative technology within this backbone, e.g., to improve and
accelerate scientific simulation 2



Typical NWP workflow (amended from (Schultz et al. 2021))

Prediction/Forecasting

End-user application

Data assimilation

Initial condition

Input

Meteorological 
observations

• Traditionally, numerical simulations and
solvers are key for NWP

• Progress has been slow with this approach
• AI can be used to significantly accelerate

progress (better and faster predictions)
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Roadmap

1. Data Assimilation

2. Modelling and Prediction

3. Conclusion

4. What’s next?
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Data Assimilation



ML for data assimilation

Prediction/Forecasting

End-user application

Data assimilation

Initial condition

Input

Meteorological 
observations
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Data assimilation

• Global atmospheric state
(e.g., on lat/lon grid)

• Some sparse, noisy
observations (e.g., satellite,
ground sensors, weather
balloons)

• Objective: Infer an updated
atmospheric state given
observations

• Spatio-temporal inference
problem
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Formulation

• Goal: Update an (unobserved) atmospheric state by incorporating sparse,
noisy observations

• Describe global (unknown) atmospheric state as a latent variable Z(t)
• Typically, Z(t) evolves in space and time according to a (stochastic) partial

differential equation ((S)PDE)
• Observations Yt at some locations
• Bayesian inference problem:

p(Zt|Yt)

updated
weather state

∝ p(Zt)

current
weather state

p(Yt|Zt)

observation
model

• Idea: use some form of Kalman filter to solve it
• Challenge: State space is huge (O(109)) Compute/memory issues
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Gaussian Markov random fields

• Exploit grid structure (Lindgren et al., 2011)

• Spatially discretise SPDE (at grid nodes)
• Discretised SPDE is a Gaussian Markov random

field (GMRF)
• Efficient solvers exist, e.g., INLA (Rue et al., 2009)
• Get Gaussian posterior on marginals of global

weather state
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Challenges

• GMRF approach works only for linear SPDEs
• Scalablity: GMRF approach does not scale beyond 106 many state

dimensions
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Iterated INLA for data assimilation
(Anderka et al.; UAI 2024)

Goal: Extend GMRF approach to nonlinear SPDEs

Key idea

1. Iteratively linearise the dynamical model (SPDE) in time
2. Discretise linearised SPDE in space
3. Use INLA for inference in linearised model
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Results

• Left: Ground truth
• Centre: Ensemble Kalman smoother
• Right: Iterated INLA
• Significant improvement over commonly-used approaches for DA
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Scalable data assimilation via message passing
(Key, Takao, Giles, Deisenroth; Climate Informatics 2024)

Key idea
• Exploit graph structure of problem for iteratively

propagating information to local neighbours via message
passing (loopy belief propagation)

• Long-distance information shared via multi-resolution grids
• Light-weight computations that can be run in parallel
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Result: High-resolution surface temperature

• Ground truth: UK Met Office Unified Model at ≈ 10 km resolution
• 2, 500 × 2, 500 grid 3.75M grid points
• 8% of grid has observations (satellite tracks; black lines in figure)
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Result: High-resolution surface temperature (2)

• Message passing significantly outperforms 3D-Var
• Compute time approx. 2 min
• GMRF not applicable
• Overall: Promising paradigm for scalable data assimilation
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Re-cap

• Sheer dimensionality of data assimilation causes
issues

• GMRF exploits graph structure of the problem, but
only works for linear SPDEs and is limited by the
size of the graph

• Generalise to nonlinear SPDEs by linearising the
nonlinear dynamics

• Scale to larger graphs by using a message-passing
paradigm Prediction/Forecasting

End-user application

Data assimilation

Initial condition

Input

Meteorological 
observations
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Modelling and Prediction



ML for data modelling and prediction

Prediction/Forecasting

End-user application

Data assimilation

Initial condition

Input

Meteorological 
observations
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Data-driven models for forecasting

What do we (ideally) want from data-driven forecasting models?
(Focus on regression)

• Flexibility: can model a huge class of functions
• Uncertainty quantification: Equip predictions with meaningful error bars
• Incorporation of prior information
• Scalability to large datasets
• Interpretability
• ...

18
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Gaussian processes for regression

• Flexible (non-parametric) model
• Error bars
• Opportunities to incorporate prior knowledge
• Reasonably interpretable
• Excellent choice for small, low-dimensional datasets 19



Example: Learning to control a robot
(Deisenroth & Rasmussen; ICML 2011)

• Swing up and balance a freely swinging pendulum on a cart
• No knowledge about nonlinear dynamics Learn from scratch

• Unprecedented learning speed compared to state of the art

20



Example: Learning to control a robot
(Deisenroth & Rasmussen; ICML 2011)
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Can we use Gaussian processes for environmental modelling and forecasting?

21



Incorporating underlying geometry

• When modelling global weather, we can build the underlying geometry into
a Gaussian process

• We then make predictions on a sphere (Earth)
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Gausian processes on Riemannian manifolds
(Hutchinson et al.; NeurIPS 2021)

Goal:
• Define Gaussian vector fields on Riemannian manifolds

to make vector-valued predictions that themselves lie on
a manifold

• Predictions independent of local coordinate system

Key idea: Projected kernels
1. Embed manifold in higher-dimensional Euclidean space
2. Construct vector-valued GP in Euclidean space
3. Project GP onto tangent space of manifold 23



Construction of the projected process

Scalar processes Embedded process Projected process

• Three identical scalar GPs (left) are placed on manifold
• Construct vector-valued GP in ambient Euclidean space (centre)
• Project onto tangent space of sphere (right) 24



Results: Wind measurements along Aeolus satellite trajectory

• Top: Standard Euclidean GP trained on wind measurements in R3

• Bottom: GP with manifold kernel on S2 25



Limits of Gaussian processes

• So far, datasets have been fairly small and were of low dimensionality
• Datasets in environment and sustainability are typically not small and low

dimensional; they can be vast and high dimensional
Standard Gaussian processes cannot be applied

Challenges in environmental modelling

1. Scalability (many data points)
2. High dimensionality
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Actually sparse variational Gaussian processes
(Cunningham et al.; AISTATS 2023)

Key idea
Project GP onto a set of compactly supported B-spline basis

Benefits

• Admit use of sparse linear algebra (speed up matrix operations; small
memory footprint)

• Allows for use of a large basis / inducing variables (≫ 10, 000)
• Efficiently model fast-varying spatial phenomena with short length scales
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Result

(a) Ground truth. (b) Predictive mean. (c) Predictive standard devia-
tion.

• Real-world data from the eNATL60 ocean model over the Gulfstream at
1/60◦ grid resolution (2M training data points; 10,000 basis functions;
training in < 2 min)

• Predict at a regular grid with 1/12◦ resolution
• Predictive mean closely matches ground truth
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Challenges in environmental modelling

1. Scalability (many data points)
2. High dimensionality
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Encode-process-decode

General approach:

1. Find lower-dimensional embedding of high-dimensional data
2. Work with embedded data (e.g., forecasting)
3. Project back into original data space
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Probabilistic weather forecasting with hierarchical GNNs
(Oskarsson et al.; arXiv:2406.04759)

• Graph-based ensemble via combination of latent-variable model with
hierarchical graph neural network (GNN)

• Distribution modelled in lower-dimensional latent space
• Sampled forecasts are spatially coherent

p(Xt|Xt−1,Xt−2, Ft)

predict in data space

=

∫
p(Zt|Xt−1,Xt−2, Ft)

predict in latent space

p(Xt|Zt,Xt−1,Xt−2, Ft)

map back to data space

dZt
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Example forecasts (10 days ahead)
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• Example ensemble forecast for specific humidity at 700 hPa (q700)
• Calibrate error bars via conformal prediction (Gopakumar et al.;

arXiv:2408.09881) 32



Re-cap

Modelling and forecasting are challenging problems in environmental systems

• Gaussian processes good in low dimensions
• Flexible (non-parametric)
• Incorporation of underlying geometric properties
• Error bars
• Scale GPs to large datasets

• Different approach for high-dimensional problems
• Hierarchical graph neural networks + latent

variables
• Conformal prediction Meaningful error bars

Prediction/Forecasting

End-user application

Data assimilation

Initial condition

Input

Meteorological 
observations
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Conclusion



Summary

• Challenging problems in environmental modelling,
but scientific simulation is a shared computational
backbone where AI can play a transformative role

Prediction/Forecasting

End-user application

Data assimilation

Initial condition

Input

Meteorological 
observations

• AI for data assimilation and forecasting within the traditional NWP workflow 34



What’s next?



End-to-end forecasts

35



End-to-end forecasts

• End-to-end forecasting: Go straight from
observations to forecasts

• AtmoRep (Lessig et al., 2023)
• Aardvark (Vaughan et al., 2024)
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Weather generator

• European effort, coordinated by ECMWF
• Multi-task end-to-end forecasting: from nowcasting

to climate
• Multi-modal data (re-analysis, simulation,

observations)
• Single model
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Physics-infused machine learning

• Purely data-driven forecasting systems has shown promise
• Incorporation of domain knowledge (e.g., physics, geometry) into

data-driven models should improve things (?)
• Less data hungry, faster training
• Better extrapolation (e.g., data-sparse regions, climate)
• More interpretable Easier to operationalize
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