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Reinforcement Learning

Reinforcement learning (RL) has emerged as the backbone of many
artificial intelligence (AI) problems, where autonomous agents have to
make sequential decisions in unknown dynamic environments.
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Multi-Agent Reinforcement Learning

In fact, many more AI systems involve multi-agent dynamic settings:

Further advances critically depend on analyzing multi-agent interactions,
decisions and learning in dynamic environments.
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Nash Equilibrium and Learning in Games

Nash Equilibrium (NE) – a remarkably powerful tool for understanding
multi-agent interactions.

Most economists and computer scientists have come to think of NE as
arising not from introspection and calculation, but rather from some
non-equilibrium adaptive process of learning [Fudenberg and Levine 16].
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Multi-Agent Learning in Static and Dynamic Games

One of the best studied models of learning is fictitious play (FP):

Myopic agents estimate opponent strategy using past play.
They use a best-response type action (using their stage payoff)
against this estimate.

Large literature in economics and game theory on convergence of
fictitious play for repeated play of static games [Robinson 51], [Monderer
and Shapley 96], [Fudenberg and Kreps 93], [Fudenberg and Levine 95].

Despite its importance, there is limited progress on multi-agent learning
in dynamic environments.

Key challenge: Estimating decision rules of other adaptive agents in
changing non-stationary environments.

These challenges multiplied in the (model-free) RL setting when a

dynamic model of the environment (i.e., transition probabilities and payoff

functions) is unknown.
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Classical Results for Learning in Dynamic Games

Mostly computational in nature and for zero-sum:

[Shapley 53]:

Defined stochastic games (extends strategic form games to dynamic
environments and MDPs to competitive situations).
Minimax value-iteration (VI) algorithm to compute value functions
in zero-some stochastic games.
It converges due to the γ-contracting property of the VI operator.

[Littman 94]:

Q-learning in stochastic games, without the model.
Extended in [Littman and Szepesvari 96], [Hu and Wellman 03],
[Bowling 05].
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Recent Results

Two strands of recent literature on multi-agent dynamic learning:

Centralized Learning: Centralized controller that jointly optimizes all agent policies
[Perolat et al. 15], [Sidford et al. 19], [Bai, Jin 20], [Shah et al. 20], [Zhang et al. 20].

Decentralized/independent learning: Agents optimize their own payoff given their
observations and beliefs.

Challenges of independent learning: Negative non-convergent results due to
non-stationarity [Condon 90], [Tan 93], [Claus and Boutilier 98].

Most relevant to our work:

Zero-sum Stochastic Games:

[Daskalakis et al. 20] Policy gradient methods: coordination between
agents’ learning rates.
[Leslie et al. 20] Continuous-time best-response dynamics, a common
continuation payoff for all players – updated at a slower speed.

Potential Stochastic Games:

[Leonardos et al. 21][Zhang et al. 21][Fox et al. 22] Policy gradient
methods: algorithmic approaches for equilibrium computation.
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Question of Interest

Open question 1: Can we identify reasonable and independent learning
dynamics that converge to NE for stochastic games?

Reasonable: Agents acting in their individual interest.

Independent: No coordination among agents.

Open question 2: Can we provide finite sample guarantees for best-response
type dynamics for stochastic games (even matrix games)?

8



Our Results - Multi-agent Learning Made Simple

We develop simple learning rules based on FP-type dynamics that are
fully decentralized and independent.

Convergence for zero-sum stochastic games [Sayin, Parise, Ozdaglar
21], [Sayin∗, Zhang∗, Leslie, Başar, Ozdaglar 21]
Finite-time and payoff-based analysis for zero-sum stochastic games
[Chen, Zhang, Mazumdar, Ozdaglar, Wierman 23]

We conclude with a new tractable model of multi-player networked
Markov games [Park, Zhang, Ozdaglar 23].

Main ideas:

Two-timescale learning, but only at the individual agent level.

Each agent is simultaneously estimating the empirical distribution of
others’ actions/strategies and his own continuation payoff.

Two-timescale here refers to empirical distribution updated more

frequently than underlying estimate of the payoff functions.

For finite-time analysis (and payoff-based dynamics): doubly-smoothed
best response dynamics with estimation of local payoff functions.

9



Model
Stochastic Game

An n-player stochastic game 〈S , {Ai}i∈[n], {r i}i∈[n], p, γ〉.

S is the set of finitely many states.

Ai is the set of finitely many actions that player i can take at state s.
(∆(Ai ) denotes the set of probability distributions over the set Ai ).

A =
∏

i A
i denotes the set of action profiles a = [ai ]i∈[n].

r i (s, a) denotes the stage payoff of player i at state s and action profile a.

Players take action a at state s ∈ S , and the state transitions to s̃
according to p(s̃|s, a).

γ ∈ [0, 1) is the discount factor.
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Model
Equilibrium

We focus on stationary Markov strategies (a mixed strategy per state).

Let πi : S → ∆(A) with πi (s) ∈ ∆(Ai ) denote the (mixed) strategy of
player i at state s and π = (πi )i∈[n] denote the strategy profile.

We define the expected payoff (value) function of player i as

v i (s;π) := Eak∼π(sk )

{ ∞∑
k=0

γk r i (sk , ak)
∣∣∣s0 = s

}
,

where {sk}k≥0 is a stochastic process. We use v i (π) = Es∼p0

{
v i (s;π)

}
.

Definition (Nash Equilibrium)

A strategy profile π∗ is a (Nash) equilibrium provided that

v i (π∗) ≥ v i (πi , π−i∗ ) for all πi , and all i .

The value v i (π∗) represents the equilibrium value function of player i .
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Model
Value function characterization

Using one-stage deviation principle (multi-agent extension of Bellman’s
equation), we can characterize the equilibrium value function as

v i (s;π∗) = max
πi

Ea∼(πi ,π−i
∗ (s))

{
r i (s, a) + γ

∑
s̃∈S

p(s̃|s, a)v i (s̃;π∗)

}
.

We define the Q-function, Q i (s, a;π∗), as the expression inside the “max
and expectation”,

Q i (s, a;π∗) = r i (s, a) + γ
∑
s̃∈S

p(s̃|s, a)v i (s̃;π∗)

with v i (s;π∗) = maxπi Ea∼(πi ,π−i
∗ (s))

{
Q i (s, a;π∗)

}
.
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FP for Stochastic Games

We will consider a learning dynamic that combines fictitious play [Brown
49], [Robinson 51] with value function (or Q-function) iteration
[Bertsekas 95]:

Players form beliefs on opponent strategies (using empirical
frequencies and assuming opponent uses a stationary strategy).
Players also form beliefs on equilibrium value function, or
Q-function.
Players choose a best response action in an “auxiliary game” given
their beliefs (where the payoffs are given by the Q-function
estimates).

The key challenge is that the payoffs or value functions in these
auxiliary games are non-stationary (unlike repeated play of stage games).
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FP for Stochastic Games
At stage k ≥ 0, denote i ’s belief on −i ’s strategy as π−ik and on her

Q-function as Q i
k and Q i

k(s, ai , π−ik (s)) := Ea−i∼π−i
k (s){Q

i
k(s, ai , a−i )}.

Player i selects a best response aik(s) satisfying

aik(s) ∈ arg max
ai∈Ai

Q i
k(s, ai , π−ik (s)) .

Player i updates her belief on player j ’s strategy as

πj
k+1(s) = πj

k(s) + αk

(
ajk(s)− πj

k(s)
)
, for all j 6= i and s ∈ S .

Player i updates her belief on her Q-function as

Q i
k+1(s, a) = Q i

k (s, a) + βk

r i (s, a) + γ
∑
s̃∈S

p(s̃|s, a)v i
k (s̃)− Q i

k (s, a)


for all (s, a), with v i

k(s̃) = maxai∈Ai Q i
k(s̃, ai , π−ik (s̃)).

Reasonable & independent: the maxai∈Ai step is reasonable for the
individual agent, but leads to local Q i

k that differs among agents.
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Two-timescale Learning Framework

A key feature of our learning dynamics is that beliefs on Q-functions are
updated at a slower timescale than beliefs on opponent strategies.

This is consistent with the literature on evolutionary game theory [Ely
and Yilankaya 01], [Sandholm 01] which postulate players’ choices to be
more dynamic than changes in their preferences.

Q-functions in auxiliary games can be viewed as slowly evolving
player preferences.

This assumption enables weakening the dependence between evolving
strategies and Q-functions.

We implement the two-timescale learning dynamics through the following
assumption on the learning rates.
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Assumption & Result

Assumption (Markov Chain)

Each state is visited infinitely often.

Holds if the stochastic game is irreducible: transition probabilities between any pair
of states are positive for any joint action as in [Leslie et al. 21].

Assumption (Learning Rates)

(a) limk→∞ αk = limk→∞ βk = 0 and
∑

k≥0 αk =
∑

k≥0 βk =∞.

(b) limc→∞
βk
αk

= 0.

Part (a) is classical in stochastic approximation theory.
Part (b) ensures two-timescale learning (βk → 0 faster than αk → 0).

Theorem

Under these assumptions, for some stationary equilibrium (π1
∗, π

2
∗) and the associated

Q-function (Q1
∗,Q

2
∗) of the zero-sum stochastic game, we have

(π1
k , π

2
k)→ (π1

∗, π
2
∗) and (Q1

k ,Q
2
k )→ (Q1

∗,Q
2
∗),w .p.1, as k →∞.
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Convergence Analysis

The evolution of the strategy and payoff estimates can be written as

πi
k+1(s) = πi

k(s) + αk(aik(s)− πi
k(s))

Q i
k+1(s, a) = Q i

k(s, a) + βk

(
r i (s, a) + γ

∑
s̃∈S

p(s̃|s, a)v i
k(s̃)− Q i

k(s, a)
)

for all (s, a), with aik(s) = arg maxai Q
i
k(s, ai , π−ik (s)) and

v i
k(s̃) = maxai Q

i
k(s̃, ai , π−ik (s̃)).

Two Challenges:

Dynamics specific to an induced stage game is coupled with the
dynamics at other stage games (due to v i

k(s̃)).

The two-timescale framework (βk/αk → 0) weakens this coupling.

Each player updates Q i using their local beliefs, induced stage games are
not necessarily zero-sum.
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Differential Inclusion Approximation

The discrete-time update can be written as

πi
k+1(s)− πi

k(s) ∈ αk

(
arg max

ai∈Ai
Q i

k(s, ai , π−ik (s))− πi
k(s)

)
Q i

k+1(s, a)− Q i
k(s, a) = αk ε

i
k(s, a),

for each i = 1, 2, where the error term εk(s, a) ≈ βk

αk
is asymptotically

negligible by the two-timescale assumption β/α→ 0.

By the Differential Inclusion Approximation Theory [Benaim et al 05], we can
approximate the update via

π̇i (s) ∈ arg max
ai∈Ai

Q i (s, ai , π−i (s))− πi (s)

Q̇ i (s, a) = 0,

for each i = 1, 2, which corresponds to the continuous-time best response
dynamics of a game with stationary payoff functions (Q1(s, ·),Q2(s, ·)) since
Q̇ i (s, a) = 0.
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Differential Inclusion Approximation
Lyapunov function

The Differential Inclusion Approximation
Theory [Benaim et al 05] says that we can
characterize the limit set of the discrete-time
update via the differential inclusion (DI)

π̇i (s) ∈ arg max
ai∈Ai

Q i (s, ai , π−i (s))− πi (s)

Q̇ i (s, a) = 0

for each i = 1, 2 if we can find a Lyapunov
function V (·). Particularly, we will have

V (πk(s),Qk(s, ·))→ 0 .

A continuous nonnegative
function V (·):

V (x(t′)) < V (x(t)) for all
t′ > t when V (x(t)) > 0

V (x(t′)) = 0 for all t′ > t
when V (x(t)) = 0

for any solution x(t) to the DI.
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Lyapunov Function for Zero-sum Stochastic Games

[Harris 98] showed that VH(π(s),Q(s, ·)) =
∑

i maxai∈Ai Q i (s, ai , π−i (s)) is a
Lyapunov function to the CT best response dynamics in a zero-sum game.

Denote the best response of player i by ai∗(s). We have

d

dt

(
max
ai∈Ai

Q i (s, ai , π−i (s))

)
= Q i (s, ai∗(s), π̇−i (s)) a.e.

Using π̇−i (s) = a−i
∗ − π−i (s), we see VH is decreasing iff non-negative VH > 0:

V̇H =
∑
i

Q i (s, ai∗(s), a−i
∗ (s))− Q i (s, ai∗(s), π−i (s))

= −VH +
∑
i

Q i (s, ai∗(s), a−i
∗ (s)),

where the second term disappears since Q1(s, a) + Q2(s, a) = 0 for all a.

Because of deviation from zero-sum structure in induced stage games, we
develop a new Lyapunov function:

V (π(s),Q(s, ·)) =

(
VH(π(s),Q(s, ·))− λmax

a

∣∣∣∣∣∑
i

Q i (s, a)

∣∣∣∣∣
)

+

for any λ ∈ (1, 1/γ).
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Implications of the Lyapunov Function

The new Lyapunov function and Differential Approximation Theory [Benaim et

al 05] yield almost surely,

V (πk (s),Qk (s, ·)) =

(∑
i

max
ai∈Ai

Q i (s, ai , π−i
k (s))− λmax

a

∣∣∣∣∣∑
i

Q i
k (s, a)

∣∣∣∣∣
)

+

→ 0

This enables us to relate
∑

i v
i
k(s) =

∑
i maxai∈Ai Q i (s, ai , π−i

k (s)) with
maxa |

∑
i Q

i
k(s, a)| and use stochastic approximation theory to show that the

Q-function estimates are asymptotically zero sum:

lim
k→∞

max
a

∣∣∣∣∣∑
i

Q i
k(s, a)

∣∣∣∣∣ = 0

for each s and converge to equilibrium values.

Since they track Shapley’s minimax value iteration [Shapley 53], which
converges to NE due to the γ-contracting property of the minimax VI operator.
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Extensions - Model Free Learning

In model-free learning, players do not know the transition probabilities and
their own stage payoff function (only observe their realized stage payoffs).

In this case, we use Q-learning, which is a stochastic form of value
iteration [Watkins and Dayan 92].

Without knowledge of transition probabilities, the players use the
following estimate: ∑

s̃

p(s̃|sk , a)v i
k(s̃) ≈ v̂ i

sk+1,k

if sk+1 is chosen with probability p(sk+1|sk , a).

Ensured by following the transitions of the Markov environment, making
sample value of v at the successor state an unbiased estimate of the sum.

Introduces additional stochastic approximation errors.

Proper adjustment of learning rates within the two-time scale framework
enables convergence to equilibrium values.

22



Extensions - Minimal Information
Also referred to as “Payoff-based” or “Radically Uncoupled” Learning

Agents do not observe opponent’s actions, therefore cannot form beliefs
on opponent strategy.

Instead, players estimate their local Q-function

qi (s, ai ;π) := Ea−i∼π−i (s)

{
Q i (s, ai , a−i ;π)

}
based on the reward they receive since local Q-function carries
information about opponent’s strategy.
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Minimal Information Case

Players also form beliefs on the value function to estimate their
continuation payoff:

v i (s;π) = max
πi

E(ai ,a−i )∼(πi ,π−i (s))

{
Q i (s, ai , a−i ;π)

}
,

which also captures the effect of their own strategy on their payoff.

Similar two-time scale learning framework: Value functions updated
at a slower timescale.

With adaptive learning rates, we can show asymptotic convergence
to the equilibrium in two-player zero-sum stochastic games [Sayin∗,
Zhang∗, Leslie, Başar, Ozdaglar, 21]

The results so far are all asymptotic:
Can we have non-asymptotic convergence rate (for best-response dynamics)?
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Finite-Time Analysis for Minimal Information Case

Limited results on rate analysis for best-response type learning in games.

Robinson’s result O(1/k
1

m+n−2 ) (m, n sizes of actions sets) and Karlin’s
conjecture of O(1/

√
k) (proofs and disproofs for special cases [Daskalakis

and Pan 14], [Abernethy, Lai and Wibisono 20])
Seminal result by [Harris 98] on rate of convergence of CT FP in zero-sum
matrix games.
For stochastic games, all existing results for policy gradient or
optimistic-gradient type methods.

Our dynamics: Doubly smoothed best-response with value iteration:

Follows the two-timescale framework – change it to two-loop (see next
slide) for finite-time analysis
Payoff-based and independent
No need to use adaptive stepsizes

Sample complexity of O(1/ε) (to the Nash distribution) or O(1/ε8) (to a
Nash equilibrium) for matrix games and O(1/ε8) (to a Nash equilibrium)
for stochastic games.
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Learning Dynamics (of Player i)

Inner Loop: Fix {v̂ i
s,t}s∈S , and for k = 0, 1, 2, · · · ,K − 1

Given q̂is,t,k , player i updates π̂i
s,k using doubly smoothed best-response:

π̂i
s,t,k+1 = (1− βk)π̂i

s,t,k + βkσ
ε̄
τ (q̂is,t,k),︸ ︷︷ ︸

Taking a small (i.e., smooth) step towards the smoothed best-response

where σε̄τ (qi ) := (1− ε̄) argmaxµ∈∆(Ai ){µ>qi + τ · ν(µ)}+ ε̄ Unif(Ai ) is
the smoothed best-response function with ε̄-perturbation, with ν(µ)
being the entropy of µ.

Player i updates the local Q-function using temporal-difference learning:

q̂is,t,k+1(ai ) = q̂is,t,k(ai ) + αk (r it,k + γv̂ i
sk+1,t − q̂is,t,k(ai ))︸ ︷︷ ︸

The temporal difference

.

Note: To make TD-learning step work, we ensure policies evolve at a slower
rate compared to that of q-functions (so that πk is close to being stationary).
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Learning Dynamics (of Player i)

Outer Loop: For t = 1, · · · ,T − 1

Player i updates the value function estimate {v̂ i
s,t}s∈S according to

v̂ i
s,t+1 = (π̂i

s,t,K )T q̂is,t,K (An approximation of minimax VI)

Note:

q̂is,t,K (ai ): local-Q function gives player i ’s expected payoff for action ai .

Player i computes expected payoff using the most recent strategy
estimate π̂i

s,t,K .
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Finite-Time Guarantees

Theorem

Under certain assumptions on stepsizes and ε̄ = τ , to achieve ε-approximate Nash
equilibrium, the sample complexity is O(1/ε8).

Proof Sketch.

Algorithm maintains 3 sets of coupled iterates {q̂i
t,k}, {v̂ i

t}, {π̂i
t,k}.

Construct Lyapunov functions for each.

Challenge: Time-varying sampling policies due to “smooth best-response” =⇒
Time-inhomogeneous Markovian noise:

Establishing uniform ergodicity
An adaptive conditioning argument inspired by [Srikant and Ying, 2019]:

E[Update at k] = E[E[Update at k | Fk−mixing time]]

Challenge: Highly-coupled iterates q̂i
s,t,k , v̂s,t , and π̂i

s,t,k

Establish Lyapunov drift inequalities for q̂i
s,t,k , v̂s,t , and π̂i

s,t,k

Solve the coupled Lyapunov inequalities to obtain the bound
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Beyond Two-Player Games: Multi-Player Networked Markov Games

All results presented so far are for two-player “zero sum” Markov games.

Motivates a key question:

Are there other classes of stochastic games, beyond two-player zero-sum
games, that allow tractable learning dynamics and equilibrium computation?

Stochastic games with “Aligned Interests”: [Sayin, Zhang, Ozdaglar 22] –
Identical-interest Markov games with single controller.

Networked Markov games – [Park, Zhang, Ozdaglar 23] .
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Beyond Two-Player Games: Multi-Player Networked Markov Games

Networked Markov Game (NMG) (G = (N , EQ),S,A,P, (ri )i∈N , γ):

For any function V : S → R that defines

QV
i (s, a) := ri (s, a) + γ

∑
s′∈S

P(s ′|s, a)V (s ′),

there exists a set of functions (QV
i,j)(i,j)∈EQ and a connected graph

G = (N , EQ) such that QV
i (s, a) =

∑
j∈EQ,i

QV
i,j(s, ai , aj).

Extends polymatrix (separable network) games [Bergman, Fokin 98] in
normal form (G = (N , E),A, (ri,j)(i,j)∈E) where
ri (a) =

∑
{j|(i,j)∈E} ri,j(ai , aj).

1

2

3

5
4

∑
QV

12

QV
15

QV
13

1

2

3

5
4

∑
r12

r15

r13
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Characterization Results for NMG

Theorem (Sufficient and Necessary conditions for NMG)

For a given graph G = (N , EQ), an MG (N ,S,A,P, (ri )i∈N , γ) is an NMG if
and only if ri (s, a) and P(s ′|s, ·) can be written as

ri (s, a) =
∑
j∈EQ,i

rij(s, ai , aj) P(s ′|s, a) =
∑
j∈NC

wj(s)Pj(s
′|s, aj)

where the weights wj(s) satisfy
∑

j∈NC
wj(s) = 1 for all s, Pj is a probability

distribution and NC := {i | (i , j) ∈ EQ for all j ∈ N}.

Decomposable transition dynamics is an ensemble of transition dynamics
controlled by single controllers:

For each s ∈ S, sample j ∈ NC with probability wj(s).
Then follow Pj(s

′|s, aj).

Extends single-controller Markov games and turn-based Markov games.
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Several results for NMG

1

2

3

5 4

1

2

3

5 4

1

2

3

5 4

Er NC EQ

∪

Relationship between Er , NC , and EQ . The transition dynamics P is expressed
as the ensemble of single controller NC = {1, 5}.

An NMG is zero-sum if in addition (G,A, (ri,j(s))(i,j)∈EQ ) is a zero-sum
polymatrix game for all s ∈ S.

Paper shows fictitious play dynamics converge in NMGs when the
underlying graph is a star network and hardness results for computing
stationary NE and algorithms for computing nonstationary NE for
non-star networks [Park, Zhang, Ozdaglar 23].
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Conclusions

We presented simple, reasonable and independent learning dynamics for
stochastic games.

For such dynamics, we present the first convergence guarantees to Nash
equilibrium in zero-sum stochastic games.

One key was two time-scale learning where estimates on opponent
strategies are updated faster than estimates on value functions.

Finite-sample analysis made possible following timescale-separation, but
more delicate analysis of the coupled Lyapunov functions.

Ongoing and Future work:

Convergence guarantees for potential stochastic games.

Learning dynamics and non-asymptotic analysis for networked Markov
games.

Learning dynamics with function approximation to handle massively large
state-action spaces.
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Identical-Interest Stochastic Games: Analysis (Cont’d)

To this end, define a lower bound of Υi
k(s, a) as

uik := min
(s,a)

r(s, a) + γ
∑
s′∈S

p(s′|s, a)Ea′∼πk (s){Q i
k (s′, a′)} − Q i

k (s, a)


One can show that uik satisfies

uik+1 ≥ uik (1− (1− γ)βk ) + ek ,

with some absolutely summable sequence {ek}
Unrolling it (using Gronwall Lemma), one can quantify the bound of uik

from below, and show lim inf
k1→∞

inf
k2≥k1

k2∑
k=k1

βku
i
k ≥ 0 (implies the desired result)

Single-controller assumption is key to ensure the summability of {|ek |}

36



Identical-Interest Stochastic Games: Analysis (Cont’d)

To this end, define a lower bound of Υi
k(s, a) as

uik := min
(s,a)

r(s, a) + γ
∑
s′∈S

p(s′|s, a)Ea′∼πk (s){Q i
k (s′, a′)} − Q i

k (s, a)


One can show that uik satisfies

uik+1 ≥ uik (1− (1− γ)βk ) + ek ,

with some absolutely summable sequence {ek}
Unrolling it (using Gronwall Lemma), one can quantify the bound of uik

from below, and show lim inf
k1→∞

inf
k2≥k1

k2∑
k=k1

βku
i
k ≥ 0 (implies the desired result)

Single-controller assumption is key to ensure the summability of {|ek |}
36


