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Broader Research Agenda
‣ At the interface of computer science, operations research, and economics.
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What We Do
‣ Model of diffusion of an article on a social media network
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What We Do
‣ Model of diffusion of an article on a social media network

• Game-theoretic model of user sharing decisions (“Bayesian framework”)

• How does the social media sharing network affect total diffusion?

‣ Platform incentives and algorithms that boost content

• If the platform can “shape” the sharing network, how should it do so?

• What are the societal impacts of these algorithms?

‣ Regulatory solutions

• Effective design to mitigate the spread of harmful content
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How do the social media sharing network and the 
attributes of the content impact its diffusion?
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How do the social media sharing network and the 
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Platform’s AI: Maximize total shares (proxy for user 
engagement) in equilibrium.

22



How do the social media sharing network and the 
attributes of the content impact its diffusion?

Platform’s AI: Maximize total shares (proxy for user 
engagement) in equilibrium.

Societal Objective: Minimize divergence of beliefs 
from the truth (ex ante unknown). 
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Empirical Facts: Why Users Share
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‣ Users want to share content they believe to be truthful and not contain 
misinformation (Pennycook et al (2021)).
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Empirical Facts: Why Users Share
‣ Users want to share content they believe to be truthful and not contain 

misinformation (Pennycook et al (2021)).

‣ Users derive value from positive peer encouragement on social media 
(Eckles et al (2016); Duffy et al (2020)), aka network effects.

‣ Users suffer reputational costs for getting called out for sharing 
misinformation (Altay et al (2020)).

‣ Users often engage in criticisms of available content and inform others of 
misinformation they share on social media (Kim et al (2020) during 2018 
midterm elections).
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A Single Article
‣ Study the diffusion of a single article that exogenously arrives.

‣ Underlying state of the world 𝜃 ∈ {𝐿, 𝑅} that is unknown. 

‣ Article has three properties

• Message: A binary message that either argues for L or R. [Observed]

• Veracity: Binary indicator of whether the article contains misinformation 
or not. [Unobserved] 

• Reliability: A score between 0 and 1 indicating the probability of 
containing misinformation unconditional on the message. [Observed]

‣ Assumption: Truthful articles more often argue for 𝜃; misinformation 
articles (weakly) more often argue for the opposite of 𝜃.
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Social Media Network
‣ Consists of users with heterogenous priors (“biases”) 𝑏! about 𝜃 = 𝑅.

L
𝑟 = 0.8

𝑏! = 0.3 𝑏! = 0.7
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Social Media Network
‣ Consists of users with heterogenous priors (“biases”) 𝑏! about 𝜃 = 𝑅.

‣ 𝜋! can be computed straightforwardly by applying Bayes’ rule:

where 𝑝 = 𝑃 𝜃 𝜈 = 𝑇) > 1/2 and 𝑞 = 𝑃 𝜃 𝜈 = 𝑀) ≤ 1/2. 

L
𝑟 = 0.8𝜋! = 0.91 𝜋! = 0.74Belief article is 

truthful

𝑏! = 0.3 𝑏! = 0.7
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Social Media Network
‣ Consists of users with heterogenous priors (“biases”) 𝑏! about 𝜃 = 𝑅.

‣ Agents arranged in a (stochastic) “sharing” network (link matrix 𝑃).  

𝑏! ∈ 0,1 ∼ 𝐻!

𝑷

L
𝑟 = 0.8𝜋! = 0.91 𝜋! = 0.74

𝑏! = 0.3 𝑏! = 0.7
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Strategic User Behavior
‣ Users can Share, Ignore, or Dislike (call out) an article.
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Share

Dislike

Ignore
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Strategic User Behavior
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‣ Payoff to Ignore action is normalized at 0.
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Strategic User Behavior
‣ Users can Share, Ignore, or Dislike (call out) an article.

‣ Payoff to Ignore action is normalized at 0.

‣ Payoff to Dislike action depends only on 𝜋! (and is decreasing in 𝜋!).
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Strategic User Behavior
‣ Users can Share, Ignore, or Dislike (call out) an article.

‣ Payoff to Ignore action is normalized at 0.

‣ Payoff to Dislike action depends only on 𝜋! (and is decreasing in 𝜋!).

‣ Share action causes article to spread to all of agent 𝑖’s neighbors.
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‣ Users can Share, Ignore, or Dislike (call out) an article.

‣ Payoff to Ignore action is normalized at 0.

‣ Payoff to Dislike action depends only on 𝜋! (and is decreasing in 𝜋!).

‣ Share action causes article to spread to all of agent 𝑖’s neighbors.

‣ Payoff to Share action has two components:

• Network-independent component that is increasing in 𝜋!.
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Strategic User Behavior
‣ Users can Share, Ignore, or Dislike (call out) an article.

‣ Payoff to Ignore action is normalized at 0.

‣ Payoff to Dislike action depends only on 𝜋! (and is decreasing in 𝜋!).

‣ Share action causes article to spread to all of agent 𝑖’s neighbors.

‣ Payoff to Share action has two components:

• Network-independent component that is increasing in 𝜋!.

• Network-dependent component that is increasing in 𝑆! (number of re-
shares from peers) and decreasing in 𝐷! (number of dislikes from peers).

45

𝑈!
(%) = 𝜅𝑆! − 𝑑𝐷!

Can be extended to more 
general supermodular 

functional forms



Strategic User Behavior
‣ Users can Share, Ignore, or Dislike (call out) an article.

‣ Payoff to Ignore action is normalized at 0.

‣ Payoff to Dislike action depends only on 𝜋! (and is decreasing in 𝜋!).

‣ Share action causes article to spread to all of agent 𝑖’s neighbors.

‣ Payoff to Share action has two components:

• Network-independent component that is increasing in 𝜋!.

• Network-dependent component that is increasing in 𝑆! (number of re-
shares from peers) and decreasing in 𝐷! (number of dislikes from peers).
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Diffusion Process
‣ Article diffuses depending on Share actions taken in equilibrium.
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Diffusion Process
‣ Article diffuses depending on Share actions taken in equilibrium.

• Markovian process: Make the same decision regardless of the history of 
the article’s spread. (Solution concept: Bayes-Nash equilibrium.)

• Interdependent process: Cannot Share if one never receives the article.

R
Share

Ignore

Never Receive

Multiple Paths

Share

Dislike

Share

Share

Ignore

Seed Agent Seed Agent
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Characterizing the Equilibria
‣ To understand diffusion must first understand the equilibrium strategies of 

the agents in the network. 
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Characterizing the Equilibria
‣ To understand diffusion must first understand the equilibrium strategies of 

the agents in the network. 

‣ Fix message 𝑚 = 𝑅 without loss of generality.

‣ Definition: A cutoff strategy is one where for every agent 𝑖, there exist 
cutoffs 0 ≤ 𝑏!∗ ≤ 𝑏!∗∗ ≤ 1 such that

• If 𝑏! < 𝑏!∗, the agent plays Dislike;

• If 𝑏!∗ < 𝑏! < 𝑏!∗∗, the agent plays Ignore;

• If 𝑏! > 𝑏!∗∗, the agent plays Share.
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Characterizing the Equilibria
‣ To understand diffusion must first understand the equilibrium strategies of 

the agents in the network. 

‣ Fix message 𝑚 = 𝑅 without loss of generality.

‣ Definition: A cutoff strategy is one where for every agent 𝑖, there exist 
cutoffs 0 ≤ 𝑏!∗ ≤ 𝑏!∗∗ ≤ 1 such that

• If 𝑏! < 𝑏!∗, the agent plays Dislike;

• If 𝑏!∗ < 𝑏! < 𝑏!∗∗, the agent plays Ignore;

• If 𝑏! > 𝑏!∗∗, the agent plays Share.

‣ Theorem 1: All equilibria are in cutoff strategies, there exists at least one 
equilibrium, and there is a most-sharing and a least-sharing equilibrium.
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‣ Theorem 1: All equilibria are in cutoff strategies, there exists at least one 
equilibrium, and there is a most-sharing and a least-sharing equilibrium.
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‣ Theorem 1: All equilibria are in cutoff strategies, there exists at least one 
equilibrium, and there is a most-sharing and a least-sharing equilibrium.
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‣ Supermodular game.

‣ Strategic complementarity   
in sharing actions.
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‣ Theorem 1: All equilibria are in cutoff strategies, there exists at least one 
equilibrium, and there is a most-sharing and a least-sharing equilibrium.

Least Sharing
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‣ Supermodular game.

‣ Strategic complementarity   
in sharing actions. 

‣ Concentrate on most 
sharing.
• Well-behaved comparative statics for 

extremal equilibria. 

• Most concerning for the spread of 
misinformation.
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Diffusion Process è User Engagement
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User Engagement in Island Networks
‣ Focus on the special case of island network topologies (with 𝑘 islands).

• Users are more likely to be connected with those of similar beliefs.
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User Engagement in Island Networks
‣ Focus on the special case of island network topologies (with 𝑘 islands).

• Users are more likely to be connected with those of similar beliefs.

‣ Belief distributions satisfy 𝐻# ≽ 𝐻$ ≽ ⋯ ≽ 𝐻% in the FOSD sense.
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User Engagement in Island Networks
‣ Focus on the special case of island network topologies (with 𝑘 islands).

• Users are more likely to be connected with those of similar beliefs.

‣ Belief distributions satisfy 𝐻# ≽ 𝐻$ ≽ ⋯ ≽ 𝐻% in the FOSD sense.

‣ The degree of “homophily” is measured by 𝑝& and 𝑝'. 

𝑝!

𝑝"

𝑝!

𝑝"
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How does homophily affect the diffusion of 
content likely to contain misinformation?
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Discipline Effect: Low Reliability
‣ When 𝑟 is small, share payoff (from truth) is low, can bound the cutoffs on 

less extreme islands.
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‣ When 𝑟 is small, share payoff (from truth) is low, can bound the cutoffs on 

less extreme islands.
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Almost all sharing 
happens here



Discipline Effect: Low Reliability
‣ When 𝑟 is small, share payoff (from truth) is low, can bound the cutoffs on 

less extreme islands.

‣ Topkis’s theorem (Monotone Comparative Statics): Equilibrium cutoffs 
decrease on island 1 with an increase in homophily.
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Discipline Effect: Low Reliability
‣ When 𝑟 is small, share payoff (from truth) is low, can bound the cutoffs on 

less extreme islands.

‣ Topkis’s theorem (Monotone Comparative Statics): Equilibrium cutoffs 
increase on other islands with a decrease in homophily.

𝑝!

𝑝"

𝑝!

𝑝"

𝑏$∗, 𝑏$∗∗ ≼ (𝑏$∗
*, 𝑏$∗∗

*)

𝑏#∗, 𝑏#∗∗ ≽ (𝑏#∗
*, 𝑏#∗∗

*) 

𝑏(∗, 𝑏(∗∗ ≼ (𝑏(∗
*, 𝑏(∗∗

*)

𝑏)∗, 𝑏)∗∗ ≼ (𝑏)∗
*, 𝑏)∗∗
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Less sharingLess sharing

Less sharing More sharing



The Discipline Effect
‣ Consider just two islands for simplicity.

‣ Discipline drops (and sharing increases) when homophily increases.

• Neighbors look more like you and will have similar assessments of truth.

• Less cautious about how the article you share might perceived.
68
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The Circulation Effect
‣ Once again, consider just two islands for simplicity.

‣ Circulation increases (and sharing increases) when homophily decreases.

• Few connections to outside groups – article is less likely to break out. 

• Diffusion process may be confined to small subset of users.
69
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Impact of Misinformation
‣ Theorem 2: There exist 0 < 𝑟# < 𝑟$ < 1 such that:
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Impact of Misinformation
‣ Theorem 2: There exist 0 < 𝑟# < 𝑟$ < 1 such that:

• If 𝑟 < 𝑟#, diffusion increases when homophily increases;

• If 𝑟 > 𝑟$, diffusion increases when homophily decreases.
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Impact of Misinformation
‣ Theorem 2: There exist 0 < 𝑟# < 𝑟$ < 1 such that:

• If 𝑟 < 𝑟#, diffusion increases when homophily increases;

• If 𝑟 > 𝑟$, diffusion increases when homophily decreases.

• Higher homophily in the network increases the spread of the article 
when it is likely to contain misinformation.

Discipline Effect Circulation Effect>

Discipline Effect Circulation Effect<
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How should the platform shape the sharing 
network to maximize user engagement?
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Platform’s Problem
‣ Initially start from some underlying social network with many islands.
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Platform’s Problem
‣ Initially start from some underlying social network with many islands.

‣ Platform shapes the sharing network by attenuating or accentuating links 
in the network (e.g., through boosting or targeted recommendations).  
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Platform’s Problem
‣ Initially start from some underlying social network with many islands.

‣ Platform shapes the sharing network by attenuating or accentuating links 
in the network (e.g., through boosting or targeted recommendations).  

‣ Platform also selects the seed agent to maximize diffusion (proxy for 
profit). 

𝑝!

𝑝"

𝑝!

𝑝"
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Platform’s Profit-Maximizing Solution
‣ Profit-maximizing (PM) sharing network also takes the form of an island 

structure. 
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Platform’s Profit-Maximizing Solution
‣ Profit-maximizing (PM) sharing network also takes the form of an island 

structure. 

‣ Theorem 3: There exists a reliability threshold 𝑟∗ ∈ (0,1) such that: 

• If 𝑟 > 𝑟∗, the PM sharing network has maximal connectivity;

• If 𝑟 < 𝑟∗, the PM sharing network has maximal homophily.
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Intuition
‣ Balance between discipline and circulation effects:
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Intuition
‣ Balance between discipline and circulation effects:

‣ Algorithmically-induced echo chamber (“filter bubble”) created by the platform 
to maximize diffusion precisely when content tends to be low reliability. 
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Impact of the Result
1. Global characterization of the profit-maximizing sharing 

network for the platform.
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Impact of the Result
1. Global characterization of the profit-maximizing sharing 

network for the platform.

2. Intuitive interpretation in terms of empirically-documented 
filter bubble algorithms (Levy (2021)).
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Impact of the Result
1. Global characterization of the profit-maximizing sharing 

network for the platform.

2. Intuitive interpretation in terms of empirically-documented 
filter bubble algorithms (Levy (2021)).

3. Computational simulations confirm similar (but less sharp) 
algorithms for coarser initial social network topologies (i.e., 
with fewer initial islands).

84



How should a regulator implement policies to 
counteract the spread of misinformation?
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How should a regulator implement policies to 
counteract the spread of misinformation?

 

There exists 𝑟!"# ∈ 0,1  such that if 𝑟 > 𝑟!"# (resp. 𝑟 < 𝑟!"#) , higher (resp. 
lower) content diffusion leads to greater welfare. 
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Potential Policies

‣ Content moderation: A regulator removes a fraction of misinformation.

‣ Provenance / Accuracy Nudging: Equip users themselves with the tools to 
fact-check and verify content.

‣ Performance Targets: Make platforms responsible for self-monitoring by 
setting necessary misinformation “targets”. 

‣ Network-based (AI) Regulations: Regulate the algorithms that lead to 
problematic social media sharing networks.
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Potential Policies

‣ Content moderation: A regulator removes a fraction of misinformation.

‣ Provenance / Accuracy Nudging: Equip users themselves with the tools to 
fact-check and verify content.

‣ Performance Targets: Make platforms responsible for self-monitoring by 
setting necessary misinformation “targets”. 

‣ Network-based (AI) Regulations: Regulate the algorithms that lead to 
problematic social media sharing networks.

‣ All can work if designed well, but all can “backfire” if not.

‣ Different advantages/disadvantages of each (see paper).
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An Example of Backfire

Censorship / Content Moderation
(remove some misinformation)
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Content Moderation



 Detect 1/3 of the misinformation immediately and remove it.

CENSORSHIP
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Removed Article
‣ Recommended article profit-maximizing sharing network:
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Removed Article
‣ Recommended article profit-maximizing sharing network:

‣ Content moderation policy removes the article from circulation, reduces sharing 
(and diffusion) of misinformation.
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Undetected Article
‣ If the article is not detected, generates an implied truth effect.
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Undetected Article
‣ If the article is not detected, generates an implied truth effect.

•  Platform algorithm adapts as well.

‣ Article may spread at a rate greater than 3/2 the original rate!
98

Platform Algorithm
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Conclusion
‣ Strategic model of user sharing behavior and diffusion of an article online.
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Conclusion
‣ Strategic model of user sharing behavior and diffusion of an article online.

• Network homophily aids an article’s spread when it is more likely to 
contain misinformation (and hurts the spread of more reliable content).

‣ Platform algorithms leverage this fact to increase engagement and 
diffusion.

• Generate artificial echo chambers (“filter bubbles”) for low-reliability 
content. Platform algorithms play smaller role for more reliable content.

‣ Regulatory policy can be effective, but if not carefully calibrated, can lead 
to even worse societal outcomes.
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THANK YOU!


