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Mesh networks

Recoding enables an Adaptive, Dynamic Cloud 
s r

A. Cohen, D. Malak, V. B. Bracha and M. Médard, IEEE Transactions on Communications, 2020

Coded adaptive feedback can outperform 
hop by hop or end-to-end coded approaches
§ Delay sensitivity d(p)

§ p = 1: only throughput matters
§ p = ∞: only in order delay matters
§ Other sensitivities for other applications



Using Feedback

S. Teerapittayanon, Fouli, K., Médard, M., Montpetit, M.-J., Shi, X., Seskar, I., and Gosain, A., MACOM 2012.
File transfer delay

Throughput

Turn off HARQ and traditional ARQ, turn on RLNC
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Error Correction
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Hard
Detection

Soft
Detection

• When the data is read back or received decoding occurs
• Soft information improves accuracy but typically with extra complexity

• To enable recovery of the original data, all systems use error-correcting codes
• Input of k bits is turned into n bits, resulting in n-k redundant bits
• The rate of the code is R=k/n, as there are k bits of information per each n bits



Existing Paradigm: Co-design of Codes & Decoders 

• E.g: 5G technology mandates two 
types of codes be used.

Code
CRC
RM
BCH
CA-Polar
RLC

Decoder
Error Detection Only
Majority Logic
Berlekamp-Massey
CA-SCL
No decoder

LDPC – 1960s
CA-Polar – 2010s

• Distinct software or hardware algorithm required to 
decode each code type.

• Requires standardization to ensure all devices 
have a decoder for the code being used.
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Universal Decoding

CRC
RM
BCH
CA-Polar
RLC

Error Detection Only
Majority Logic
Berlekamp-Massey
CA-SCL
No decoder

GRAND™

GRAND™ enable optimally accurate decoding of an enormous class of codes in an algorithm 
proven to be efficient implementation in software or hardware.

Guessing Random 
Additive Noise Decoding

granddecoder.mit.edu



Guessing Random Additive Noise Decoding

Channel output is input plus noise

Standard decoder: identify Xn using structure of code-book
GRAND: identify Nn using structure of the noise

5G Control Channel Codes Decoding

Inputs: code-book membership test, Y
n

Output: c
⇤,n, Q

d  0, Q  0.
while d = 0 do

z
n  next most likely noise e↵ect

Q  Q + 1
if Y

n  z
n is in the code-book then

c
⇤,n  Y

n  z
n

d  1
return c

⇤,n, Q

end if

end while

• GRAND – hard detection
• ORBGRAND – relative reliability soft info
• Other variants

GRAND Duffy, Li & Medard, IEEE ISIT, 18; IEEE Trans Inf Theory, 19. GRAND-MO An, Medard, Duffy, IEEE Trans Commun, 22. 
SRGRAND Duffy & Medard, IEEE ISIT, 19;  Duffy, Medard & An, IEEE Trans Commun, 21. ORBGRAND Duffy, Médard, An, IEEE Trans. 
Signal Proc., 21. SGRAND Solomon, Duffy & Medard, IEEE ICC, 20.
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Decoding with Soft Information

01100010 11100011
Soft Detection

Duffy, An, Médard, IEEE Trans. Sig. Process., 23. Duffy, Médard, An, IEEE Trans. 
Commun., 21. Duffy, IEEE ICASSP, 21. Solomon, Duffy, Médard, IEEE ICC, 20.
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V. GETTING THE RIGHT ANSWER IF THE CHANNEL HAD SOFT INFORMATION

An n-bit binary block code-word c
n 2 {0, 1}n, is transmitted and impacted by independent continuous additive noise

resulting in a random received signal Y n, from which the hard decision sequence y
n is obtained. With the log-likelihood ratio

defined as

LLR(Yi) = log
P(ci = 1, Yi)

P(ci = 0, Yi)
,

the hard detection yi is obtained from Yi by yi = (sign(LLR(Yi)) + 1)/2. Moreover, we have that |LLR(Yi)| = � log(P(yi 6=
ci, Yi)/P(yi = ci, Yi)), where |LLR(Yi)| is referred to as the reliability of yi. If the channel is experiencing Additive White
Gaussian Noise (AWGN) with variance �

2, then

|LLR(Yi)| =
1

2�2

�
(Yi + 1)2 � (Yi � 1)2

�
=

2

�2
|Yi| / |Yi|. (6)

for i = 1, 2, . . . , n.
While there are many ways to quantitatively capture the soft information in Y

n, for ORBGRAND it is instructive to represent
it as a sequence, Bn = (B1, B2, . . . , Bn), where Bi is the a posteriori probability that the hard decision bit yi is in error,
which can be written as

Bi = P(yi 6= ci|Yi) =
P(yi 6= ci, Yi)

P(Yi)
=

P(yi 6= ci, Yi)/P(yi = ci, Yi)

1 + P(yi 6= ci, Yi)/P (yi = ci, Yi)
,

and so Bi can be expressed in terms of the bit reliabilities as

Bi =
e
�|LLR(Yi)|

1 + e�|LLR(Yi)|
, (7)

where Bi monotonically decreasing with |LLR(Yi)|. From B
n we can evaluate the a posteriori probability of a noise-effect

sequence z
n by

P(Nn = z
n) =

Y

i:zi=0

(1�Bi)
Y

i:zi=1

Bi =
nY

i=1

(1�Bi)
Y

i:zi=1

Bi

1�Bi

/
Y

i:zi=1

Bi

1�Bi

= e
�

P
i:zi=1 |LLR(Yi)|

.

Therefore, the likelihood of a putative noise effect sequence z
n is determined by the sum of the reliability of its flipped bits,

Rel(zn) =
P

i:zi=1 |LLR(Yi)|, which can be viewed as its Hamming weight weighted by the reliability of those flipped bits.
To rank order putative noise sequences, zn, by likelihood, it is, therefore, sufficient to rank order them by increasing reliability
Rel(zn).

If no soft information was available, defining |LLR(Yi)| to be an arbitrary positive constant, Rel(zn) is proportional to the
Hamming Weight of zn, wH(zn). In this case, putative noise sequences would be rank ordered in increasing Hamming weight,
as used in the original hard detection GRAND for a binary symmetric channel.

The simplest statistical model, �n, for the reliability curve is a line through the origin with slope � > 0,

�i = � i, for i = 1, 2, . . . , n. (8)

|LLRi| ⇡ Li = � i, for i = 1, 2, . . . , n.

P(Nn = z
n) / e

�
P

i:zi=1 |LLR(Yi)|
.

X

i:zi=1

|LLR(Yi)| ⇡
X

i:zi=1

Li = �

nX

i=1

izi /
nX

i=1

izi = wL(z
n).

Define the Logistic Weight of the binary sequence z
n by

wL(z
n) =

nX

i=1

izi, (9)

which is the sum of the positions that are flipped in z
n. For the zero-intercept linear model,

Rel(zn) ⇡
X

i:zi=1

�i = �wL(z
n). (10)

Thus the likelihoods of putative noise effect sequences are ordered in increasing logistic weight and hence the value of � need
not be estimated.

Ordered Reliability Bits - ORB



ORBGRAND in Hardware
Riaz, Yasar, Ercan, An, Ngo, Galligan, Médard, Duffy, Yazicigil, IEEE ISSCC, 23.

3.4x
4.6x

17x

144x

18x

Chip implemented in TSMC 
40 nm CMOS operating at 90 
MHz clock frequency using a 
1 V nominal power supply 



Does Performance Depend on Code? 
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Fig. 4: Performance of (26, 32) codes under ORBGRAND.
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Fig. 5: Performance of (57, 64) codes under ORBGRAND.

Fig. 6. We observe that, under OSD and BMA-OSD, the dis-
tributions are concentrated around the mean FER. Moreover,
when increasing the blocklength from n = 32 to n = 64,
the distributions become more concentrated, as intuitively
expected. However, under ORBGRAND the distributions are
multimodal and there is a non-negligible probability of picking
a code that is far away from the smallest mode.

V. CONCLUSIONS

In this work we explored some methods for the construction
of short unstructured codes for use with universal decoders,
such as OSD and GRAND. Our simulation results indicate
that a simple construction that generates a number of random
codes and selects the one with the lowest FER at a given design
SNR results in similar performance to more sophisticated and
complex methods, such as GAs and RL. Our results also
indicate that choosing any random code may not be ideal in
the case of GRAND-based decoders.
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Confident Decoding – Forney 1968 

Forney, IEEE Trans. Info. Theory, 68.

Can you determine the likelihood a decoding is correct? 

For Forney’s approach, need at least two decodings for approximation.

Galligan, Medard, Duffy, CISS, 23
Galligan, Yuan, Medard, Duffy, Arxiv 2023
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For GRAND:
and

P

⇣
W

L�1
(1) = q

L�1
1 ,W(L) � qL

⌘
= (1� �)qL�L

�
L�1

.

Using those expressions, simplifying eq. (8) gives eq. (10).

To a slightly higher precision, one can use the following
approximation, which accounts for eliminated queries and is
most succinctly expressed for a single-codeword decoding.

Corollary 3 (Approximate a posteriori likelihood of an incor-
rect GRAND decoding for a uniformly random codebook). If
W(1) is assumed to be geometrically distributed with proba-
bility of success (2k � 1)/(2n � q) after q � 1 failed queries,
eq. (8) describing the a posteriori probability that a decoding
found after q1 queries is incorrect can be approximated as

0

@1�
q1X

j=1

pNn|Rn(zn,j |rn)

1

A 2k � 1

2n � q1

pNn|Rn(zn,q1 |rn) +

0

@1�
q1X

j=1

pNn|Rn(zn,j |rn)

1

A 2k � 1

2n � q1

.

(11)

Proof. Under the conditions of the corollary,

P (W(1) = q1) =
q1�1Y

i=1

✓
1� 2k � 1

2n � i

◆
2k � 1

2n � q1
,

from which eq. (8) simplifies to (11).

Taken together, these theorems and corollaries provide a
simple accounting methodology from which GRAND can
provide a posterior distribution on the correctness of each
element of a list-decoding, including the possibility of a list of
size L = 1, as well as the likelihood that the correct decoding
has not been found. In particular, it suffices to:

1) know the code-dimensions, (n, k);
2) record the likelihood of each noise-effect sequence

that leads to a decoding, pNn|Rn(zn,qi |rn) for i 2
{1, . . . , L} for a list of size L;

3) and record the cumulative probability of all
queries made until that final element was found,PqL

j=1 pNn|Rn(zn,j |rn).
Using these, the a posteriori probabilities per decoding block,
and the log-likelihood ratio per bit can be computed.

VI. SOFT-OUTPUT ACCURACY

Armed with the approximate a posteriori probabilities in eq.
(10) and (11), we investigate their precision for random and
structured codebooks. Fig. 2 depicts the accuracy of formula
(11) when used for random linear codes RLC(64, 56). For
context, Forney’s approximation with a list size L 2 {2, 4}
is also shown. Transmissions were simulated using a additive
white Gaussian noise (AWGN) channel with binary phase-
shift keying (BPSK) modulation. ORBGRAND [24] was used
for soft-input decoding, which produced decoding lists of the
appropriate size for both soft-output methods.
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Fig. 2: The accuracy of soft-output when ORBGRAND is used
to decode RLC(64, 57). The predicted block error probability
is compared to the measured BLER. If the soft-output was
perfectly accurate, then the data would follow the line x = y.

Fig. 2 plots the empirical BLER given the predicted block
error probability evaluated using eq. (11). If the estimate was
precise, then the plot would follow the line x = y, as the
predicted error probability and the bler! (bler!) would match.
As RLCs are linear, codewords are not exactly distributed
uniformly in the guesswork order, but the formula provides
an accurate estimate. In contrast, Forney’s approximation
significantly underestimates the error probability, degrades in
noisier channels, and has an estimate of no greater than 1/L.
Moreover, GRAND’s prediction has been made having only
identified a single potential decoding.

Fig. 3 is similar to Fig. 2 except for lists, where a list error
occurs when the transmitted codeword is not in the decoding
list. The measured list-BLER is plotted against the predicted
list-BLER in eq. (10). The prediction can be seen to be robust
to channel condition, list size, and code structure.

VII. LONG CODE PERFORMANCE EVALUATION

The results in Fig. 1 show that Elias’s original product
code, which is known to have poor minimum distance, can
give as good or better BLER performance as a 5G LDPC
code when decoded with the new GRAND soft-output. We
first demonstrate that this holds consistently for other code
dimensions.

Fig. 4 shows a comparison for (256, 121) LDPC and a
(16, 11)2 eBCH product code, where it can be seen that the
product code outperforms the LDPC in terms of both BLER
and BER. The lower plot shows the average number of code-
book queries performed by 1-line ORBGRAND per product
code decoding. Based on an in silicon realization [30] of
the landslide algorithm [24], this number of queries would
result in energy efficient decoding in hardware. Moreover,
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Fig. 3: The accuracy of the predicted list error probability
compared to the measured list-BLER. Parameters as in Fig.
2, but with varying the channel noise, list size L 2 {2, 4}, and
the code types of RLC(64, 57) and eBCH(64, 57).

during product code decoding, at each iteration all rows can
be decoded in parallel, resulting in incredibly low latency. Fig.
5 shows a similar comparison for the (1024, 441) LDPC code
from the 5G new radio (NR) standard and a (32, 21)2 eBCH
product code, resulting in the same conclusion.

As GRAND algorithms can decode any moderate redun-
dancy code, it is not confined to creating product codes from
eBCH components. Fig. 6 provides a further example of this
where a (625, 225) LDPC code is compared with a (25, 15)2

product code that uses a simple cyclic redundancy check
(CRC) code as its component code while Fig. 7 provides a
comparison for (484, 169) = (22, 13)2 equivalents. Again,
these product codes outperform same-dimension LDPC codes
with fewer iterations and minimal complexity.

Thus, when decoded in an iterative fashion with ORB-
GRAND and the new soft-output, Elias’s product codes, which
predate LDPC codes, offer comparable or better performance
than the LDPC codes selected for 5G NR.

While the LDPC codes used in 5G New Radio trade
waterfall sharpness for an error floor, variants of product
codes called GLDPC codes have been developed that have
better minimum distance and much lower error floors. As with
product codes, GLDPC code components can also be decoded
in parallel, which would result in low-latency decoding. Fig. 8
provides results for one such example when a GLDPC devel-
oped in [39] is decoded with 1-line ORBGRAND and the soft-
output described here. The GLDPC results in a significantly
steeper waterfall BLER curve with a significantly lower error
floor, at the expense of slightly degraded performance at lower
SNR, offering more design possibilities for future systems.
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Fig. 4: Decoding performance of the (256, 121) 5G LDPC with
maximum number of iterations Imax = 50 as compared to
a (256, 251) = (16, 11)2 eBCH product code decoded using
1line-ORBGRAND for list decoding with list size L = 4,
↵ = 0.5 and maximum iteration number Imax = 20. Upper
panel: BLER and BER performance. Lower panel: average
number of queries until a decoding with GRAND.

VIII. DISCUSSION

Efficient soft-detection decoding of powerful long, low-rate
error correction codes has long since been a core objective
in information theory. The successful approach has been to
create long codes by appropriate concatenation of component
codes that can provide soft-output from their soft-input in an
iterative fashion. Turbo codes use powerful component codes
but approximate soft output while LDPC codes use weak
component codes but accurate soft-output.

Here we demonstrate that GRAND can bridge this gap by

Only GRAND
provides this 
reliability
estimate



Reliability - Product Codes to Outperform 5G LDPCs

Hager, Pfister, IEEE Trans. Commun., 18. Justesen IEEE Trans. Commun., 11. Al-Dweik, Sharif, IEEE Trans. Commun., 09. P. Elias, Trans. IRE Prof. Group Inf. Theory, 54 

Long, low-rate codes are made 
from short, high-rate codes.
• Single component decoder 

for reduced footprint.
• Allow parallelization with 

multiple decoders for 
reduced latency.

Product Codes
Product codes are long, low-rate codes made out of short,
high-rate codes78910. Arrange the message as an array. Encode the
rows using a systematic code. Encode the columns using another,
possibly distinct, systematic code.

[n, k ,R] = [52, 32, 0.62] = [25, 9, 0.36]

7
P. Elias, Trans. IRE Prof. Group Inf. Theory, 54.

8
Al-Dweik, Sharif, IEEE Trans. Commun., 09

9
Justesen IEEE Trans. Commun., 11

10
Häger, Pfister, IEEE Trans. Commun., 18
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GRAND as 
component decoder

Galligan, Médard, Duffy, CISS 2023
Riaz, Médard, Duffy, Yazicigil, COMSNETS 2022
Galligan, Solomon, Riaz, Médard, Yazicigil, Duffy, Globecom 2021
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Figure 13: (25, 15)2 CRC 0x2b9 product codes, Turbo 1line-
ORBGRAND with list size L and maximum iteration number
Imax.
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Figure 14: (22, 13)2 CRC 0x185 product codes, Turbo 1line-
ORBGRAND with list size L and maximum iteration number
Imax.
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Revisiting Old Codes with GRAND
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Fig. 7: Decoding performance of the (484, 169) 5G LDPC with
maximum number of iterations Imax = 50 as compared to a
(484, 169) = (22, 13)2 CRC 0x185 product code decoded
using 1line-ORBGRAND for list decoding with a maximum
list size Lmax = 4, , where lists are terminated if they have
probability at least p

⇤ = 0.999 of containing the correct
decoding according to the soft-output, ↵ = 0.5 and maximum
iteration number Imax = 20. Upper panel: BLER and BER
performance. Lower panel: average number of queries until a
decoding with GRAND.
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Fig. 8: Decoding performance of the (1024, 640) 5G LDPC
with Imax = 50 as compared to a (1024, 640) GLDPC code [39]
with eBCH nodes, 1line-ORBGRAND with maximum list size
Lmax = 4, where lists are terminated if they have probability at
least p⇤ = 0.999 of containing the correct decoding according
to the soft-output, and maximum iteration number Imax = 20.
Upper panel: BLER performance. Lower panel: average number
of queries until a decoding with GRAND.

area versus latency in hardware by determining the number of
ORBGRAND circuits in a chip. Moreover, the product-code-
like design is highly modular and can be readily adapted to
distinct lengths and rates without resorting to puncturing or
significantly changing the architecture of the decoder.

While we demonstrate the approach with product and
GLDPC codes, a much broad palette of more sophisticated
and ultimately more powerful long, low-rate codes now be-
comes practical for soft detection decoding, offering a viable
alternative to LDPC codes as well as additional possibilities.
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Multiple Access

§ Consider multiple access as a larger constellation
§ In that constellation, users share the symbols
§ A short (8,4) CRC can give each user half the bandwidth
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Fig. 5: Comparison of the SERs of User 1 in a MAC with two
users with 4QAM modulation and a user power ratio of 0dB
when no coding is used versus when an (8,4) CRC is used.

improves the JEP across all users when the users have a power
ratio of 0dB. The x-axis is in terms of the sum of the Eb/N0

across both users, as the JEP is an error metric that relates to all
users. In the uncoded scenario, the jointly optimal ML detector
very slightly outperforms the individually optimal ML detector
due to it minimizing the JEP, but the two detectors still perform
very similarly. However, in the coded scenario, it can be seen
that even with a short CRC code, both the individual GRAND
and GRAND-AM methods result in significant improvements
in the JEP, especially as the Eb/N0 increases. GRAND-AM
further outperforms individual GRAND by ⇠ 4dB as the total
user power grows large.

This is due to the differences between the operation of the
individual GRAND method versus the GRAND-AM method.
For the individual GRAND method, the individually optimal
ML detector is used to generate separate likelihoods for each
user. Then, GRAND algorithm operates separately for each
user, and outputs the most likely codewords for each user.
However, when combining the symbols associated with these
codewords, similar to (1), but without the noise, the scenario
may occur where the distance between the combination of the
corrected individually most likely symbols and the received
combination of symbols transmitted is large. In contrast,
when using GRAND-AM, the error correction is done jointly.
Noise sequences for the macrosymbols are queried, and the
macrosymbols are swapped until a sequence of macrosymbols
that satisfies all users’ codebooks is generated. Then, the
macrosymbols are decomposed to the individual symbols
corresponding to each user. Unlike the case with the individual
GRAND method, GRAND-AM will minimize the distance
between the corrected macrosymbols and the received com-
bination of symbols.

The better performance of GRAND-AM can also be ob-
served in terms of the SER of a single user, as seen in Fig. 5.
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Fig. 6: Comparison of the SERs of User 1 in a MAC with two
users with 4QAM modulation and a user power ratio of 10dB
when no coding is used versus when an (8,4) CRC is used.

In this figure, the x-axis is defined as the Eb/N0 of user 1, as
the SER is an error metric that relates to a single user. Similar
to the JEP in the uncoded scenario, the SERs when using
the individually optimal ML detector and the jointly optimal
ML detector are very similar, the individually optimal ML
detector slightly outperforms the jointly optimal ML detector.
However, when taking error correction into account, it can
be seen that the joint method with GRAND-AM consistently
outperforms the individual method with individual GRAND,
and at larger Eb/N0 ratios, there is a ⇠ 4dB gain when
using GRAND-AM. GRAND-AM outperforms the individual
GRAND method when it comes to removing the effects of the
MAC from each user.

To show the GRAND-AM’s robustness in different scenar-
ios, the case where the user power ratio is 10dB is considered
in Fig. 6. While the performance of the individual GRAND
method and GRAND-AM are similar when the Eb/N0 ratio is
low, as the Eb/N0 ratio increases, GRAND-AM outperforms
the individual GRAND method, similar to the results shown in
Fig. 5. The similar performance at lower Eb/N0 is due to user
2 being lower power, and having a power less than the power
of the AWGN in the channel at low Eb/N0 values. In this
scenario, the benefits of joint detection and error correction
is less noticeable, though the joint method with GRAND-AM
still outperforms the individual method.

GRAND algorithms are known for being able to decode
and correct any error correcting code, which naturally leads
to the compatibility of different codes with the individual
GRAND method and GRAND-AM. This property of GRAND
is exhibited in Fig. 7, which compares the performance of
GRAND-AM and the individual GRAND method when a
(7, 4) Hamming code is used. With a Hamming code instead
of a CRC code, GRAND-AM still outperforms the individual
GRAND method, indicating that the joint method is consistent



Interleaving 

Collect data as rows:
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Transmit as columns:

IEEE matrix interleaver
Chen & Leith, IEEE ICC 2015
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Interleaving can only increase noise entropy
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What Happens if We Don’t Interleave?
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What code-rate can we use to meet 
the interleaved benchmark 
of BLER of 10-3 at 3.7dB 
achieved by CA-SCL
with a rate ½ [128,64] code?

Duffy, Grundei, Médard, arXiv, 2023, to appear Globecom 2023
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Optimized Modulation 
We use length as a check and GRAND to manage insertions/ 
deletions in variable length codes 

GRAND-assisted Optimal Modulation , Ozaydin, Medard, Duffy, IEEE GLOBECOM, 22.



§ Standards currently lead to costly inefficiencies
§ Complexity requires modularity to enable compatibility with adaptability
§ Role of standards can move to creating APIs instead of monolithic systems

Modularity
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