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What We Do

» Model of diffusion of an article on a social media network
® Game-theoretic model of user sharing decisions (“Bayesian framework”)

® How does the social media sharing network affect total diffusion?

» Platform incentives and algorithms that boost content

® If the platform can “shape” the sharing network, how should it do so?

® What are the societal impacts of these algorithms?

> Regulatory solutions

® [iffective design to mitigate the spread of harmful content
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How do the social media sharing network and the
attributes of the content impact its diffusion?

Platform’s Al: Maximize total shares (proxy for user
engagement) in equilibrium.

Societal Objective: Minimize divergence of beliefs
from the truth (ex ante unknown).



Empirical Facts: Why Users Share

» Users want to share content they believe to be truthful and not contain
misinformation (Pennycook et al (2021)).
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Empirical Facts: Why Users Share

» Users want to share content they believe to be truthful and not contain
misinformation (Pennycook et al (2021)).

» Users derive value from positive peer encouragement on social media
(Eckles et al (2016); Duffy et al (2020)), aka network effects.
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Empirical Facts: Why Users Share

» Users want to share content they believe to be truthful and not contain
misinformation (Pennycook et al (2021)).

» Users derive value from positive peer encouragement on social media
(Eckles et al (2016); Duffy et al (2020)), aka network effects.

 Users sutfer reputational costs for getting called out for sharing
misinformation (Altay et al (2020)).

» Users often engage in criticisms of available content and inform others of
misinformation they share on social media (Kim et al (2020) during 2018
midterm elections).
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A Single Article

» Study the diffusion of a single article that exogenously arrives.

> Underlying state of the world 8 € {L, R} that is unknown.

> Article has three properties

® Message: A binary message that either argues for L. or R. [Observed|

® Veracity: Binary indicator of whether the article contains misinformation
or not. [Unobserved|

® Reliability: A score between 0 and 1 indicating the probability of
containing misinformation unconditional on the message. |Observed|

> Assumption: Truthful articles more often argue for €; misinformation
articles (weakly) more often argue for the opposite of 6.
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Social Media Network

> Consists of users with heterogenous priors (“biases”) b; about 8 = R.

b, = 0.3 e b, = 0.7
® 3B @he Baily 1
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» 1r; can be computed straightforwardly by applying Bayes’ rule:

o (pbi + 1 —p)(1 = b))r
"~ (phi+ A =p)A=-b))r+(gb;+ 1 — @)1 —b))(1 —7)

where p = P(Blv=T)>1/2 and g =P(OB|lv=M) < 1/2.



Social Media Network

> Consists of users with heterogenous priors (“biases”) b; about 8 = R.
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Strategic User Behavior

> Users can Share, Ignore, or Dislike (call out) an article.
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Strategic User Behavior

> Users can Share, Ignore, or Dislike (call out) an article.

fu

Harbhajan Turbanator @ @harb... - 3h

PFIZER AND BIOTECH Vaccine:
Accuracy *94%

Moderna Vaccine:

Accuracy *94.5%

Oxford Vaccine:

Accuracy *90%

Indian Recovery rate (Without Vaccine):
93.6%

Do we seriously need vaccine (%) ("2
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eplying to @harbhajan_singh
93.6% recovery means 6.4% die. 95%
vaccine accuracy means there is 95%
chance you won't be in that 6.4%.
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Strategic User Behavior

> Users can Share, Ignore, or Dislike (call out) an article.

» Payott to Ignore action is normalized at 0.
~ Payoff to Dislike action depends only on m; (and is decreasing in ;).

» Share action causes article to spread to all of agent i s neighbors.

~ Payoff to Share action has two components:

® Network-independent component that is increasing in ;.

® Network-dependent component that is increasing in S; (number of re-
shares from peers) and decreasing in D; (number of dislikes from peers).
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Diffusion Process

> Article diffuses depending on Share actions taken in equilibrium.

® Markovian process: Make the same decision regardless of the history of
the article’s spread. (Solution concept: Bayes-Nash equilibrium.)

® Interdependent process: Cannot Share if one never receives the article.
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Characterizing the Equilibria

» To understand diffusion must first understand the equilibrium strategies of
the agents in the network.

» Fix message m = R without loss of generality.

» Definition: A cutoff strategy is one where for every agent i, there exist
cutoffs 0 < b; < b;” < 1 such that

Right-Wing Article
e If b; < b;, the agent plays Dislike;

Dislike ~ Ignore ~~ Share
b; b;”

| |

| |
e If b; < b; <b;”, the agent plays Ignore; - :
\_ _/

e

e If b; > b, the agent plays Share. N

> Theorem 1: All equilibria are in cutoff strategies, there exists at least one
equilibrium, and there is a most-sharing and a least-sharing equilibrium.
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> Supermodular game.

> Strategic complementarity
in sharing actions.

» Concentrate on most
sharing.

® Well-behaved comparative statics for
extremal equilibria.

® Most concerning for the spread of
misinformation.

> Theorem 1: All equilibria are in cutoff strategies, there exists at least one
equilibrium, and there is a most-sharing and a least-sharing equilibrium.




Diffusion Process = User Engagement
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User Engagement in Island Networks

> Focus on the special case of island network topologies (with k islands).

® Users are more likely to be connected with those of similar beliefs.

> Belief distributions satisty H; = H, > -+ # Hj, in the FOSD sense.

» The degree of “homophily” is measured by ». and p,.



How does homophily affect the diffusion of
content likely to contain misinformation?
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Discipline Effect: Low Reliability

~ When r is small, share payoff (from truth) is low, can bound the cutoffs on
less extreme islands.

~ Topkis’s theorem (Monotone Comparative Statics): Equilibrium cutoffs
increase on other islands with a decrease in homophily.

Less sharing

(b3, b3") < (b3, b3™)

Less sharing

(b3, b3") < (b3, b3")

Less sharing

(b3, bi") < (b, by

More sharing

(b1, bi") > (b1, bi™)




The Discipline Effect

>~ Consider just two islands for simplicity.

L island R island L island R island

High Homophily Low Homophily
(Low pgq / High ps) (High pg / Low ps)

> Discipline drops (and sharing increases) when homophily increases.

® Neighbors look more like you and will have similar assessments of truth.

® Less cautious about how the article you share might perceived.




The Circulation Effect

> Once again, consider just two islands for simplicity.

L island R island L island R island

High Homophily Low Homophily
(Low pgq / High ps) (High pg / Low ps)

> Circulation increases (and sharing increases) when homophily decreases.

® 'ew connections to outside groups — article is less likely to break out.

® Ditfusion process may be confined to small subset of users.
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Impact of Misinformation

» Theorem 2: There exist 0 < r; <1, <1 such that:

® [f r < ry, diffusion increases when homophily increases;

Discipline Effect > |Circulation Effect

® If r > r,, diffusion increases when homophily decreases.

Discipline Effect < |Circulation Effect

® Higher homophily in the network increases the spread of the article
when it is likely to contain misinformation.




How should the platform shape the sharing
network to maximize user engagement?
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» Platform shapes the sharing network by attenuating or accentuating links
in the network (e.g., through boosting or targeted recommendations).

> Platform also selects the seed agent to maximize diffusion (proxy for
profit).



Platform’s Profit-Maximizing Solution

> Profit-maximizing (PM) sharing network also takes the form of an island
structure.
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> Profit-maximizing (PM) sharing network also takes the form of an island
structure.

> Theorem 3: There exists a reliability threshold r™ € (0,1) such that:

® I[f r > r", the PM sharing network has maximal connectivity;

® If r <r”, the PM sharing network has maximal homophily.



Intuition

» Balance between discipline and circulation effects:
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» Balance between discipline and circulation effects:
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> Algorithmically-induced echo chamber (“filter bubble”) created by the platform
to maximize diffusion precisely when content tends to be low reliability.
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Impact of the Result

1. Global characterization of the profit-maximizing sharing
network for the platform.

2. Intuitive interpretation in terms of empirically-documented
filter bubble algorithms (Levy (2021)).

3. Computational simulations confirm similar (but less sharp)
algorithms for coarser initial social network topologies (i.e.,
with fewer initial islands).



How should a regulator implement policies to
counteract the spread of misinformation?
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How should a regulator implement policies to
counteract the spread of misinformation?
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There exists 1z, € (0,1) such that if r > 1z, (resp. r < 1ze4) , higher (resp.
lower) content diffusion leads to greater welfare.



Potential Policies

» Content moderation: A regulator removes a fraction of misinformation.

~ Provenance / Accuracy Nudging: Equip users themselves with the tools to
fact-check and verity content.

~ Performance Targets: Make platforms responsible for self-monitoring by
setting necessary misinformation “targets’.

- Network-based (AI) Regulations: Regulate the algorithms that lead to
problematic social media sharing networks.




Potential Policies

» Content moderation: A regulator removes a fraction of misinformation.

~ Provenance / Accuracy Nudging: Equip users themselves with the tools to
fact-check and verity content.

~ Performance Targets: Make platforms responsible for self-monitoring by
setting necessary misinformation “targets’.

- Network-based (AI) Regulations: Regulate the algorithms that lead to
problematic social media sharing networks.

> All can work if designed well, but all can “backfire” if not.




Potential Policies

» Content moderation: A regulator removes a fraction of misinformation.

~ Provenance / Accuracy Nudging: Equip users themselves with the tools to
fact-check and verity content.

~ Performance Targets: Make platforms responsible for self-monitoring by
setting necessary misinformation “targets’.

- Network-based (AI) Regulations: Regulate the algorithms that lead to
problematic social media sharing networks.

> All can work if designed well, but all can “backfire” if not.

> Different advantages/disadvantages of each (see paper).



An Example of Backfire

Censorship / Content Moderation
(remove some misinformation)



Content Moderation

American News
Yesterday at 9:.00am - &

We all know Denzel has stood up to Obama before. Well, he's making
another awesome move.

Denzel is now team Trump!

Do you support him?

Denzel Washington Backs Trump In The Most Epic Way
Possible

While the rest of liberal Hellyweod is still trying to demonize Donald Trump, Denzel
Washington is speaking out in favor of the president-elect. “We need more and...
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Content Moderation

| American News
Yesterday at 9:.00am - &

We all know Denzel has stood up to Obama before. Well, he's making
another aweseme move.

Denzel is now team Trump!

Do you support him?

Denzel Washington Backs Trump In The Most Epic Way
Possible

While the rest of liberal Hellywoed is still trying to demonize Donald Trump, Denzel
\Washington is speaking out in faver of the president-elect. “We need more and...
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Detect 1/3 of the misinformation immediately and remove |it.




Removed Article

~ Recommended article profit-maximizing sharing network:




Removed Article

~ Recommended article profit-maximizing sharing network:

~ Content moderation policy removes the article from circulation, reduces sharing
(and diffusion) of misinformation.




Undetected Article

> If the article is not detected, generates an implied truth effect.
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Undetected Article

> If the article is not detected, generates an implied truth effect.

® Platform algorithm adapts as well.

- Article may spread at a rate greater than 3/2 the original rate!
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Conclusion

» Strategic model of user sharing behavior and diffusion of an article online.

® Network homophily aids an article’s spread when it is more likely to
contain misinformation (and hurts the spread of more reliable content).

>~ Platform algorithms leverage this fact to increase engagement and
diffusion.

® Generate artificial echo chambers (“filter bubbles”) for low-reliability
content. Platform algorithms play smaller role for more reliable content.

» Regulatory policy can be etfective, but if not carefully calibrated, can lead
to even worse societal outcomes.



THANK YOU!



