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CONCLUSION

The map equation framework with a 
Bayesian estimate of the transition rates 
provides a principled approach to mapping 
flows on multilayer networks with 
incomplete observations



 
Mapping network structure and metadata on power grids

“We would like to play with some parameters to 
give more importance to some nodes in the graph, 
somehow conditioning the clustering when we are 
interested in specific elements of the graph.

Antoine Marot
Lead AI Scientist at RTE – France’s Transmission System Operator



 
Mapping network structure and metadata on power grids

“We want coherent communities 
with nodes that share similar prices.

Antoine Marot
Lead AI Scientist at RTE – France’s Transmission System Operator
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Structure and inference in annotated networks
M.E.J. Newman1,2,3 & Aaron Clauset3,4,5

For many networks of scientific interest we know both the connections of the network

and information about the network nodes, such as the age or gender of individuals in a

social network. Here we demonstrate how this ‘metadata’ can be used to improve our

understanding of network structure. We focus in particular on the problem of community

detection in networks and develop a mathematically principled approach that combines a

network and its metadata to detect communities more accurately than can be done with

either alone. Crucially, the method does not assume that the metadata are correlated with the

communities we are trying to find. Instead, the method learns whether a correlation exists

and correctly uses or ignores the metadata depending on whether they contain useful

information. We demonstrate our method on synthetic networks with known structure and on

real-world networks, large and small, drawn from social, biological and technological domains.
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Map equation with metadata: Varying the role of attributes in community detection

Scott Emmons * and Peter J. Mucha†

Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics,
University of North Carolina, Chapel Hill, North Carolina 27599, USA

(Received 24 October 2018; revised manuscript received 17 July 2019; published 2 August 2019)

Much of the community detection literature studies structural communities, communities defined solely by the
connectivity patterns of the network. Often networks contain additional metadata which can inform community
detection such as the grade and gender of students in a high school social network. In this work, we introduce a
tuning parameter to the content map equation that allows users of the Infomap community detection algorithm to
control the metadata’s relative importance for identifying network structure. On synthetic networks, we show that
our algorithm can overcome the structural detectability limit when the metadata are well aligned with community
structure. On real-world networks, we show how our algorithm can achieve greater mutual information with the
metadata at a cost in the traditional map equation. Our tuning parameter, like the focusing knob of a microscope,
allows users to “zoom in” and “zoom out” on communities with varying levels of focus on the metadata.

DOI: 10.1103/PhysRevE.100.022301

I. INTRODUCTION

As network science has found application in a variety
of real-world systems, ranging from the biological to the
technological, so, too, has community detection in networks
received widespread attention [1–4]. Traditionally, commu-
nity detection methods have focused solely on the topology
of the network, optimizing an objective function defined on
the network structure that captures a particular notion of
community, such as intracommunity edge density and inter-
community edge sparsity. Many approaches, ranging from the
statistical to the information theoretical, have been used for
community detection, and tradeoffs between these approaches
include describing extant links versus predicting missing
links [5].

More recent community detection work utilizes node meta-
data such as the grade and gender of students in a high
school social network. As the No Free Lunch theorem states,
community detection algorithms must make tradeoffs [6], and
node metadata can be used to guide community detection.
For example, Newman and Clauset demonstrated that their
stochastic block model (SBM) approach can choose either
to partition a middle school and high school social network
into communities by grade or into communities by race,
depending on the metadata of interest [7]. Similarly, Hric
et al. [8] developed an attributed SBM from a multilayer
perspective, with the attribute layer modeling relational in-
formation between attributes. Stanley et al. [9] considered a
different graphical model relating connections and attributes,
with assumptions on the attribute distributions, to develop a
stochastic block model with multiple continuous attributes.
Introducing the I-louvain method [10], Blondel et al. ex-
tended the well-known Louvain algorithm [11] for modularity

*scott3@live.unc.edu
†mucha@unc.edu

maximization by including attributes in their “intertia-based
modularity.” Yang et al. proposed CESNA [12] and He et al.
proposed CNMMA [13] to identify communities by learning
a latent space that generates links and attributes. Peel et al. [6]
established a statistical test to determine if attributes correlate
with community structure, and they developed an SBM with
flexibility in how strongly to couple attributes and community
labels in the corresponding stochastic block model inference.
In related work, Stanley et al. [14] propose a test statistic
based on label propagation for the alignment of node attributes
with connectivity patterns.

Prior work extending SBMs, such as the method of New-
man and Clauset [7] and the method of Stanley et al. [9],
are based on statistical relationships between metadata and
network structure. Using such methods, a social science re-
searcher who cares particularly about gender groups in a high
school social network, for example, has no way to communi-
cate a special interest in community alignment with the gender
metadata. The methods will use the gender metadata insofar
as it explains network structure, but otherwise the methods
might ignore this feature. A key motivation for our work is to
provide direct control over how much network communities
align with a particular metadata type. With our method, the
example researcher above can directly tune how much more
she weights communities aligned with gender to communities
describing network structure.

Ghasemian et al. [5] characterize this tradeoff between a
statistical model of network formation, given by the algorithm
of Newman and Clauset [7], and an information-theoretic
description of observed structure, given by the map equation
[15], as a tradeoff between under- and overfitting in commu-
nity detection. From the point of view of this framework, our
method’s contribution is enabling users to choose how much
to overfit the metadata in describing the observed network
structure.

Most closely related to our approach is the content map
equation proposed by Smith et al. [16]. The content map
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Question: How can we exploit nonlocal relationships 
between network structure and metadata? 

Require correlations between network structure and metadata



1. Mapping network flows

3. exploits nonlocal relationships

with metadata-dependent encoding2.



1. Mapping network flows
using the minimum description length principle



MAPS depict regularities
using less information

NETWORKS describe where flows move 
depending on the current node
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1. Mapping network flows 
using the minimum description length principle

The map equation infers modules with 
long flow persistence using the minimum 
description length principle.
Generalizations to many network representations.



2. Mapping network flows
with metadata-dependent encoding



Mapping network flows 
Absorbing random walks

1. We use random walks that remember their origin 

2. Each node   has associated metadata 

3. The probability      of a walker starting at 
to be absorbed at   depends on    and
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Mapping network flows 
Encoding probabilities for categorical metadata
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Metadata dependence, 
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• If c > 1, the walker will encode more frequently at nodes belonging to the
same class of the starting node (assortative encoding).

• For p < c < 1, encode will be more probable at nodes belonging to a
di↵erent class than the one of the starting node (disassortative encoding).

• For c = 1, the encoding dynamics no longer depend on class assignments
(neutral encoding).

• When p ⌧ 1, the structure is irrelevant and absorption depends only on
metadata.
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Random walks with metadata-dependent encoding probabilities 
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structural network information or metadata clustering alone. For ex-
ample, analyzing the spatial network of energy prices across Europe 
reveals regions that do not map directly to countries or price ranges 
but correspond instead to transnational areas characterized by socio-
economic similarities.

MATERIALS AND METHODS
Standard flow-based community detection methods, such as Markov 
stability and the map equation, capitalize on random walks’ propen-
sity to remain trapped for relatively long times in densely connected 
subgraphs. We take advantage of a multiscale extension of the map 
equation that modifies the standard Markov process with one-step 
transitions at Markov time 1 to shorter or longer Markov times (20, 21). 
Changing the Markov time corresponds to changing the rate at which 
the transitions of the random walk are encoded. For Markov times 
shorter than 1, the map equation encodes the random walk more 
frequently than once per step, leading to smaller communities. For 
Markov times larger than 1, the random walk can make more than 
one step before the map equation encodes its transition from the 
previously encoded node, leading to fewer, larger communities with 
larger diameter. To explore relationships between network struc-
ture and metadata of distant nodes, we encode the random walker’s 
transition to a node as a function of its metadata and the previously 
encoded node’s metadata (Fig. 1).

Modeling random walks with metadata-dependent 
encoding probabilities
We consider a connected and possibly weighted graph G = (V, L) with 
N = ∣V∣ nodes and K = ∣L∣ edges. For simplicity, we assume that 
the graph G is undirected, but a similar reasoning holds for primitive 

directed graphs as well. Assuming that nodes are associated with some 
categorical, scalar, or vectorial metadata, such as gender, occupation, 
or income, there exists a function f : V ⟶ S that maps each node i to 
an element fi of the generic set S, where S ⊆ ℕ for categorical data and 
S ⊆ ℝd for scalar or vectorial data. As shown recently, the symbolic 
dynamics F({i0, i1, …, it, …}) = {fi0, fi1, …, fit, …} associated with the 
generic trajectory {i0, i1, …, it, …} of an unbiased discrete time ran-
dom walk on G starting from node i0 retain plentiful information about 
the underlying distribution of metadata at different scales (22, 23).

In the absence of metadata, the symbolic dynamics F are trivial. 
However, the underlying random walk statistics depend on the struc-
ture of G, including its degree distribution, degree-degree correla-
tions, the presence of clustering, communities, and so forth. Several 
flow-based community detection algorithms exploit this connection 
between structure and dynamics. Conversely, if the graph G presents 
no structural heterogeneity, such as in an infinite lattice or a regular 
random graph, then the statistics of the symbolic dynamics F depend 
only on the presence of metadata correlations, since spurious effects 
due to local trapping are averaged out in walks of infinite length. We 
interpolate between these two extremes by considering a random 
walk with metadata-dependent encoding probability: The random 
walk can skip encoding nodes if their metadata differ from the meta-
data of the previously encoded node. The corresponding metadata- 
informed communities contain nodes that appear in relatively long 
uninterrupted encoding sequences (Fig. 1). For straightforward com-
munity detection, we assemble the probability flows of sequential 
encodings in a metadata-dependent encoding graph where all prob-
ability flows sum to one and the metadata-informed communities 
form dense subgraphs.

Constructing the metadata-dependent encoding graph from a 
single, long random walk that continues after each encoding, as 
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Fig. 1. Random walks with metadata-dependent encoding probabilities. In this schematic example with single, long random walks, we encode the random walks’ next 
step if the target node’s metadata are the same as for the previously encoded node. When the metadata differ, encoding with a probability between 33 and 100% gives 
the solution in (A), between 10 and 33% gives the solution in (B), and less than 10% gives the solution in (C). Node shapes represent metadata, and node colors represent 
optimal partitions. The random walks are colored by the currently encoded module and labeled with circles when they encode a transition and with dotted lines when 
they skip nodes. The alphabetic codes represent the walks with this metadata-dependent encoding scheme.
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illustrated in Fig. 1, can produce unreliable results that depend on 
the starting node. For ergodic results, we consider random walks that 
restart after each encoding at a node i proportional to i’s stationary 
visit rate pi of a standard random walk without metadata-dependent 
encoding. The fragmented random walk starts on node i, steps to 
node j, and encodes the transition from node i to node j with prob-
ability eij, where eij is some meaningful function of the metadata fi 
and fj. With probability 1 − eij, the random walk skips encoding, con-
tinues to node k, encodes the transition from node i to node k with 
probability eik, and so on. After a transition is encoded, the random 
walk restarts at a random node proportional to its stationary visit 
rate, and the procedure repeats (Fig. 2A). When restarting after each 
encoding, communities with long encoding sequences become com-
munities that frequently contain encoded transitions from the restart 
node to the next encoded node. Aggregating all encoded transitions 
and dividing by the total number of such transitions give the metadata- 
dependent encoding graph (Fig. 2B). Without encoded restarts, the 
metadata-dependent encoding graph takes the same form as if we 
generated it by a single, long walk, save for possibly nonmatching in- 
and outflow volumes at nodes. Because exiting communities with a 
low probability and remaining trapped in communities for extended 
times are equivalent to our modular compression approach, we re-
tain the interpretation that communities contain nodes that appear 
in relatively long uninterrupted encoding sequences.

The distribution of encoding probabilities represents the traversal 
resistance induced by nodes on walkers depending on their origin 
and defines the walks’ horizon. In the simple case eij = 1, any walker 
starting at node i will encode as soon as it reaches node j. Node j 
presents an infinite resistance to all walkers originating at i. If eij ≃ 0 
instead, then typically none of the walkers starting at i would ever 
encode at j. We can drive the walkers starting at i toward nodes with 
specific metadata, by letting eij depend on the metadata fi and fj. In 
particular, if eij = dfi,fj, then walkers from node i will only encode at 
nodes whose metadata are identical to those of i, irrespective of their 
distance on the graph G. All encoded transitions would occur between 
nodes with identical metadata. Conversely, if eij = 1 for all i and j, 
then all transitions are encoded irrespective of the metadata.

To derive a closed-form expression of the metadata-dependent 
encoding graph, we start from the original graph G with link weights 
wkj between nodes k and j. Following the standard approach for dis-
crete time random walks on weighted networks (24), we write the 
one-step transition probability that a random walker visiting node k 
will visit node j at the next step as

   p  jk   =   
 w  kj   ─  ∑ j    w  kj   

    (1)

We define the transition matrix to be column stochastic, because 
it simplifies the notation later. For the walks that restart after each 
encoding, we denote by pj(t∣i) the probability density of random 
walks restarting at node i at time 0 and being at node j at time t, so 
that pi(0∣i) = pi and

   p  j  (t∣i ) =  ∑ k      p  k  (t − 1∣i )  p  jk  (1 −  e  ik  )  (2)

accounts for all the possible ways in which a walker can jump to 
node j at time t, given that it did not encode on any of the neighbors 
of j at time t − 1. We can express the metadata-dependent encoding 
graph’s probability flows eij as the time integral of the probability 
for a walker to encode at node j at any time t > 0 when starting from 
node i at time 0

   e  ij   =  ∑ t=1  ∞     e  ij    p  j  (t∣i)  (3)

With     ~ p   jk∣i   =  p  jk  (1 −  e  ik  )  for the probability to jump from node 
k to node j without encoding at k and    ̃  P   i   = {   ~ p   jk∣i  } , we can rewrite 
the master equation in Eq. 2 as

  P(t∣i ) =   ̃  P   i   P(t − 1∣i)  (4)

where P(t∣i) is the column vector of node visit probabilities at time 
t when the walk started from node i at time t = 0. Equation 4 is for-
mally identical to the master equation of a walker governed by the 
transition matrix   ̃  P  , whose solution is

  P(t∣i ) =   ̃  P  i  
t  P(0∣i)  (5)

with P(0∣i) = {dijpi}, where pi is the stationary occupation probability 
of the standard random walk without metadata-dependent encoding.

This result means that the transition weights of the metadata- 
dependent encoding graph in Eq. 3 can be rewritten as

   E  i   =  ∑ t=1  ∞     E i  ⊤    ̃  P  i  
t  P(0∣i)  (6)
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Fig. 2. Generating the metadata-dependent encoding graph. (A) For ergodic 
results, we consider random walks that restart after each encoding at a random 
node proportional to its stationary visit rate. The random walk is colored by the 
currently encoded module and labeled with circles when it encodes a transition, 
with dotted colored lines when it skips nodes and with thin dotted lines when it 
restarts. If the target node’s metadata are the same as for the restart node, then we 
always encode. When the metadata differ, we encode with a probability of 5% like 
in Fig. 1C. The alphabetic codes represent the walk with this metadata-dependent 
encoding scheme. (B) Aggregating all encoded transitions and dividing by the total 
number of transitions give the metadata-dependent encoding graph. The line 
widths represent the probability flows of next encodings. For visual simplicity, we 
show only probability flows above 1%. Node shapes represent metadata, and node 
colors represent optimal partitions.
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2. Mapping network flows 
with metadata-dependent encoding

Random walks with metadata-dependent 
encoding probabilities integrate network 
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modules and organized into six or seven top-level super modules. 
Because we are interested in the grid’s large-scale organization, we 
restricted Infomap to search for partitions with seven top-level mod-
ules, again using 100 trials.

Increasing the metadata strength from s = 0 to s = 1 shifts the 
power grid communities from geographic to energy price–coherent 
modules. With metadata strength s = 0, the resulting modules map 
to densely connected regions such as Spain, Italy, western France, 
and eastern Europe. Germany and the Benelux countries divide into 
three modules, including the higher-priced region in southern France 

(Fig. 10B). When s = 0.3, the module containing Italy forms a wedge 
that divides the module with higher prices containing southern 
Germany and southern France, and the eastern Europe module grows 
into northern Germany (Fig. 10C). Last, with s = 1, several modules 
form distant colonies in similar-priced areas. The module dominated 
by southern Germany grows toward the Benelux countries with 
small colonies in the module dominated by central France, which, 
in turn, forms a colony in the higher-priced region in southern 
France. With its long-range connections, Sicily splits from the lowest- 
priced regions of Italy and joins northern Germany (Fig. 10D). 

Fig. 8. Metadata-based communities in the Lyon School contact network. Communities in the Lyon School contact graph, where nodes correspond to individuals and 
each node is assigned a label corresponding to the class it belongs to. Teachers are put in a separate class. The probability to encode a transition is p if both nodes belong 
to the same class and p/c otherwise. We show the results or p = 1 where c = 1 (A), c = 2 (B), and c = 1000 (C). (D to F) Class overlapping assignment     ̃  m    ij    when c = 1 (D), c = 2 
(E), and c = 1000 (F). Nodes are colored according to their community assignment, while markers indicate their metadata information.

Fig. 9. Partitions obtained for the obesity categories in the commuting network of London. Community detection analysis on the commuting network of London 
when the metadata are set according to the obesity category. Regions in classes 1 and 4 corresponding to those where obesity is less and more prevalent, respectively. 
For a probability p = 1, partitions when c = 1.25 (A), c = 1.66 (B), c = 4 (C), and c = 10 (D), with regions colored according to their community assignment. (E to G) Class 
overlapping     ̃  m    ij    when c = 1.25 (E), c = 1.66 (F), and c = 4 (G). (H) The class assignment for each of the regions studied.
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SECTION S4: ADDITIONAL RESULTS FOR THE COMMUTING NETWORK OF LONDON

Figure S10: Partitions obtained for the income categories in the commuting network of

London. Community detection analysis on the commuting network of London when the metadata is
set according to the income category. With regions in class 1 and 4 corresponding to the last and most
wealthy, respectively. For a probability p = 1, partitions when c = 1.25 (a), c = 1.66 (b) and c = 4
(c), with regions colored according to their community assignment. (d) Class assignment for each of the
regions studied. e-g Class overlapping emij when c = 1.25 (e), c = 1.66 (f) and c = 4 (g).

Figure S11: Partitions obtained for the deprivation categories in the commuting network of

London. Community detection analysis on the commuting network of London when the metadata is
set according to the deprivation category. With regions in class 1 and 4 corresponding to the last and
most wealthy, respectively. For a probability p = 1, partitions when c = 1.25 (a), c = 1.66 (b) and c = 4
(c), with regions colored according to their community assignment. (d) Class assignment for each of the
regions studied. e-g Class overlapping emij when c = 1.25 (e), c = 1.66 (f) and c = 4 (g).

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks
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modules and organized into six or seven top-level super modules. 
Because we are interested in the grid’s large-scale organization, we 
restricted Infomap to search for partitions with seven top-level mod-
ules, again using 100 trials.

Increasing the metadata strength from s = 0 to s = 1 shifts the 
power grid communities from geographic to energy price–coherent 
modules. With metadata strength s = 0, the resulting modules map 
to densely connected regions such as Spain, Italy, western France, 
and eastern Europe. Germany and the Benelux countries divide into 
three modules, including the higher-priced region in southern France 

(Fig. 10B). When s = 0.3, the module containing Italy forms a wedge 
that divides the module with higher prices containing southern 
Germany and southern France, and the eastern Europe module grows 
into northern Germany (Fig. 10C). Last, with s = 1, several modules 
form distant colonies in similar-priced areas. The module dominated 
by southern Germany grows toward the Benelux countries with 
small colonies in the module dominated by central France, which, 
in turn, forms a colony in the higher-priced region in southern 
France. With its long-range connections, Sicily splits from the lowest- 
priced regions of Italy and joins northern Germany (Fig. 10D). 

Fig. 8. Metadata-based communities in the Lyon School contact network. Communities in the Lyon School contact graph, where nodes correspond to individuals and 
each node is assigned a label corresponding to the class it belongs to. Teachers are put in a separate class. The probability to encode a transition is p if both nodes belong 
to the same class and p/c otherwise. We show the results or p = 1 where c = 1 (A), c = 2 (B), and c = 1000 (C). (D to F) Class overlapping assignment     ̃  m    ij    when c = 1 (D), c = 2 
(E), and c = 1000 (F). Nodes are colored according to their community assignment, while markers indicate their metadata information.

Fig. 9. Partitions obtained for the obesity categories in the commuting network of London. Community detection analysis on the commuting network of London 
when the metadata are set according to the obesity category. Regions in classes 1 and 4 corresponding to those where obesity is less and more prevalent, respectively. 
For a probability p = 1, partitions when c = 1.25 (A), c = 1.66 (B), c = 4 (C), and c = 10 (D), with regions colored according to their community assignment. (E to G) Class 
overlapping     ̃  m    ij    when c = 1.25 (E), c = 1.66 (F), and c = 4 (G). (H) The class assignment for each of the regions studied.
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SECTION S4: ADDITIONAL RESULTS FOR THE COMMUTING NETWORK OF LONDON

Section S4: Additional results for the commuting network of

London

We provide in Supplementary Figs. S8, S9, S11, S12 and S10 additional results for the London commuting
graph when classes are assigned according to unemployment, life expectancy, deprivation, fraction of
white individuals and obesity respectively.

Figure S8: Partitions obtained for the unemployment categories in the commuting network

of London. Community detection analysis on the commuting network of London when the metadata is
set according to the unemployment category. With regions in class 1 and 4 corresponding to the last and
most wealthy, respectively. For a probability p = 1, partitions when c = 1 (a), c = 2 (b) and c = 1000
(c), with regions colored according to their community assignment. (d) Class assignment for each of the
regions studied. e-g Class overlapping emij when c = 1 (e), c = 1.5 (f) and c = 1000 (g).

Figure S9: Partitions obtained for the life expectancy categories in the commuting network

of London. Community detection analysis on the commuting network of London when the metadata
is set according to the life expectancy category. With regions in class 1 and 4 corresponding to the last
and most wealthy, respectively. For a probability p = 1, partitions when c = 1.25 (a), c = 1.66 (b) and
c = 4 (c), with regions colored according to their community assignment. (d) Class assignment for each
of the regions studied. e-g Class overlapping emij when c = 1.25 (e), c = 1.66 (f) and c = 4 (g).

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks
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modules and organized into six or seven top-level super modules. 
Because we are interested in the grid’s large-scale organization, we 
restricted Infomap to search for partitions with seven top-level mod-
ules, again using 100 trials.

Increasing the metadata strength from s = 0 to s = 1 shifts the 
power grid communities from geographic to energy price–coherent 
modules. With metadata strength s = 0, the resulting modules map 
to densely connected regions such as Spain, Italy, western France, 
and eastern Europe. Germany and the Benelux countries divide into 
three modules, including the higher-priced region in southern France 

(Fig. 10B). When s = 0.3, the module containing Italy forms a wedge 
that divides the module with higher prices containing southern 
Germany and southern France, and the eastern Europe module grows 
into northern Germany (Fig. 10C). Last, with s = 1, several modules 
form distant colonies in similar-priced areas. The module dominated 
by southern Germany grows toward the Benelux countries with 
small colonies in the module dominated by central France, which, 
in turn, forms a colony in the higher-priced region in southern 
France. With its long-range connections, Sicily splits from the lowest- 
priced regions of Italy and joins northern Germany (Fig. 10D). 

Fig. 8. Metadata-based communities in the Lyon School contact network. Communities in the Lyon School contact graph, where nodes correspond to individuals and 
each node is assigned a label corresponding to the class it belongs to. Teachers are put in a separate class. The probability to encode a transition is p if both nodes belong 
to the same class and p/c otherwise. We show the results or p = 1 where c = 1 (A), c = 2 (B), and c = 1000 (C). (D to F) Class overlapping assignment     ̃  m    ij    when c = 1 (D), c = 2 
(E), and c = 1000 (F). Nodes are colored according to their community assignment, while markers indicate their metadata information.

Fig. 9. Partitions obtained for the obesity categories in the commuting network of London. Community detection analysis on the commuting network of London 
when the metadata are set according to the obesity category. Regions in classes 1 and 4 corresponding to those where obesity is less and more prevalent, respectively. 
For a probability p = 1, partitions when c = 1.25 (A), c = 1.66 (B), c = 4 (C), and c = 10 (D), with regions colored according to their community assignment. (E to G) Class 
overlapping     ̃  m    ij    when c = 1.25 (E), c = 1.66 (F), and c = 4 (G). (H) The class assignment for each of the regions studied.
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N E T W O R K  S C I E N C E

Mapping nonlocal relationships between metadata 
and network structure with metadata-dependent 
encoding of random walks
Aleix Bassolas1,2,3†, Anton Holmgren4†, Antoine Marot5, Martin Rosvall4, Vincenzo Nicosia1*

Integrating structural information and metadata, such as gender, social status, or interests, enriches networks and 
enables a better understanding of the large-scale structure of complex systems. However, existing approaches to augment 
networks with metadata for community detection only consider immediately adjacent nodes and cannot exploit 
the nonlocal relationships between metadata and large-scale network structure present in many spatial and social 
systems. Here, we develop a flow-based community detection framework based on the map equation that integrates 
network information and metadata of distant nodes and reveals more complex relationships. We analyze social and 
spatial networks and find that our methodology can detect functional metadata- informed communities distinct 
from those derived solely from network information or metadata. For example, in a mobility network of London, we 
identify communities that reflect the heterogeneity of income distribution, and in a European power grid network, we 
identify communities that capture relationships between geography and energy prices beyond country borders.

INTRODUCTION
The network structure of a complex system provides meaningful 
insights into its function, dynamics, and evolution (1–3). For exam-
ple, partitioning networks into internally densely connected commu-
nities or modules of nodes helps researchers understand how systems 
organize at different scales (4–6). However, focusing only on the net-
work topology disregards potentially available metadata, link types, 
or node labels that can enrich the plain network and provide valu-
able information about its large-scale organization (7, 8).

Researchers have used such metadata to predict missing links 
in real-world networks (9, 10) and to better characterize dynamics 
and polarization (11). Encoding link-related metadata with multi-
layer networks has also proven effective for understanding various 
processes in systems with diverse relationships (12–14). A promis-
ing research direction is to integrate metadata in community detec-
tion, the art of finding important mesoscale structures in networks 
that can guide further research into understanding the functioning 
of a system.

Different techniques to include exogenous information in com-
munity detection methods have been recently explored (15, 16) to 
account for node-related metadata and to improve the quality and 
meaning of partitions based exclusively on node-to-node relation-
ships (17–19). For instance, extended stochastic block models and 
flow-based methods can exploit metadata to overcome the detect-
ability limit when local correlations between network communities 
and metadata are present: Combining network structure and meta-
data enables more accurate community detection when densely con-
nected nodes share similar metadata (17).

However, when nodes with similar metadata are far apart in the 
network, such that no local correlations between node metadata 

and network structure exist, the presence of metadata adds no value 
to the extended stochastic block models (16, 17). Similarly, en-
coding metadata in flow-based modules without local correlations 
with the network structure, using the so-called content map equa-
tion, further divides the structural communities without revealing 
non local relationships between node metadata and network com-
munities (18, 19). While these methods have valid use cases, they 
cannot ad ditively combine network structure and metadata to high-
light either the network structure or the metadata or any blend-
ing of the two, because they cannot exploit nonlocal relationships 
between them.

To explore the mesoscopic structure of nonlocal relations be-
tween structural information and node metadata, we take a flow-
based approach relying on the map equation but distinct from the 
content map equation. The map equation casts community detec-
tion into a compression problem by estimating the most efficient 
modular encoding scheme to represent random walk transitions 
between nodes in communities. The standard map equation en-
codes every step of a random walk, and the content map equation 
uses different codes for network transitions and metadata. Instead, 
we incorporate metadata by letting the encoding probability de-
pend on the metadata of the next step’s target node and the previ-
ously encoded node (Fig. 1). This metadata-dependent encoding 
scheme provides a natural way to integrate possible nonlocal rela-
tionships between structural graph properties and metadata. By 
linking the random walk’s encoding probability to the metadata, 
our metadata-dependent encoding framework allows us to contin-
uously tune the relative importance of network structure and meta-
data and to incorporate field-specific knowledge in the network 
analysis. For example, in synthetic graphs without local correlations 
between structure and metadata, our framework merges distant nodes 
with matching metadata depending on the mesoscale properties 
of the graph.

We show that modular compression of random walks with metadata- 
dependent encoding probabilities on various real-world networks 
reveals a variety of functional metadata-informed communities. We 
find that many social and spatial systems allow metadata-enriched 
partitions that differ substantially from those obtained from either 
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3. Mapping network flows 
with metadata-dependent encoding 
exploits nonlocal relationships

Random walks with metadata-dependent 
encoding probabilities reveals functional 
metadata-informed communities 



CONCLUSION

Random walks with metadata-dependent 
encoding probabilities integrate structural 
and metadata information beyond nodes’ 
immediate neighbors, revealing functional 
metadata-informed communities



CONCLUSION

The map equation framework with a 
Bayesian estimate of the transition rates 
provides a principled approach to mapping 
flows on multilayer networks with 
incomplete observations
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