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Tumour heterogeneity - a challenge also in the immuno-oncology era

@ Tumor heterogeneity @ Tumor growth kinetics @ Undruggable

Cells acquire genomic Tumors with low rates of genomic drivers
alterations that generate spatial growth are typically i.e., MYC and TP53
and temporal genetic diversity incurable with therapies
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Improved companion diagnostics —

when more complex molecular traits are measured

Cell type 1 Cell type 2 Cell type 3
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FRESH FROZEN TISSUE

Why use spatially-guided omics analyses?

FFPE TISSUE BLOCK

High plex but no cell type specific info: bulk RNA-seq

High plex analyses and spatially-resolved individual cell types
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High plex and individual cell types resolved but no info on
spatial localization: scRNA-seq



Method of the Year: spatially resolved
transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.

Vivien Marx

NATURE METHODS | VOL18 | JANUARY 2021|9-14 | www.nature.com/naturemethods




Spatial methods timeline
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Lewis et al, Spatial omics and multiplexed imaging to

explore cancer biology. Nature Methods 2021
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About | GeoMx DSP | nCounter | Contact

Welcome to SpatialOmics@LU Contact
SpatialOmicsLU@immun.lth.se

We offer spatial expression analysis on the GeoMx Digital Spatial Profiling platform capable of measuring and spatially Lina Olsson

resolving protein and RNA expression in specific regions of tissue sections. Facility Manager

+46 46 222 15 42

We also offer targeted expression analysis with the nCounter platform, suitable for expression analysis of up to 800

targets and ideal for identifying disease specific biomarkers or for investigating specific biological pathways. Visiting address:

We are on the 3rd floor in
Our services are available to researchers from both academic and non-academic sites in and outside Sweden. building 406 at Medicon Village
in Lund

Immunotechnology

Find other infrastructures at the
department of
Immunotechnology

a



Principles of the GeoMx DSP technology

Tissue section is stained
with up to three antibodies
to visualize morphology

RNA reagents

region-specific

(UV cleavabile linker) UV-dependent
cleavage
Photocleavable
Target linker . X
complimentary l T
sequence . = ..
\N DSP barcode . kkk
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Target RNA ; A X = )

Selected tissue regions are exposed to UV light —> indexing
oligos/barcodes are released, collected and quantitated



Geometric

CD3 PanCK

What is the
heterogeneity of
expression in different
regions of my tissue?

Selection of regions of interest (ROI)

Segmentation Cell Type Specific Contour Gridded

Q

1CK DNA

What is the expression What is the expression How does the immune What novel targets are
profile of distinct profile of a specific cell environment change on uncovered with deep
biological compartments population in my tissue? either side of an mapping of a specific

(e.g., Tumor-TME)? infiltrate boundary? tissue region?



Image slide and select UV-cIe'ave'oIig.os
Regions-of-Interest (ROIs) off antibodies in ROI
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« Protein detection up to 84 plex

*  RNA detection ~1800 plex (CTA) or 20 000 plex (whole transcriptome)



Why use spatially-guided
omics analyses?

Lewis et al, Spatial omics and multiplexed imaging to
explore cancer biology. Nature Methods 2021

Cancer cell intrinsic

How do cancer
subclones grow in 3D?

How do cancer
subclones interact
with each other and with
Spatial

cancer
biology

How does the TME
shape tumor clonality in
primary and distant sites?

Cancer cell extrinsic

How do cancer
subclones
evolve over time?

subclones evade the
immune system and
cancer treatment?

s

How does the TME
influence the growth of
cancer subclones
at the molecular level?




NORI)IC I YM pH() MA (;ROUP HOME CONTACT  NEWSLETTER REFERENCES DOCUMENTS a

DEDICATED TO PROMOTING RESEARCH IN TREATMENT, BIOLOGY AND ‘; {; ﬁ b
EPIDEMIOLOGY OF MALIGNANT LYMPHOMAS IN THE NORDIC COUNTRIES

WORKING GROUPS ~ NLG GUIDELINES =~ NLG PROTOCOLS =~ NATIONAL LYMPHOMA GROUPS = NLGSTUDY CENTERS =~ PLENARY MEETING ~ GUEST LECTURERS = CLINICAL TRIAL OFFICE
¢ LTS v..‘; [N et = 1 i ® B/ ‘ " d "_’,
! b, y! i > | ¥|
’ o

BIO-MUSE

* Predictive and prognostic BIOmarkers in patients with

* Mycosis FUngoides and Sézary syndromE

Individual collaborations on solid cancer:
Lung cancer — Patrick Micke, UU
Ovarian cancer — Karin Sundfeldt GU
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Research Paper [ OpenAccess © @ G &

Infiltration of CD163-, PD-L1- and FoxP3-positive cells adversely
affects outcome in patients with mantle cell lymphoma
independent of established risk factors

Joana M. Rodrigues, Anna Nikkarinen, Peter Hollander, Caroline E. Weibull, Riikka Raty, Arne Kolstad,
Rose-Marie Amini, Anna Porwit, Mats Jerkeman, Sara Ek 4, Ingrid Glimelius



Digital spatial profiling of mantle cell lymphoma

In collaboration with Mats Jerkeman and Anna Porwit

I
Spatially-resolved omics analyses combined with machine learning strategies Lavanya Lokhande Joana de Matos Rodrigues

Ba Ckground identifies disease-associated targets and improve clinical decision making

* Increased interest for immune-
modulatory treatment in MCL —
companion diagnostics are lacking.

«  We recently showed that M2
macrophages have a poor
prognostic impact- but the function
in MCL is not described.

X 20 000 plex

Main objectives
1. T-cell and tumor cell adaptation in the presence of macrophages. Guide therapeutic strategies

2. Detailed investigations of T-cell subtype functionality (mRNA profiling of four subsets) in relation to
genetic and clinicopathological parameters. Companion diagnostic insight

3. Inter and intra patient tumor hetrogeneity (mRNA profiling for target discovery)



In depth analysis of the microenvironment
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How does the distance between macrophages and
tumor cells affect the molecular profile of the cells?

Have the iImmune-composition/proximity between
tumor and immune cells an impact on outcome?
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MCL microenvironment
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Digital spatial profiling of NSCLC

In collaboration with Professor Patrick Micke, Uppsala University

Ass. Professor Anna Gerdtsson

Background
5 stroma

« Checkpoint inhibition
approved for first- and
second line treatment of
advanced stage NSCLC

« Limited performance of
PD-L1 as predictive
biomarker
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Objectives
1. Deconvolute composition of spatial CD45 niches (infiltrating, stroma, TLS)
2. Assess spatial phenotypes in relation to PD-L1 status and survival

3. Characterize spatial heterogeneity of immune infiltration within and across tumors




Selection and segmentation of CD45 regions

* AQOlIs defined by
segmentation of
CD45+, Syto13+
cells.

 Antibody-coupled
oligo identifiers
released from each

AOIl by UV
illumination

* Collected in separate
plate wells, and

210111-LC-104 | 087 | CD45 pos cells

* TMA with duplicate 1mm cores quantified after
« Stained with Syto13, Pan-CK, CD45 hybridization to
color-coded

barcodes.



Annotation of distinct spatial immune ROls
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* ROls classified by spatial
distribution:
« stromal CD45

« infiltrated CD45 (dispersed
among tumor cells)

* TLS (dense stromal CD45
compartments)

« Multiple ROls, frequently of
different spatial types, were
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General conclusions so far

« Spatial proteomics can reveal functional differences In
Immune cells based on their location and proximity to other
cells

« Spatial proteomics reveal tumor heterogeneity related to
Immune infiltration of specific cells
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Data Processing requires development of novel bioinformatic workflow
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In house development, with
support from collaborators

Lavanya Lokhande
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NATIONAL BIOINFORMATICS
INFRASTRUCTURE SWEDEN

Louella Vasquez and Paul Theodor Pyl
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CellexalVR: A virtual reality platform to visualize and analyze single-cell omics data

Oscar Legetth, Johan Rodhe, Stefan Lang, Parashar Dhapola, Mattias Wallergard, Shamit Soneji

iScience

Volume 24 Issue 11 (November 2021)
DOI: 10.1016/j.is¢i.2021.103251

Cell

P R E S S
Copyright © 2021 The Author(s)
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ready input files
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Data integration

Early integration: Concatenate omics . e 4% Single-omic clustering

N
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Late integration: Cluster omics separately@ @ __—_ Integrate clusterings
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Statistical methods: Probabilistic modeling

Rappoport et al, 2018
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Multi-Omics Factor Analysis—a framework for
unsupervised integration of multi-omics data sets

Ricard Argelaguet™ T, Britta Velten*"(®, Damien Arnol*(2, Sascha Dietrich®*(®, Thorsten Zenz***({,

John C Marioni*®’@®, Florian Buettner™®"(®, Wolfgang Huber>” @ & Oliver Stegle™*™

Bioinformatics, 35(17), 2019, 3055-3062

doi: 10.1093/bioinformatics/bty1054

Advance Access Publication Date: 18 January 2019
Original Paper

Systems biology

DIABLO: an integrative approach for identifying
key molecular drivers from multi-omics assays

Amrit Singh’, Casey P. Shannon', Benoit Gautier?, Florian Rohart?,
Michaél Vacher?, Scott J. Tebbutt' and Kim-Anh Lé Cao®*

"Prevention of Organ Failure (PROOF) Centre of Excellence, University of British Columbia, Vancouver, BC, Canada,
The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland,
Australia, 3Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia,
*Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbhane,
Queensland, Australia and ®Melbourne Integrative Genomics, School of Mathematics and Statistics, The



Ricard Argelaguet et al ~ Multi-Omics Factor Analysis Molecular Systems Biology
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Figure 1. Multi-Omics Factor Analysis: model overview and downstream analyses.

A Model overview: MOFA takes M data matrices as input (Y’,.. ., Y™), one or more from each data modality, with co-occurrent samples but features that are not
necessarily related and that can differ in numbers. MOFA decomposes these matrices into a matrix of factors (Z) for each sample and M weight matrices, one for each
data modality (W*,., W™). White cells in the weight matrices correspond to zeros, i.e. inactive features, whereas the cross symbol in the data matrices denotes
missing values.

B The fitted MOFA model can be queried for different downstream analyses, including (i) variance decomposition, assessing the proportion of variance explained by
each factor in each data modality, (i) semi-automated factor annotation based on the inspection of loadings and gene set enrichment analysis, (iii) visualization of
the samples in the factor space and (iv) imputation of missing values, including missing assays.
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