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How many species can coexist?

The paradox of Plankton, Hutchinson 1961

Multiple species coexist (5-24 species coexisting at 
shallow sampling (10,000 individuals))
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Isolating large, complex communities in 
minimal synthetic environments

Pre-existing community

Our approach: Top-down cultivation of large, complex 
communities in simple, synthetic environments

Habitats are:

• Simple
• Homogenous
• Well-controlled
• Well-understood
• No migration
• Single growth-limiting 

resource (Carbon)Emergent simplicity in microbial community assembly, Goldford et al., Science 2018

Friedman et al., Nature Ecology and Evolution, 2017

Ecological Niches & Competition Exclusion Principle



Consumer resource models 
MacArthur model, 1970
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These are m equations in p variables

If m>p:  no solution for the system
It solvable only if m≤p 

Competition Exclusion Principle

(CEP – Hardin 1961,…)

The competitive exclusion principle suggest that it might be 
difficult

Gause MacArthur Consumer-Resource Model

Simple synthetic environments will 
have few niches, which will result in 
even fewer coexisting species
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Generalized Lotka-Volterra Equations
ARTICLES NATURE ECOLOGY & EVOLUTION

half of the species will grow in isolation, while the rest rely on ‘con-
sumption’ for their survival.

We start by presenting a result on the feasibility of equilibria. 
Under the conditions outlined above, the probability that a sys-
tem composed of n species has a completely positive equilibrium 
point (in which all species have positive density) is 1/2n, irrespec-
tive of the choice of di, and the exact shapes of the distributions 
(Supplementary Information  1). Our proof extends previously 
known mathematical results29, confirming the conjecture put for-
ward by Goh and Jennings forty years ago13.

Clearly, feasibility is only necessary, but not sufficient, for coex-
istence. To study coexistence, we make the stronger assumption 
that the matrix A +  AT is negative definite30,31. This property implies 
Lyapunov diagonal stability, and is a strong form of stability rou-
tinely assumed in studies of feasibility8,9 that can be always attained 
by choosing suitable large and negative di. Under these conditions, 
a generalized Lotka–Volterra model has a single, globally attrac-
tive equilibrium, called the non-invasible solution (also known 
as the saturated rest point32,33): k species have positive density at 
equilibrium, while all the other n −  k species cannot invade this 
community, and will go extinct irrespective of initial conditions. 
Surprisingly, when we sample the parameters at random as speci-
fied above, the non-invasibility and feasibility conditions for each 
subset of species balance out, such that each species has probability 
1/2 of being included in the non-invasible, globally attractive solu-
tion. Hence, the probability P(k|n) of finding k species coexisting 
when we start with n follows the binomial distribution B(n, 1/2) 
(Fig. 1 and Supplementary Information 1). This beautifully simple 
result means that if we were to start with a strongly stable (that is, 
with A +  AT negative definite) random matrix of interactions and  

random growth rates, about half of the species would coexist, irre-
spective of the choice of n. Remarkably, this is exactly what we 
would expect if species were not to interact with each other at all 
(that is, Aii =  di <  0 for all i and Aij =  0 for all i ≠  j).

Extending May’s results, Allesina and Tang26 showed how stabil-
ity is strongly influenced by the correlation between the inter-spe-
cific interactions: if we sample interactions in pairs (Aij, Aji) from a 
bivariate distribution with mean zero and correlation ρ, then stabil-
ity is enhanced by choosing a negative correlation. When analysing 
coexistence, breaking the independence among the inter-specific 
effects by sampling them in pairs from a bivariate distribution has 
no effect: we recover the same condition for feasibility, and the 
same distribution for the number of coexisting species (Fig. 1 and 
Supplementary Information 1).

So far, we have assumed that every species interacts with every 
other. To study the effect of network structure, we set most of the 
interactions to zero, and choose the position of the nonzero coef-
ficients according to the adjacency matrix of (1) an Erdős–Rényi 
random graph, (2) a random graph with power-law degree distri-
bution, (3) a graph displaying modular structure, or (4) a graph 
displaying bipartite structure. Irrespective of the choice of network 
structure, we always recover the same distribution for the number 
of coexisting species k (Fig. 1 and Supplementary Information 1). 
This is interesting, because network structure strongly influences 
stability23–26. However, because in our analysis stability is assumed, 
we find that the exact location of the nonzero interactions has no 
effect on coexistence.

The results above hold when we sample the growth rates and the 
inter-specific effects from symmetric distributions with mean zero, 
meaning that positive effects (such as the contribution of prey to 

ρ = –0.5 ρ = 0 ρ = 0.5
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Fig. 1 | Number of coexisting species when interactions and intrinsic growth rates are randomly sampled from the standard normal distribution. For 
each panel, histograms show the number of coexisting species out of 2!× !105 simulations, when starting from a different number of species n (colours) 
and interaction matrices A that are strongly stable. Binomial distributions B(n, 1/2) are reported as crosses. In the three rows, different network structures 
are used to set the positions of the nonzero coefficients (as exemplified by the adjacency matrices on the right): top, complete graphs; middle, Erdő s–
Rényi graphs; and bottom, power-law graphs. The results for other network structures are presented in Supplementary Fig. 3. Sampling the off-diagonal 
coefficients of matrix A independently (ρ!= !0, centre), or in correlated pairs (Aij, Aji) (ρ!≠ !0), has no effect on the expected number of coexisting species.
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Different sign pairs correspond to
different interaction types
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competition mutualism predation
parasitism

All the interaction types are present in a random matrix

One can build random matrices
with fixed proportions of interactions

Complexity-Stability Paradox

Allesina & Tang, 2012

R. May



Random Matrix / Spin Glass / Cavity / DMFT

Generalized Lotka-Volterra Equations with Random,
Nonreciprocal Interactions: The Typical Number of Equilibria
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We compute the typical number of equilibria of the generalized Lotka-Volterra equations describing
species-rich ecosystems with random, nonreciprocal interactions using the replicated Kac-Rice method. We
characterize the multiple-equilibria phase by determining the average abundance and similarity between
equilibria as a function of their diversity (i.e., of the number of coexisting species) and of the variability of
the interactions. We show that linearly unstable equilibria are dominant, and that the typical number of
equilibria differs with respect to the average number.

DOI: 10.1103/PhysRevLett.130.257401

Systems of many degrees of freedom with heterogeneous
and nonreciprocal (asymmetric) interactions emerge nat-
urally when modeling neural networks [1–8], natural
ecosystems [9–12], economic networks, or agents playing
games [13–16]. The dynamics of these systems are char-
acterized by a large number of attractors such as equilibria,
limit cycles, and chaotic attractors. Systems admitting an
energy landscape, as it is the case for symmetric inter-
actions, only display equilibria, which are the stationary
points of the landscape. A rugged landscape is central in the
theory of glassy systems, since local minima are associated
with metastable states; as a consequence, in-depth inves-
tigations and refined tools for counting and classifying
local minima of highly nonconvex landscapes have been
developed extensively in the context of glassy physics
[17–20]. Most of these studies focused on systems admit-
ting an energy landscape, though. Recently, the interest in
nonconservative systems (devoid of an energy landscape)
has grown substantially and pioneering works have shown
that such systems can also display many equilibria [21–25].
Developing a general theory in order to count them and to
investigate their stability is a challenging goal, with
potentially relevant implications for understanding the
dynamics.
Here we address this problem for a prototypical non-

conservative dynamical system, the random generalized
Lotka-Volterra model (RGLV) that describes the dynamics
of population sizes of multiple species with pairwise
interactions between them. The RGLV equations are used
extensively in theoretical ecology to describe well-mixed

ecosystems [26–31], and they are related to models used in
evolutionary game theory and in economic theory [32–35].
They are known to admit a multiple equilibria phase when
the variability of the random interactions is strong enough
[27,36–38]; an interesting feature for theoretical ecology
[39,40]. Our main result is a full characterization of
multiple equilibria in terms of average abundance, diver-
sity, and stability as summarized in the phase portrait of
Fig. 1. There is a general expectation that the vast majority
(if not all) of the equilibria are linearly unstable when the
interactions are asymmetric [24,41]; our analysis confirms
this surmise, which directly implies a complex dynamical

FIG. 1. Quenched complexity Σðϕ; σÞ of uninvadable equilibria
for uncorrelated interactions (γ ¼ 0). Black lines correspond to
vanishing complexity; the green dotted line to the diversity
ϕMayðσÞ above which equilibria are linearly unstable (red area);
the orange dotted line to the transition between the unique
(σ < σc) and the multiple (σ > σc) equilibria phases.

PHYSICAL REVIEW LETTERS 130, 257401 (2023)
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Marginally Stable Equilibria in Critical Ecosystems
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In this work we study the stability of the equilibria reached by ecosystems formed by a large
number of species. The model we focus on are Lotka-Volterra equations with symmetric random
interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong
and heterogeneous interactions the system displays multiple equilibria which are all marginally
stable. This property allows us to obtain general identities between diversity and single species
responses, which generalize and saturate May’s bound. By connecting the model to systems studied
in condensed matter physics, we show that the multiple equilibria regime is analogous to a critical
spin-glass phase. This relation provides a new perspective as to why many systems in several
di↵erent fields appear to be poised at the edge of stability and also suggests new experimental ways
to probe marginal stability.

Many complex systems in Nature organize in states
that are poised just at the edge of stability. The grow-
ing evidence comes from physics [1], biology [2], ecology
[3], neuroscience [4, 5] and economy [6]. One important
common trait of all examples is that they are formed by
strongly interacting units—species, neurons, agents and
particles depending on the situation. The possible expla-
nations of such phenomenon are varied. They include the
need for flexibility and adaptiveness to time-varying con-
ditions [2, 7], balance between functionality and stability
[7], self-organized criticality [8], self-organized instability
[9], and continuous constraints satisfaction [1].
Here we address this problem focusing on generalized
Lotka-Volterra (LV) equations. They provide a simple
and general setting to study assemblies of interacting de-
grees of freedom; as such they are used in several fields
[10–13]. In particular, they provide a canonical model for
ecosystems, with growing connections to systems across
biology [10, 11, 14]. The study of stability of equilibria
and their properties using LV equations and generaliza-
tions has become a very active research subject. Several
important results were obtained recently; in particular
general techniques to count the number of equilibria and
their properties have been developed [15], and criticality
and glassiness have been found to be emergent proper-
ties of ecosystems [16–18]. Our approach unifies these
di↵erent perspectives and, by a mapping to condensed
matter systems, reveal their generality beyond LV mod-
els. Henceforth, in order to describe it, we shall use the
terminology employed in theoretical ecology.

In the model we consider, an ecological community is
assembled from a pool of available species. We focus
on the case relevant for the examples cited above, and
in many other situations, when the number of species is
large. Since the detailed parameters of all interactions are
not known in the majority of cases, and in any case not

all details are expected to matter [19], we follow the long
tradition pioneered by May in ecology [20] and Wigner in
physics [21], and sample the interactions randomly. How-
ever, we go beyond May’s classical work since randomness
is here introduced at the level of interactions between all
possible species, while the community self-organizes by
choosing which species are present. In other words, the
number and identity of the species that are present in
the community is selected dynamically [22, 23]. Under-
standing the emergent stability of the equilibria reached
dynamically and its dependence on the external param-
eters is the main purpose of this work.
We find, in agreement with [16, 18, 24], that when the
interactions are weak or highly uniform, only one equi-
librium is present and is determined mainly by self-
regulation within each species. For stronger and more
heterogeneous interactions, multiple equilibria emerge.
Our main result is that when this happens, all possible
states of the system are close to be marginally stable for
large number of species and this determines the diver-
sity of the ecosystem, see Fig. 1. Marginal stability has
several important consequences, in particular it leads to
extreme susceptibility to small perturbations. This sit-
uation is referred as “critical” in the physics literature
[25]. May famously suggested that complexity and in-
teractions limit the stability of ecosystems [20]. Our re-
sults provide a complementary perspective: complex eco-
logical communities reduce dynamically their instability
through a reduction of the possible number of surviving
species, i.e. diversity, and eventually reach a marginally
stable state saturating May’s bound. Since this phe-
nomenon stems from a dynamical process, it holds for
a broad range of system parameters. It is robust against
a range of variations in the model, including di↵erent
functional forms of responses and interactions, as well
as noise. Although in many physical cases criticality
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Properties of Equilibria and Glassy Phases of the Random Lotka-Volterra
Model with Demographic Noise
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We study a reference model in theoretical ecology, the disordered Lotka-Volterra model for ecological
communities, in the presence of finite demographic noise. Our theoretical analysis, valid for symmetric
interactions, shows that for sufficiently heterogeneous interactions and low demographic noise the system
displays a multiple equilibria phase, which we fully characterize. In particular, we show that in this phase
the number of locally stable equilibria is exponential in the number of species. Upon further decreasing the
demographic noise, we unveil the presence of a second transition like the so-called “Gardner” transition to a
marginally stable phase similar to that observed in the jamming of amorphous materials. We confirm and
complement our analytical results by numerical simulations. Furthermore, we extend their relevance by
showing that they hold for other interacting random dynamical systems such as the random replicant
model. Finally, we discuss their extension to the case of asymmetric couplings.

DOI: 10.1103/PhysRevLett.126.258301

Lotka-Volterra equations describing the dynamics of
interacting species are key to theoretical studies in ecology,
genetics, evolution, and economy [1–6]. Cases in which the
number of species is very large are becoming of general
interest in disparate fields such as ecology and biology, e.g.,
for bacteria communities [7,8], and economics, where
many agents trade and interact simultaneously in financial
markets and in complex economic systems [9,10].
The theoretical framework used in the past for a small

number of species is mainly based on the theory of
dynamical systems [11–16]. When the number of ordinary
differential equations associated with the Lotka-Volterra
(LV) model becomes very large, i.e., for many species,
methods based on statistical physics are ideally suited.
Indeed, several authors have recently investigated different
aspects of community ecology—such as properties of
equilibria, endogeneous dynamical fluctuations, and bio-
diversity—using ideas and concepts rooted in statistical
physics of disordered systems [5,17–27]. Similar investi-
gations have been also performed for economic systems
[28]. Dealing with a large number of interacting species can
actually become a welcome new ingredient conceptually
and methodologically. In fact, qualitatively new collective
behaviors, classified into “phases,” can emerge. Also, as it
happens in physics, such phases are not tied to the specific
model they come from; instead, they characterize whole
classes of systems in a generic way, potentially including
natural systems [29]. From this perspective, it is interesting

to ask which kind of different collective behaviors arise for
LVmodels in the limit of many interacting species and what
are their main properties [19,20]. These questions, which
have started to attract a lot of attention recently, tie inwith the
analysis of the properties of their equilibria [30–32].
Here, we focus on the disordered Lotka-Volterra model

of many interacting species, which is a representative
model of a well-mixed community ecology [33] that can
be mapped or related to models used in evolutionary game
theory and for economic systems [28,34–37]. We consider
the case of symmetric interactions and small immigration
that, allowing for an appropriate interplay with demo-
graphic noise, ensures that all species are present, and work
out the phase diagram as a function of the degree of
heterogeneity in the interactions and the strength of the
demographic noise. Compared to previous works
[5,19,20,38], adding demographic noise not only allows
us to obtain a more general picture but also to fully
characterize the phases and connect their properties to
the ones of equilibria. In particular, we shall show that the
number of locally stable equilibria in the LV model is
exponential in the system size and their organization in
configuration space follows general principles found for
models of mean-field spin glasses. Our findings, although
obtained for symmetric interactions, provide a useful
starting point to analyze the nonsymmetric case, as we
shall demonstrate by drawing general conclusions on
properties of equilibria in the case of mild asymmetry.

PHYSICAL REVIEW LETTERS 126, 258301 (2021)
Editors' Suggestion
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Breakdown of Random-Matrix Universality in Persistent Lotka-Volterra Communities
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The eigenvalue spectrum of a random matrix often only depends on the first and second moments of its
elements, but not on the specific distribution from which they are drawn. The validity of this universality
principle is often assumed without proof in applications. In this Letter, we offer a pertinent counterexample
in the context of the generalized Lotka-Volterra equations. Using dynamic mean-field theory, we derive the
statistics of the interactions between species in an evolved ecological community. We then show that the
full statistics of these interactions, beyond those of a Gaussian ensemble, are required to correctly predict
the eigenvalue spectrum and therefore stability. Consequently, the universality principle fails in this system.
We thus show that the eigenvalue spectra of random matrices can be used to deduce the stability of
“feasible” ecological communities, but only if the emergent non-Gaussian statistics of the interactions
between species are taken into account.

DOI: 10.1103/PhysRevLett.130.137401

The theory of disordered systems enables one to deduce
the behavior of collections of many interacting constitu-
ents, whose interactions are assumed to be random, but
fixed in time [1]. A related discipline, randommatrix theory
(RMT), is concerned with the eigenvalue spectra of
matrices with entries drawn from a joint probability
distribution. Both fields have found numerous applications
in physics [2,3] (the study of spin glasses in particular [1]),
and in other disciplines such as neural networks [4–9],
economics [10,11], and theoretical ecology [12–19].
It is frequently assumed that the distribution of the

randomness in RMT or disordered systems is Gaussian,
possibly with correlations between different interaction
coefficients or matrix entries. Reasons cited for this
assumption include analytical convenience, maximum-
entropy arguments, and the observation that higher-order
moments often do not contribute to the results of calcu-
lations [1,20,21].
In random matrix theory, this latter observation is

referred to as the principle of universality [22–24]. The
principle states that results obtained for the spectra of
Gaussian random matrices frequently also apply to matrix
ensembles with non-Gaussian distributions. The conditions
for universality to apply are usually mild (higher-order
moments of the distribution must fall off sufficiently
quickly with the matrix size [22,23]), and it is often tacitly
assumed that these conditions will hold.
In this Letter, we offer a pertinent counterexample to the

universality principle in RMT. We focus on the ecological
community resulting from the dynamics of the generalized
Lotka-Volterra equations with random interaction coeffi-
cients. The stability of this community is governed by the

interactions between species that survive in the long
run [25,26]. This is a submatrix of the original interactions,
which we will refer to as the “reduced interaction matrix.”
Firstly, using dynamic mean-field theory [27], we obtain

the statistics of the elements in the reduced interaction
matrix. These turn out to be non-Gaussian (even when the
original interaction matrix is Gaussian). Secondly, we
analytically calculate the leading eigenvalue of this non-
Gaussian ensemble of random matrices. We show that this
eigenvalue is different from the one that we would obtain
from a Gaussian ensemble with the same first and second
moments as in the reduced interaction matrix. This demo-
nstrates that the principle of universality fails, and it indi-
cates that the Gaussian assumption should not be made
lightly.
Our findings have relevance to the random matrix

approach to ecosystem stability, introduced by Robert
May [12,13]. This approach assumes a random interaction
structure between species in the community. One line of
criticism of May’s model is the observation that such
interactions do not necessarily describe a feasible equilib-
rium (that is, an equilibrium for which all species’ abun-
dances are positive) [25,28–31]. Thecommunity of surviving
species in the generalized Lotka-Volterra model on the other
hand is feasible by construction, and we derive the statistics
of the emergent random matrix ensemble that describes this
community [26,32–34]. From this ensemble,we then recover
the stability criteria that have previously been derived from
the dynamic Lotka-Volterra model [16,35]. We thus show
that one can construct a random matrix ensemble (in
the sense of May) that correctly reflects the stability of a
feasible community of coexistent species. This ensemble is

PHYSICAL REVIEW LETTERS 130, 137401 (2023)

0031-9007=23=130(13)=137401(6) 137401-1 © 2023 American Physical Society

Phase transition to chaos in complex ecosystems with non-reciprocal species-resource
interactions
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Non-reciprocal interactions between microscopic constituents can profoundly shape the large-scale
properties of complex systems. Here, we investigate the e↵ects of non-reciprocity in the context of
theoretical ecology by analyzing a generalization of MacArthur’s consumer-resource model with
asymmetric interactions between species and resources. Using a mixture of analytic cavity cal-
culations and numerical simulations, we show that such ecosystems generically undergo a phase
transition to chaotic dynamics as the amount of non-reciprocity is increased. We analytically con-
struct the phase diagram for this model and show that the emergence of chaos is controlled by a
single quantity: the ratio of surviving species to surviving resources. We also numerically calculate
the Lyapunov exponents in the chaotic phase and carefully analyze finite-size e↵ects. Our find-
ings show how non-reciprocal interactions can give rise to complex and unpredictable dynamical
behaviors even in the simplest ecological consumer-resource models.

Many complex systems operate out of equilibrium
where components generically interact non-reciprocally.
Significant current research aims to untangle the implica-
tions of non-reciprocal interactions for self-organization
and pattern formation. While much progress has been
made towards understanding non-reciprocity in systems
composed of a few types of species or fields, the conse-
quences of non-reciprocity in more complex systems com-
posed of many interacting components are less clear [1–4].
Large, diverse ecosystems with many types of species

and resources provide a natural setting for exploring this
open problem. Over the last decade, researchers have
adapted methods from the statistical physics of disor-
dered systems (e.g., replicas, the cavity method, Random
Matrix Theory) to analyze such ecosystems [5–12]. Much
of this work has focused on systems with reciprocal inter-
actions in which dynamics are often implicitly governed
by an optimization function and reach a fixed point [13].
One notable exception are recent studies of the ran-

dom Generalized Lotka–Volterra model in which species
interact non-reciprocally [14–19]. These systems can ex-
hibit novel behaviors such as dynamic fluctuations and
chaos, including unpredictable “boom-and-bust” dynam-
ics where low-abundance species suddenly bloom to high
abundance [20]. These observations suggest that non-
reciprocal interactions can qualitatively change ecological
dynamics in species-only models. However, the general-
ization of these observations to more complex ecosystems
with multiple trophic layers or environmentally-mediated
interactions remains unexplored.
Here, we introduce a generalization of the classic

MacArthur Consumer Resource Model (MCRM) that in-
cludes non-reciprocal interactions between species and

⇤ emmyb320@bu.edu
† jrocks@bu.edu
‡ pankajm@bu.edu

resources. Consumer-resource models, first introduced
by MacArthur and Levins [21–23], have played a founda-
tional role in modern theoretical ecology and undergird
many powerful theoretical frameworks for understand-
ing ecological competition, including contemporary niche
theory and Tilman’s R* principle [24, 25].

Theoretical Setup. We consider an ecosystem with
i = 1, . . . , S species which may consume ↵ = 1, . . . ,M
distinct self-replenishing resources with dynamics gov-
erned by the equations,

dNi

dt
= Ni

 
MX

↵=1

ci↵R↵ �mi

!
, (1)

dR↵

dt
= R↵(K↵ �R↵)�

SX

i=1

Niei↵R↵, (2)

where Ni is the population size of species i, R↵ is the
abundance of resource ↵, ci↵ is the relative consump-
tion preference of species i for resource ↵, ei↵ describes
the impact of species i on resource ↵, mi is the natu-
ral mortality rate of species i, and K↵ is the carrying
capacity of resource ↵ in the absence of consumption.
We call this model the asymmetric MacArthur Consumer
Resource Model (aMCRM) with a schematic provided
in Fig. 1. When ei↵ = ci↵ the species-resource interac-
tions become reciprocal, or symmetric, and the aMCRM
reduces to the classical MacArthur Consumer Resource
Model (MCRM).

To develop intuition for the role of non-reciprocity
in the aMCRM, we consider the limit where the re-
source dynamics are fast and the resource abundances
become entrained to species dynamics. In this case, we
take the RHS of Eq. (2) to be zero and solve to find
R↵ = max{0,K↵ �

P
i Niei↵R↵}. Substituting this re-

sult into the equation for species dynamics yields an ef-
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We compute the typical number of equilibria of the generalized Lotka-Volterra equations describing
species-rich ecosystems with random, nonreciprocal interactions using the replicated Kac-Rice method. We
characterize the multiple-equilibria phase by determining the average abundance and similarity between
equilibria as a function of their diversity (i.e., of the number of coexisting species) and of the variability of
the interactions. We show that linearly unstable equilibria are dominant, and that the typical number of
equilibria differs with respect to the average number.
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Systems of many degrees of freedom with heterogeneous
and nonreciprocal (asymmetric) interactions emerge nat-
urally when modeling neural networks [1–8], natural
ecosystems [9–12], economic networks, or agents playing
games [13–16]. The dynamics of these systems are char-
acterized by a large number of attractors such as equilibria,
limit cycles, and chaotic attractors. Systems admitting an
energy landscape, as it is the case for symmetric inter-
actions, only display equilibria, which are the stationary
points of the landscape. A rugged landscape is central in the
theory of glassy systems, since local minima are associated
with metastable states; as a consequence, in-depth inves-
tigations and refined tools for counting and classifying
local minima of highly nonconvex landscapes have been
developed extensively in the context of glassy physics
[17–20]. Most of these studies focused on systems admit-
ting an energy landscape, though. Recently, the interest in
nonconservative systems (devoid of an energy landscape)
has grown substantially and pioneering works have shown
that such systems can also display many equilibria [21–25].
Developing a general theory in order to count them and to
investigate their stability is a challenging goal, with
potentially relevant implications for understanding the
dynamics.
Here we address this problem for a prototypical non-

conservative dynamical system, the random generalized
Lotka-Volterra model (RGLV) that describes the dynamics
of population sizes of multiple species with pairwise
interactions between them. The RGLV equations are used
extensively in theoretical ecology to describe well-mixed

ecosystems [26–31], and they are related to models used in
evolutionary game theory and in economic theory [32–35].
They are known to admit a multiple equilibria phase when
the variability of the random interactions is strong enough
[27,36–38]; an interesting feature for theoretical ecology
[39,40]. Our main result is a full characterization of
multiple equilibria in terms of average abundance, diver-
sity, and stability as summarized in the phase portrait of
Fig. 1. There is a general expectation that the vast majority
(if not all) of the equilibria are linearly unstable when the
interactions are asymmetric [24,41]; our analysis confirms
this surmise, which directly implies a complex dynamical

FIG. 1. Quenched complexity Σðϕ; σÞ of uninvadable equilibria
for uncorrelated interactions (γ ¼ 0). Black lines correspond to
vanishing complexity; the green dotted line to the diversity
ϕMayðσÞ above which equilibria are linearly unstable (red area);
the orange dotted line to the transition between the unique
(σ < σc) and the multiple (σ > σc) equilibria phases.
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BUT … species interactions are not 
quenchd, but dynamics



Dynamic metabolic adaptation
Comparison with experimental data

Question
How does the model with dynamic
metabolic adaptation behave when
compared to experimental data? Does
it behave better than classic
consumer-resource theory?

I have tested the model in a very sim-
ple case: diauxic shifts.

I have measured the growth of the
baker’s yeast Saccharomyces cerevisiae

on galactose.
Schematic representation of the yeast used in the experiment

25

Experimental evidence: quantitative description of diauxic shift 

the sugar. As a byproduct of fermentation, yeast cells release ethanol in the growth medium,
which can then be respired by the cells once the concentration of galactose in the medium is
reduced. To model the growth of S. cerevisiae in these conditions, we modified the equations
to account for the fact that the second resource, ethanol, is produced by the yeast cells them-
selves, while the first one, galactose, is consumed. We have then fitted the model to the data
using a Markov Chain Monte Carlo (MCMC) algorithm [39] (see Methods). In Fig 1A, we
show that our adaptive consumer-resource model can fit the experimental data with parame-
ters that are compatible with values found in the literature (see Table A in S1 Text). When fit-
ting the “classic” MacArthur’s consumer-resource model with fixed metabolic strategies, on
the other hand, the same MCMC fitting algorithm returns two possible different outcomes,
depending on the ranges that the parameters are allowed to explore in the Markov chain
dynamics. When the parameters are constrained to vary within a few orders of magnitude
from experimentally-measured values found in the literature (Table A in S1 Text), the fixed-
strategies model is incapable of reproducing even a diauxic behavior (Fig 1B). When the
parameters are subject to looser constraints on the value they can take, instead, the model can
reproduce the data (Figure A in S1 Text), although not as well as the adaptive-strategies model,
but some of the best fit parameters have biologically unreasonable values (see Table A in S1
Text). The Akaike Information Criterion, used to compare the relative quality of the two mod-
els discounting the number of parameters, selects unambiguously the model with adaptive
strategies as the best fitting one when comparing it to either fits of the fixed-strategies model
(see Methods).

Fig 1. Comparison between the best fits of MacArthur’s consumer-resource model (dashed lines) and experimental measures of the growth of S.
cerevisiae on galactose as the primary carbon source and ethanol as a byproduct of fermentation, in the case of adaptive (A) and fixed (B)
metabolic strategies. Shown are the mean (black lines) and the standard error (gray bands) across n = 8 replicate populations. In (A) the model is not
only capable to reproduce very well the experimental data, but the best fit returns parameters whose values are biologically reasonable when contrasted
with experimentally-measured ones found in the literature (see Table A in S1 Text). On the other hand, the fit in (B) cannot reproduce a diauxic
behavior when the parameters are constrained to vary within a few orders of magnitude away from biologically reasonable values (see Table A in S1
Text). See S1 Text for details on how the fits were performed and the resulting values of the best fit parameters.

https://doi.org/10.1371/journal.pcbi.1007896.g001
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↵�1

↵�2↵�3

Figure 2.1: Schematic representation of the metabolic trade-off condition for the case p = 3: each species in the
model is represented by a point in the simplex, and its position reflects the metabolic strategy of the species. The red
point, for example, represents a species which eats only nutrient 2, while the blue one feeds equally upon 1 and 2;

the orange point, on the other hand, represents a species which uses all resources with a slight preference on 3.
For the sake of simplicity, from now on we will omit the axes when representing this kind of simplex.

Since we want to determine when all species coexist in a stationary state, imposing
dn�/dt = 0 8� in (2.15) one obtains the general condition

g�(c1, . . . , cp) = � 8� (2.22)

for the system to be in a steady state, where of course we are not considering the trivial
case n� = 0 8�. We can already note that this is a system of m equations in p variables,
so in general we cannot expect it to be solvable if m > p. As we will shortly see, how-
ever, the metabolic trade-off condition will come to our aid.
Using (2.16) and the assumptions we have made, the stationarity condition for the sys-
tem reads

pX

i=1

↵�iri = � 8� , (2.23)

which, introducing the matrix of metabolic strategies

A =

0

B@
↵11 · · · ↵1p

... . . . ...
↵m1 · · · ↵mp

1

CA (2.24)

(i.e. the matrix which has the metabolic strategies ~↵�s as its rows) and the p-dimensional
vector ~� T = (�, . . . , �), can be written in the more compact form

A~r = ~� , (2.25)

where we have called ~r T = (r1, . . . , rp) the vector of per-enzyme uptake rates; this is a
system of equations that determines m � p hyperplanes:

8
>><

>>:

↵11r1 + · · ·+ ↵1prp = �
...

↵m1r1 + · · ·+ ↵mprp = �

. (2.26)
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Red species eats only nutrient 2, 
Blue one feeds equally upon 1 and 2; 

Orange-violet species uses all resources

=  supply rate (s) 

Energy Constraint in CRM

After rescaling: 
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2.2.2 Some preliminary simplifications and assumptions

We now introduce some assumptions that simplify the equations, but don’t change the
main results and properties of the model.
First of all, since in physically relevant cases the degradation rates of nutrients are sev-
eral orders of magnitude smaller than the supply rates, we can set µi = 0 8i. This
means, from (2.14) and timescale separation, that

ri =
siPm

�=1 n�↵�i
. (2.19)

Secondly, we consider the “symmetric” case in which all nutrients are equally costly,
accessible4 and valuable, i.e. we set wi = Ki = vi = 1 8i. As we will later show this
choice is equivalent to the rescaling of some parameters and doesn’t affect the nature
of the results we will find.
With these assumptions, we obtain the system of differential equations that we are go-
ing to study:

dn�

dt
=

 
pX

i=1

↵�i
siPm

⌧=1 n⌧↵⌧ i
� �

!
n� . (2.20)

If we sum both sides over � we get ṅtot = S � �ntot, where ntot =
P

� n� is the total
population of the ecosystem; this means that at the steady state n⇤

tot = S/�, i.e. the total
population depends only on S and �.

Finally, we note that in this case the trade-off condition (2.12) becomes

pX

i=1

↵�i = E , (2.21)

and thus each metabolic strategy belongs to a (p� 1)-dimensional simplex in the space
of nutrient uptake rates. As an example, in figure 2.1 we show the situation for the case
p = 3, which is the most simple to represent graphically: in this case, in fact, metabolic
strategies belong to a 2-dimensional simplex, i.e. a triangle, where each vertex corre-
sponds to the uptake rate of a different nutrient.

2.3 Coexistence of species

We now proceed to determine analytically the condition under which the coexistence
of m � p species is possible in the PTW model.

4The constants Kis are the half-saturation constants of the Monod functions used to represent the per-
enzyme uptake rates ris, and can be used as a “measure” of the accessibility of a nutrient; e.g. if Ki is small
the Monod function quickly reaches its saturation value, so the nutrient will be used at the maximum
rate possible even with low values of population abundances, or in other words the resource is highly
accessible to the individuals of the species.
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Because of the trade-off condition (2.21) the unique solution of this system is

~r ⇤ =
�

E

0

B@
1
...
1

1

CA , (2.27)

and depending on the particular functional form of ri(ci) the steady-state nutrient con-
centrations can be determined; using our choice (2.13) we immediately find that

~c ⇤ =
�

E � �

0

B@
1
...
1

1

CA . (2.28)

Considering now population abundances, we want to determine under which condi-
tions they can adjust themselves so that the steady state that we have found is realized,
i.e. (2.27) holds. From (2.19) we see that this happens if

AT~n =
E

�
~s (2.29)

has a positive solution (n⇤
1, . . . , n

⇤
m), where ~n T = (n1, . . . , nm) is the vector of popula-

tion abundances. Note that this can be rewritten as the following system of equations:
8
>><

>>:

n1↵11 + · · ·+ nm↵m1 = Es1/�
...

n1↵1p + · · ·+ nm↵mp = Esp/�

, (2.30)

or more compactly as

n1~↵1 + · · ·+ nm~↵m =
E

�
~s . (2.31)

Therefore, the steady state we are looking for will exist if the set
⇢
n⇤
1 > 0, . . . , n⇤

m > 0 : n⇤
1~↵1 + · · ·+ n⇤

m~↵m =
E

�
~s

�
(2.32)

is non-empty.

This condition resembles the definition of convex hull; we recall that by definition a
vector ~y is said to belong to the convex hull of a set of points {~x1, . . . , ~xn} if it can be
written as a convex combination of them, i.e. if

~y =
nX

i=1

ai~xi , (2.33)

All species survives if

Adding a total energy budget E (independent of species)

Geometrical Interpretation

Only m ≤ 3 species coexist: at
least one extinction – CEP is

recovered

All species coexist, but
with soft bound (≤ E) or species

dependent budget (Es), 
CEP is recovered

(Posfai et al, PRL 2017) 



Bridging the cellular and ecological scale…
Communities’ structure is influenced by the metabolism of microbial species

• The abundance of microbial species correlate well with their metabolic function 
(Damian et al., Nat. Microbiol. 2018)
• Microbial communities assemble in “metabolic blocks” specialized in particular metabolic

functions, and this simple arrangement allows prediction of community composition
(Enke et al., Curr. Biol. 2019) 

The functions performed by a species depend on the proteins it is producing.
The balance between the functions depend on how the proteome of a species is allocated. 

?

where � is the Heaviside step function, i.e. �(x) = 0 if x Æ 0 and �(x) = 1 if x > 0. If we now rewrite Eq. (24) with120

the substitutions x̨ æ –̨‡ (we can in fact suppose in general that the constraint depends on all metabolic strategies) and121

Q æ d”‡g‡, we obtain:122

–̇‡i = d”‡
ˆg‡

ˆ–‡i
≠ ˆÏ(–̨‡)/ˆ–‡iqm

·=1
qp

k=1 (ˆÏ(–̨‡)/ˆ–·k)2

mÿ

fl=1

pÿ

j=1

ˆÏ(–̨‡)
ˆ–flj

d”fl
ˆg‡

ˆ–flj
. [28]123

This equation, however, does not guarantee in general that metabolic strategies remain non-negative (the second term on the124

right hand side of Eq. (28) could be larger than the first and lead –‡i to negative values); we must therefore modify it so that125

–‡i(t) Ø 0 ’t. The simplest way to do so is to introduce some auxiliary variables ÷‡i of which the metabolic strategies are126

some non-negative functions, i.e.127

–‡i := F(÷‡i) with F(x) Ø 0 ’x , [29]128

and then use Eq. (28) as an equation for ÷‡i, i.e. we write:129

÷̇‡i = d”‡
ˆg‡

ˆ÷‡i
≠ ˆÏ(÷̨‡)/ˆ÷‡iqm

·=1
qp

k=1 (ˆÏ(÷̨‡)/ˆ÷·k)2

mÿ

fl=1

pÿ

j=1

ˆÏ(÷̨‡)
ˆ÷flj

d”fl
ˆg‡

ˆ÷flj
. [30]130

If we now change variables and write this equation in terms of –‡i, we obtain:131

–̇‡i = F Õ(÷‡i)2

C
d”‡

ˆg‡

ˆ–‡i
≠ ˆÏ(–̨‡)/ˆ–‡iqm

·=1
qp

k=1 (F Õ(÷·k)ˆÏ(–̨‡)/ˆ–·k)2

mÿ

fl=1

pÿ

j=1

ˆÏ(–̨‡)
ˆ–flj

d”fl
ˆg‡

ˆ–flj
F Õ(÷flj)

D
. [31]132

We are now free to choose any form for F . We have made two simple choices corresponding to F(x) = x2/4 (the 1/4 factor has133

been chosen so that the final equation for –‡i doesn’t have superfluous numerical factors) and F(x) = ex. The results for these134

two case are indistinguishable and thus we have decided to show only the ones corresponding to the former case. Thus Eq. (31)135

becomes:136

–̇‡i = –‡i

C
d”‡

ˆg‡

ˆ–‡i
≠ �(Ï(–̨‡)) ˆÏ(–̨‡)/ˆ–‡iqm

·=1
qp

k=1 (ˆÏ(–̨‡)/ˆ–·k)2 –·k

mÿ

fl=1

pÿ

j=1

ˆÏ(–̨‡)
ˆ–flj

d”fl–flj
ˆg‡

ˆ–flj

D
. [32]137

where we have also included the possibility that the constraint is taken into account as in Eq. (27).138

As stated in the Main Text, we must now introduce a trade-o� in the utilization of resources; we can do so by requiring that139

each species has a maximum total resource uptake rate, i.e.
qp

i=1 –‡i Æ Eú
‡. If we now use g‡ =

qp

i=1 vi–‡iri ≠ ”‡ and140

Ï(–̨‡) =
qp

i=1 –‡i/Eú
‡ ≠ 1 (where we have rearranged the constraint to make it nondimensional) in Eq. (32), we obtain:141

–̇‡i = –‡id”‡

C
viri ≠ � (Ï(–̨‡))qp

k=1 –‡k

pÿ

j=1

vjrj–‡j

D
. [33]142

In all the numerical calculations performed in this work, we approximated Heaviside’s step function with the smooth sigmoid143

�(x) = 1/(1 + exp(≠x · 1010)). While this function may seem very sharp, simulations performed with � defined as any144

non-negative and monotonously increasing function such that �(x) ¥ 0 for x < 0 and �(0) = 1 (e.g. �(x) = exp(k · x) for145

many di�erent k > 1, or �(x) = 1/[1 + exp(≠k · (x + a))] with k > 1 and a > 0 chosen so that � satisfies the aforementioned146

properties) give very similar or totally indistinguishable outcomes.147

2.B. Comparison between the model and experimental measures of diauxic growth curves.148

2.B.1. Methods.149

Experiment. The S. cerevisiae strain used in this study, yAG47, is identical to strain yJHK459 of (1) and is in the W303150

background. Its genotype is MATa, can1-100, ura3�0, BUD4-S288C. A culture of yAG47 was grown overnight in complete151

synthetic medium (CSM) + 2% (w/v) glucose. 1 mL of the overnight culture was spun down and resuspended in CSM +152

0.5% (w/v) galactose to a concentration of 1.6 · 105 cells/mL. Eight wells of a 96-well plate were inoculated with 150 µL of153

the resuspended culture and incubated with constant shaking at 30¶C in a plate reader. The 96-well plate was sealed with154

a sealing membrane that allowed gas exchange. The temperature on the top of the 96-well plate was kept at 31¶C to avoid155

condensation on the membrane. Optical density (OD) measurements were taken every 10 min, for a total duration of about 70156

h. To build the calibration curve used to convert OD to cell density, 1.4 mL of the same overnight culture were spun down157

and resuspended in 1 mL of CSM + 0.5% (w/v) galactose. The density of this suspension was measured using a Coulter158

counter and serial dilutions of this suspension were inoculated in a 96-well plate covered with the same sealing membrane used159

for the growth curve measurement. The OD of the wells containing the serial dilution of the suspension was measured after160

equilibration to 30¶C using the same plate reader used to measure the growth curves, and these measurements were used to161

build the calibration curve converting OD to cell density.162
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Interdependence of Cell Growth
and Gene Expression:
Origins and Consequences
Matthew Scott,1*† Carl W. Gunderson,2* Eduard M. Mateescu,1 Zhongge Zhang,2 Terence Hwa1,2‡

In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined.
Elucidating these relations is important both for understanding the physiological functions of endogenous
genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that
reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects
of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene
expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on
gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical
relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of
complex biological systems before underlying regulatory circuits are elucidated.

Systems biology is as an integrative approach
to connect molecular-level mechanisms to
cell-level behavior (1). Many studies have

characterized the impact of molecular circuits and
networks on cellular physiology (1, 2), but less is
known about the impact of cellular physiology on
the functions of molecular networks (3–5). Endo-
genous and synthetic genetic circuits can be strongly
affected by the physiological states of the organism,
resulting in unpredictable outcomes (4,6–8). Conse-
quently, both the understanding and implementation
of molecular control are predicated on distinguish-

ing global physiological constraints from specific
regulatory interactions.

For bacterial cells under steady-state exponen-
tial growth, the rate of cell proliferation (the “growth
rate”) is an important characteristic of the physio-
logical state. It is well known that the macromolec-
ular composition (e.g., themass fractions of protein,
RNA, andDNA) of bacterial cells under exponen-
tial growth depends on the growth medium pre-
dominantly through the growth rate allowed by
the nutritional content of the medium (9, 10). Such
growth rate dependencies inevitably affect the ex-
pression of individual genes (4, 11) because pro-
tein synthesis is directly dependent on the cell’s
ribosome content. The latter is reflected by the
RNA/protein ratio. In Escherichia coli, most of
the RNA (~85%) is rRNA folded in ribosomes
(10, 11). A predictive understanding of the im-
pact of growth physiology on gene expression
therefore first requires an understanding of the cell’s
allocation of cellular resources to ribosome synthesis

(manifested by the RNA/protein ratio) at different
growth rates.

For exponentially growingE. coli cells (10, 12),
the RNA/protein ratio r is linearly correlated
with the specific growth rate l [ = (ln 2)/doubling
time] (Fig. 1A). The correlation is describedmath-
ematically as

r ¼ r0 þ
l
kt

ð1Þ

where r0 is the vertical intercept and kt is the
inverse of the slope (table S1). This linear cor-
relation holds for various E. coli strains growing
in medium that supports fast to moderately slow
growth [e.g., 20 min to ~2 hours per doubling
(11)], and it appears to be quite universal; similar
linear correlations have been observed in many
other microbes, including slow-growing unicel-
lular eukaryotes (fig. S1). As suggested long ago
from mass-balance considerations (11) and elab-
orated in (13), this linear correlation is expected if
the ribosomes are growth-limiting and are en-
gaged in translation at a constant rate, with the
phenomenological parameter kt predicted to be
proportional to the rate of protein synthesis. Con-
sistent with the prediction, data on RNA/protein
ratios from slow-translation mutants of E. coli
K-12 (triangles in Fig. 1B) also exhibited linear
correlations with the growth rate l, but with
steeper slopes than the parent strain (circles),
which have smaller kt. Moreover, the correspond-
ing kt values correlated linearly with the directly
measured speed of translational elongation (14)
(Fig. 1B, inset). Consequently, we call kt the “trans-
lational capacity” of the organism.

Translation can be inhibited in a graded
manner by exposing cells to sublethal doses of
a translation-inhibiting antibiotic. The RNA/pro-
tein ratios obtained for wild-type cells grown in
medium with a fixed nutrient source and various
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Generalization of Hwa phenomenological laws for NR resources and NP species
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The consumer-proteome-resource model
We can use these results to write a new type of consumer-resource models:

ṁ� =m� (g� � q� ) ċi = si �
NSX

�=1

J�im� (27)

where now m� is the biomass of species � and q� is the “maintenance cost” of species � .
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From proteome allocation to consumer resource equations

'P = '

Re-adapted from L. Pacciani-Mori et al., ISME Journal, 2021

The consumer-proteome-resource model

ṁ� =m�

2
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3
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Consumer Resource Model with constraint proteome allocation

Dynamic consumer-
resource network

Optimization
with constraint

8 .3 . dynamics of the proteome fractions 69

Eq (8.9c), on the other hand, is a constraint that all species have to satisfy at every
instant and it is the direct consequence of Eq (8.1), i.e. the fact that the quantity of
proteins expressed by microbes is limited (or, in other words, that the fractions relative
to the three aforementioned proteome sectors must sum to one). In other words, Eq
(8.9c) is the expression of the finiteness of the species’ proteomes. This constraint is
significantly di↵erent from similar ones that have been studied in the consumer-resource
framework [105], and as we will show all the properties of the model are ultimately a
repercussion of Eq (8.9c).

The first important consequence of this constraint derives from the fact that the
coe�cients 1+��i ri(ci ) in Eq (8.9c) are not fixed, but change with time depending on
the system’s dynamics through ri(ci ). This implies that for the constraint to be satisfied
at all times, the proteome fractions '�i cannot be fixed but must be, in turn, dynamical
variables: an increase (decrease) of 1+��i ri(ci ) must be balanced by a decrease (increase)
of some of the '�i . Therefore, the proteome finiteness constraint in Eq (8.9c) makes
it necessary to write dynamical equations for '�i . Similarly to what we have done in
Chapter 5, our approach is to require that '�i evolves with a characteristic timescale ⌧�
to maximize the instantaneous growth rate g� of species � , while the constraint in Eq
(8.9c) is satisfied at all times, as we discuss below.

8 .3 dynamics of the proteome fractions

The constraint in Eq (8.9c) can be interpreted geometrically: considering species � ,
the NR-dimensional vector ~'� = ('�1, . . . ,'�NR

) belongs to a hyperplane whose normal
vector n̂� has components 1 + ��i ri(ci ). This means that as the system evolves, the
components of n̂� vary with time and therefore the hyperplane to which ~'� belongs
moves in the NR-dimensional space and changes orientation.

We call ~c = (c1, . . . , cNR
) the vector of resource concentrations and define

F� (~'� ,~c) :=
NRX

i=1

'�i [1 +��i ri(ci )]��� (8.10)

so that the constraint given by Eq (8.9c) can be written more simply as F� (~'� ,~c) = 0.
Since this constraint must hold at every instant, any equation for ~̇'� must satisfy

Ḟ� (~'� ,~c) ⌘ ~̇'� · ~r'F� + ~̇c · ~rcF� = 0 , (8.11)

where ~r' and ~rc are, respectively, the gradients taken with respect to the components
of ~'� and ~c. Therefore, the structure of the “minimal” equation for '�i , i.e. the one that
simply describes the dynamics of ~'� as it moves with its hyperplane, is:

~̇'� = �
~r'F�

(~r'F� )2
~̇c · ~rcF� . (8.12)

However, if we want to use an adaptive approach similar to the one shown in Chapter
5, we require as usual that ~'� evolves in time so that the growth rate g� of species � is
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maximized respecting the constraint F� (~'� ,~c) = 0, i.e. Eq (8.9c) is satisfied. In this case
the evolution equation for ~'� becomes:

~̇'� =
1
⌧�

~r'g� �
~r'F�

(~r'F� )2

 
1
⌧�

~r'g� · ~r'F� + ~̇c · ~rcF�
!
, (8.13)

where we have introduced ⌧� , the characteristic timescale over which ~'� changes, i.e.
the characteristic timescale of the adaptive process that maximized the growth rate. We
can of course recover Eq (8.12) from Eq (8.13) by sending ⌧� to infinity. Geometrically,
Eq (8.12) represents the case in which ~'� is “dragged along” by the hyperplane to which
it belongs, as the hyperplane moves because of Eq (8.9c). On the other hand, according
to Eq (8.13) (with small enough values of ⌧� ) the ~'� are free to move on the hyperplane
to find the maximum instantaneous growth rate compatible with the constraint given
by Eq (8.9c).

We now use the same technique shown in Chapter 5 to prevent '�i from becoming
negative. In particular, we write Eq (8.13) in components in terms of an auxiliary
variable  �i :

 ̇�i =
1
⌧�

@g�

@ �i

� @F� /@ �i
PNR
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2

NRX

j=1

 
1
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@ �j
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+ ċj

@F�

@cj

!
, (8.14)

and then we define '�i = F ( �i ), where F is a positive function, i.e. F (x) > 0 8x. This
way, Eq (8.14) becomes:

'̇�i = F 0( �i )2
2
666664
1
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CCCCA

3
7777775 . (8.15)

Choosing F (x) = x
2
/4 as in Chapter 5 (any other choice leads to qualitatively identical

results, as already stated), we have F 0( �i )2 = '�i . If we also take into account that:

@g�

@'�i

= ⌘�i ri(ci )
@F�

@'�i

= 1+��i ri(ci )
@F�

@ci

= '�i��i
Ki

(ci +Ki )2
, (8.16)

the final expression of the equation for '�i is:

'̇�i = '�i

2
666664
⌘�i ri(ci )
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� (1 +��i ri(ci ))
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k=1'�k(1 +��krk(ck))
2
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Each species changes its
metabolic allocation so to
maximize its growth rate gs.
ts = adaptation velocity

Adaptive Framework
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↵�1

↵�2↵�3

Figure 2.1: Schematic representation of the metabolic trade-off condition for the case p = 3: each species in the
model is represented by a point in the simplex, and its position reflects the metabolic strategy of the species. The red
point, for example, represents a species which eats only nutrient 2, while the blue one feeds equally upon 1 and 2;

the orange point, on the other hand, represents a species which uses all resources with a slight preference on 3.
For the sake of simplicity, from now on we will omit the axes when representing this kind of simplex.

Since we want to determine when all species coexist in a stationary state, imposing
dn�/dt = 0 8� in (2.15) one obtains the general condition

g�(c1, . . . , cp) = � 8� (2.22)

for the system to be in a steady state, where of course we are not considering the trivial
case n� = 0 8�. We can already note that this is a system of m equations in p variables,
so in general we cannot expect it to be solvable if m > p. As we will shortly see, how-
ever, the metabolic trade-off condition will come to our aid.
Using (2.16) and the assumptions we have made, the stationarity condition for the sys-
tem reads

pX

i=1

↵�iri = � 8� , (2.23)

which, introducing the matrix of metabolic strategies

A =

0

B@
↵11 · · · ↵1p

... . . . ...
↵m1 · · · ↵mp

1

CA (2.24)

(i.e. the matrix which has the metabolic strategies ~↵�s as its rows) and the p-dimensional
vector ~� T = (�, . . . , �), can be written in the more compact form

A~r = ~� , (2.25)

where we have called ~r T = (r1, . . . , rp) the vector of per-enzyme uptake rates; this is a
system of equations that determines m � p hyperplanes:

8
>><

>>:

↵11r1 + · · ·+ ↵1prp = �
...

↵m1r1 + · · ·+ ↵mprp = �

. (2.26)

Species coexist if + Constraint (biological meaningful)

The consumer-proteome-resource model
Conditions for coexistence
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Similarly to dynamic metabolic adaptation, the other condition for coexistence is:
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The consumer-proteome-resource model
Conditions for coexistence

⌅B
��

⇢�q�
� 1
t
�
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i ⌅

r⇤i <1) n
i > ⌅ 8i (37)

We can rewrite this condition as:
q� =

��

⇢� (⌅ � 1/�
t )

(38)

This constraint makes sense biologically: �� increases!We have to spend more energy to
synthesize catalitic and ribosomal proteins! The maintenance cost increases
The proportionality constant between q� and �� is species-dependent
Possible biological interpretation: the species can reach coexistence if they arrange their
maintenance costs

(in any case, if ⌅� 1 then q� ⇠ 0).
Eq (38) comes from '⇤�i , 0; if this is not true we can find particular cases where coexistence is
possible even without Eq (38).
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maximized respecting the constraint F� (~'� ,~c) = 0, i.e. Eq (8.9c) is satisfied. In this case
the evolution equation for ~'� becomes:

~̇'� =
1
⌧�

~r'g� �
~r'F�

(~r'F� )2

 
1
⌧�

~r'g� · ~r'F� + ~̇c · ~rcF�
!
, (8.13)

where we have introduced ⌧� , the characteristic timescale over which ~'� changes, i.e.
the characteristic timescale of the adaptive process that maximized the growth rate. We
can of course recover Eq (8.12) from Eq (8.13) by sending ⌧� to infinity. Geometrically,
Eq (8.12) represents the case in which ~'� is “dragged along” by the hyperplane to which
it belongs, as the hyperplane moves because of Eq (8.9c). On the other hand, according
to Eq (8.13) (with small enough values of ⌧� ) the ~'� are free to move on the hyperplane
to find the maximum instantaneous growth rate compatible with the constraint given
by Eq (8.9c).

We now use the same technique shown in Chapter 5 to prevent '�i from becoming
negative. In particular, we write Eq (8.13) in components in terms of an auxiliary
variable  �i :
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and then we define '�i = F ( �i ), where F is a positive function, i.e. F (x) > 0 8x. This
way, Eq (8.14) becomes:

'̇�i = F 0( �i )2
2
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Choosing F (x) = x
2
/4 as in Chapter 5 (any other choice leads to qualitatively identical

results, as already stated), we have F 0( �i )2 = '�i . If we also take into account that:
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the final expression of the equation for '�i is:
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Result 1: Dynamic Consumer-Resources network
can reproduce diauxic shift

L. Pacciani Mori et al., Plos Comp. Biology 2020

the sugar. As a byproduct of fermentation, yeast cells release ethanol in the growth medium,
which can then be respired by the cells once the concentration of galactose in the medium is
reduced. To model the growth of S. cerevisiae in these conditions, we modified the equations
to account for the fact that the second resource, ethanol, is produced by the yeast cells them-
selves, while the first one, galactose, is consumed. We have then fitted the model to the data
using a Markov Chain Monte Carlo (MCMC) algorithm [39] (see Methods). In Fig 1A, we
show that our adaptive consumer-resource model can fit the experimental data with parame-
ters that are compatible with values found in the literature (see Table A in S1 Text). When fit-
ting the “classic” MacArthur’s consumer-resource model with fixed metabolic strategies, on
the other hand, the same MCMC fitting algorithm returns two possible different outcomes,
depending on the ranges that the parameters are allowed to explore in the Markov chain
dynamics. When the parameters are constrained to vary within a few orders of magnitude
from experimentally-measured values found in the literature (Table A in S1 Text), the fixed-
strategies model is incapable of reproducing even a diauxic behavior (Fig 1B). When the
parameters are subject to looser constraints on the value they can take, instead, the model can
reproduce the data (Figure A in S1 Text), although not as well as the adaptive-strategies model,
but some of the best fit parameters have biologically unreasonable values (see Table A in S1
Text). The Akaike Information Criterion, used to compare the relative quality of the two mod-
els discounting the number of parameters, selects unambiguously the model with adaptive
strategies as the best fitting one when comparing it to either fits of the fixed-strategies model
(see Methods).

Fig 1. Comparison between the best fits of MacArthur’s consumer-resource model (dashed lines) and experimental measures of the growth of S.
cerevisiae on galactose as the primary carbon source and ethanol as a byproduct of fermentation, in the case of adaptive (A) and fixed (B)
metabolic strategies. Shown are the mean (black lines) and the standard error (gray bands) across n = 8 replicate populations. In (A) the model is not
only capable to reproduce very well the experimental data, but the best fit returns parameters whose values are biologically reasonable when contrasted
with experimentally-measured ones found in the literature (see Table A in S1 Text). On the other hand, the fit in (B) cannot reproduce a diauxic
behavior when the parameters are constrained to vary within a few orders of magnitude away from biologically reasonable values (see Table A in S1
Text). See S1 Text for details on how the fits were performed and the resulting values of the best fit parameters.

https://doi.org/10.1371/journal.pcbi.1007896.g001

PLOS COMPUTATIONAL BIOLOGY Metabolic adaptation promotes coexistence in competitive communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007896 May 7, 2020 6 / 18

Dynamic metabolic adaptation
Comparison with experimental data

Question
How does the model with dynamic
metabolic adaptation behave when
compared to experimental data? Does
it behave better than classic
consumer-resource theory?

I have tested the model in a very sim-
ple case: diauxic shifts.

I have measured the growth of the
baker’s yeast Saccharomyces cerevisiae

on galactose.
Schematic representation of the yeast used in the experiment
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What we have found

2/4) When multiple species and resources are considered, the model naturally
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2/4) When multiple species and resources are considered, the model naturally

violates the Competitive Exclusion Principle:
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Static metabolic
strategies

Perturbation of the supply rate (e.g. changes in time) lead to extinction in 
the absence of adaptation. 

Result 3: increase of community resilience

L. Pacciani Mori et al., Plos Comp. Biology 2020



Result 4: increase of community resilience

L. Pacciani Mori et al., Plos Comp. Biology 2020

Dynamics of 
Consumer-resources network



Importance of adaptation velocity

4/4) Fast adaptation (i.e., τσ small) always favors coexistence, 
while slower adaptation does not 

i y=1

L. Pacciani-Mori et al., ISME Journal, 2021
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maximized respecting the constraint F� (~'� ,~c) = 0, i.e. Eq (8.9c) is satisfied. In this case
the evolution equation for ~'� becomes:
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where we have introduced ⌧� , the characteristic timescale over which ~'� changes, i.e.
the characteristic timescale of the adaptive process that maximized the growth rate. We
can of course recover Eq (8.12) from Eq (8.13) by sending ⌧� to infinity. Geometrically,
Eq (8.12) represents the case in which ~'� is “dragged along” by the hyperplane to which
it belongs, as the hyperplane moves because of Eq (8.9c). On the other hand, according
to Eq (8.13) (with small enough values of ⌧� ) the ~'� are free to move on the hyperplane
to find the maximum instantaneous growth rate compatible with the constraint given
by Eq (8.9c).

We now use the same technique shown in Chapter 5 to prevent '�i from becoming
negative. In particular, we write Eq (8.13) in components in terms of an auxiliary
variable  �i :
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way, Eq (8.14) becomes:
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Choosing F (x) = x
2
/4 as in Chapter 5 (any other choice leads to qualitatively identical

results, as already stated), we have F 0( �i )2 = '�i . If we also take into account that:

@g�

@'�i

= ⌘�i ri(ci )
@F�

@'�i

= 1+��i ri(ci )
@F�

@ci

= '�i��i
Ki

(ci +Ki )2
, (8.16)

the final expression of the equation for '�i is:

'̇�i = '�i

2
666664
⌘�i ri(ci )
⌧�

� (1 +��i ri(ci ))
PNR

k=1'�k(1 +��krk(ck))
2
·

·
NRX

j=1

'�j

 
⌘�j rj (cj )
⌧�

(1 +��j rj (cj )) +��j
Kj

(cj +Kj )2
ċj
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Generalized Lotka Volterra 
(GLV) and connection with

microbiome ecological data.



Species Abundance Distribution (SAD or RSA)
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Dynamical evolution of ecosystems
Sandro Azaele1, Simone Pigolotti2, Jayanth R. Banavar3 & Amos Maritan1

The assembly of an ecosystem such as a tropical forest depends
crucially on the species interaction network, and the deduction of
its rules is a formidably complex problem1. In spite of this, many
recent studies2–16 using Hubbell’s neutral theory of biodiversity
and biogeography2 have demonstrated that the resulting emergent
macroscopic behaviour of the ecosystem at or near a stationary
state shows a surprising simplicity reminiscent of many physical
systems17. Indeed the symmetry postulate2, that the effective birth
and death rates are species-independent within a single trophic
level, allows one to make analytical predictions for various static
distributions such as the relative species abundance3–12, b-divers-
ity13–15 and the species–area relationship16. In contrast, there have
only been a few studies of the dynamics and stability of tropical
rain forests18–20. Here we consider the dynamical behaviour of a
community, and benchmark it against the exact predictions of a
neutral model near or at stationarity. In addition to providing a
description of the relative species abundance, our analysis leads to
a quantitative understanding of the species turnover distribution
and extinction times, and a measure of the temporal scales of
neutral evolution. Our model gives a very good description of
the large quantity of data collected in Barro Colorado Island in
Panama in the period 1990–2000 with just three ecologically rel-
evant parameters and predicts the dynamics of extinction of the
existing species.

We present an analytical model that allows one to probe the char-
acteristic timescales of evolving tropical forests and to evaluate the
consequences of anthropogenic processes. Our approach is valid for
an ecosystem at or near stationarity; indeed, one would expect
important deviations from our predictions when the stationarity
assumption is not valid (see, for example, ref. 21). Using a neutral
model, we have obtained exact solutions for the probability distri-
bution, P(x,t), that a species has a population x at time t for arbitrary
initial and boundary conditions (see Supplementary Information for
details). The species are assumed to be non-interacting and are char-
acterized by effective birth and death rates given by b(x)5 b1x1 b0
and d(x)5 d1x1 d0 respectively, where b1 and d1 are the per-capita
rates and the constants b0 and d0 incorporate density dependence and
result in a rare species advantage when b0. d0 (ref. 9). To simplify
the analytical treatment and for parsimony we have chosen b052d0
in our analysis.

There are three biological parameters in our framework, namely t,
b and D: t is the characteristic timescale associated with species
turnover in neutral evolution—an ecosystem close to the stationary
state is able to recover from a perturbation on a timescale of order t
and its inverse is simply the difference between d1 and b1; b5 2b0
takes into account density dependence effects9 arising from immig-
ration22 and/or speciation, for example; and D accounts for demo-
graphic stochasticity and is given by (b11 d1)/2.

The steady-state solution, which is independent of initial condi-
tions, provides an exact expression for the relative species abundance
(RSA),

PRSA(x)~
(Dt){b=D

C(b=D)
xb=D{1e{x=Dt ð1Þ

(C(x) is the gamma function23), which is in good accord with RSA
data for various censuses of the Barro Colorado Island (BCI) forest
(Center for Tropical Forest Science website, http://ctfs.si.edu), and
for several other tropical forests with the use of the data presented in
the Supplementary Information of ref. 9. These fits allow us to estim-
ate two combinations, b/D and Dt (see Fig. 1 and Supplementary
Tables 1 and 2), of the three parameters.

The time-dependent species turnover distribution (STD), defined
as the probability PSTD(l,t) that the ratio of the populations of a
species separated by a time interval t, x(t)/x(0), is equal to l, is found
under stationary conditions to be

PSTD(l,t)~A
lz1ð Þ
l

(et=t)b=2D

1{e{t=t

sinh(t=2t)

l

! "b=Dz1

4l2

(lz1)2et=t{4l

! "b=Dz
1

2

ð2Þ

whereA is the normalization constant. PSTD depends only on b/D and
t. The above result, derived for reflecting boundary conditions at

1Dipartimento di Fisica ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy. 2The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark. 3Department of
Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, USA.
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Figure 1 | Relative species abundance plot in the BCI forest from the 1990
census (Center for Tropical Forest Science website). The individuals of
more than 10 cm d.b.h. in this tropical forest are binned with the method of
refs 7, 29. The inset shows the same histogram for the individuals of more
than 1 cm d.b.h. for the same forest and yields consistent estimates of the
model parameters and temporal scales within the error bars. The estimated
parameters are robust within error bars on changing the nature of binning of
the empirical data to non-overlapping bins. The points are the best fits to the
mean number of species with population between 2n2 1 and 2n, as given by
equation (1). The fit for large x is readily improved at the cost of introducing
an additional parameter (see Supplementary Information for error analysis
and other details). Note that the RSA plot for individuals ofmore than 10 cm
d.b.h. is smoother at low abundance than the plot for individuals of more
than 1 cm d.b.h. This is to be expected because younger populations are
subject to larger fluctuations than older ones.
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20 Introduction: A Journey in the Omics World

Fig. 1.9 Representation of di↵erent concepts of ecological diversity, adapted from
Costello et al., 2012 [15]

species-level OTU estimate for the �-diversity of the human gut microbiome sets
this limit to [65]

S� ⇡ 4.5 ⇥ 103

In this study, where 3810 faecal metagenomics sample from were processed from
geographically end phenotypically diverse human communities [65].

The �-diversity considers di↵erences between local communities and a distance
measure needs to be introduced. The distance can consider the taxonomic classifica-
tion of communities as a starting point (Bray-Curtis dissimilarity, Jaccard index) or
consider lower-level variables, such as the sets of sequences found in two communi-
ties (UniFrac). Commonly adopted processing strategies of distance matrices are
PCA and PCoA.

The last kind of diversity to consider, the ↵-diversity, can be estimated in many
ways. The first thing to consider is the number of species that each individual can
host, which is estimated to be, [83]

2 ⇥ 102 < S↵ < 103

S↵ is a↵ected by many factors and is unevenly geographically distributed and
can be a↵ected by disease, where is usually reduced. Other ↵-diversity measures

Ecology of the Microbiomes

Costello et al., Science, 2012



zero-inflated Gamma distribution (see Methods and Supplemen-
tary Fig. 6).

This result strongly suggests that, at the taxonomic resolution
used in this study, competitive exclusion is absent or, at least,
statistically irrelevant. Importantly, this result clarifies the relation
between abundance and occupancy21, which has been reported in
multiple microbial systems18,22,23 but has never been quantita-
tively characterized and explained.

Taylor’s Law. The mean and variance of abundance fluctuations
are sufficient to characterize the full distribution of abundances of
species across communities, as Eq. (1) depends only on the two
moments !xi and σxi . The second macroecological law describes
the relation between mean and variance of species abundance,
which is often referred to as Taylor’s Law24. Taylor’s law has been
reported in many contexts, ranging from ecology25,26 to phy-
siology27–29, from economics30 to geomorphology31. Figure 1c

−5.0 −2.5 0.0 2.5
Rescaled log

relative abundance

P
ro

ba
bi

lit
y 

de
ns

ity

10–14

10–10

10–6

10–1

10–1

10–3

10–5
10–2

10–3

1

10–2

Communitiesa

c

b d

Average

Abundance

Mea
n

Var
ian

ce

x

x
x

x

x

x Absent

S
pe

ci
es

10–6 10–3

y~x2

1
Average

relative abundance

Va
ria

nc
e 

of
re

la
tiv

e 
ab

un
da

nc
e

−2 −1 0 1 2
Rescaled log average

relative abundance

Too rare
(undersampled)P

ro
ba

bi
lit

y 
de

ns
ity

Glacier

Gamma

Lognormal

gut1
gut2
Lake
Oral1
River
Seawater
Sludge
Soil

SAD MAD

Taylor’s
   Law

AFD

Fig. 1 Laws of variation in microbial communities. a The species abundance distribution (SAD) describes the fluctuations of abundance across species in a
community. b The Abundance Fluctuation Distribution (AFD) describes the distribution of abundances of a species across communities. I consider cross-
sectional data from 9 data sets (colored symbols, see Methods). A Gamma distribution (solid black line) closely matches the AFD, here reported for the
most abundant species (see Methods). The Gamma distribution describes the AFD of both abundant and rare species (Supplementary Note 1 and
Supplementary Fig. 2). c The mean and variance of the abundance distribution are not independent across species, a relationship known as Taylor's Law.
The variance is, in fact, proportional to the square of the mean (solid line), implying that the coefficient of variation of the abundance fluctuations is
constant across species (Supplementary Fig. 7). Taylor's Law (together with a Gamma AFD) implies that a single parameter per species (the average
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Fig. 2 The AFD predicts the presence/absence of species from fluctuations of abundance. a Relationship between fluctuation in abundance and the
absence of species. The fluctuations of species abundances across communities (AFD) are Gamma distributed (Fig. 1), which implies that species are
absent only because of finite sampling. b Tests the prediction, by comparing the occupancy of species (the fraction of communities where a species is
presence) in different biomes with what expected from independent sampling from Gamma distributed relative abundances (Supplementary Note 4 and
Supplementary Fig. 3).
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Macroecological laws hold for temporal data. A question that
naturally arises is whether the success of the AFD, together with
the other two macroecological laws, in predicting the scaling of
abundance and diversity translates into an ecological prediction
on the nature of stochasticity. Which ecological process is
responsible for the fluctuations of species abundance across
communities? The ability of a Gamma AFD in predicting occu-
pancy from its first two central moments, as illustrated in Fig. 2,
rules out mechanisms that explain variation as a consequence of
alternative stable states driven by biotic or abiotic interactions.
These mechanisms would correspond in fact to more complicated
relationships between abundance and occupancy (Supplementary
Note 11), that cannot be described by a Gamma AFD. An
alternative is that the variation in abundances is the effect of a
mechanism with some intrinsic variability. This variability could

be due to heterogeneity (e.g., two communities are different
because the environmental conditions were, are and will be dif-
ferent) or stochasticity (e.g., two communities are different
because the environmental conditions are independently fluctu-
ating over time). I tested these two scenarios using longitudinal
(temporal) data (see Methods). In the former scenario, the three
macroecological laws should differ between cross-sectional (i.e.,
across communities) and longitudinal (i.e., across time) studies.
While in the latter case, they should also hold when a community
is followed over time. Figure 4 shows that the three macro-
ecological laws also hold for longitudinal data, suggesting that
fluctuations in abundance are mainly due to temporal stochasti-
city (Supplementary Note 9). This result does not contradict
the existence of replicable differences between communities (e.g.,
host genetics correlates with community composition of gut
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Fig. 3 The AFD, Taylor’s Law and MAD quantitatively predict macroecological patterns. a Scaling of diversity (measured as the number of species)
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Dynamical Mean Field Theory

Tobias Galla

dynamics of a single representative species, and captures
the statistics of the community. In this approach, the size
of the resulting ecosystem is not set from the beginning.
Instead, we start from an initial set of possible species,
specify its dynamics and assume random interaction co-
efficients, similarly to [23,24]. Species may undergo ex-
tinction and hence some species will not survive in the
long-term limit. How many species go extinct or survive
depends on the properties of the interaction matrix. Cru-
cially, the size of the resulting food web at stationarity is a
property of the system itself in our model, and not a con-
trol parameter as in most studies based on random-matrix
theory.

In approaches based on random-matrix theory stable
and unstable regimes are identified from presumed ran-
dom Jacobians, but only few statements are made about
the properties of stable fixed points. As part of our
study, we also carry out a linear stability analysis of the
representative-species process, and investigate in detail
how the presence of predator-prey pairs in the commu-
nity affect the stability of the dynamics. The generating-
functional technique allows us also to calculate fixed-point
properties and the statistics of the ecological commu-
nity at stationarity. In particular we obtain results for
species abundance and rank distributions, the fraction
of surviving species and the total biomass contained in
the system. No approximations need to be made (except
for assuming the community under consideration to be
large). Our theoretical predictions are confirmed convinc-
ingly in numerical simulations. They agree with those
of [23]. This existing work uses the cavity method to ad-
dress fixed points of the random Lotka-Volterra system.
Our approach differs from this in that we derive the effec-
tive dynamical process resulting from the disorder average.

Our work builds on a number of existing studies. In
the statistical physics community replicator models with
random couplings have first been proposed by Opper and
Diederich [25,26] and by Rieger [27], and stable and un-
stable regimes of such model systems have been identified
and characterised analytically within the theory of phase
transitions of statistical mechanics, see also [28–35]. Simi-
lar tools can also be used to study game learning [36] and
the distribution of Nash equilibria in games [37–39].

These existing non-equilibrium statistical physics stud-
ies of random community models are restricted to repli-
cator models in which the total concentration of species
is conserved. Furthermore, results have been expressed
mostly in dependence on a so-called co-operation pres-
sure; an intra-species interaction term suppressing the
growth of individual species, and driving the system to
a state of diversity. In the present paper we address
Lotka-Volterra systems and focus the effects of complex-
ity and variability on the level of inter-species interactions
and address questions of feasibilty as well. While a for-
mal mathematical equivalence between replicator systems
and Lotka-Volterra systems (of a different dimensionality)
can be established (see, e.g., [8]) replicator systems are

inherently bounded by definition, and do not allow for
runaway solutions. In Lotka-Volterra systems, on the con-
trary, the total biomass is a dynamical quantity, and can
be computed analytically from the statistical physics the-
ory. Furthermore, as we will see below, Lotka-Volterra
systems show an instability, distinctly different from that
of replicator systems, separating stable fixed-point regimes
from phases in which characteristic quantities such as the
biomass and individual species concentrations can diverge
in time. No such regime is found in random replicator
systems, where instead bounded and potentially chaotic
trajectories are observed in the unstable regime [26,30,31].

Lotka-Volterra random community model. –
Similarly to [23] we consider a generalized Lotka-Volterra
model describing the dynamics of an interacting commu-
nity of N species, labeled by i = 1, . . . , N . The time-
dependent number density of individuals of species i is
denoted by xi(t), and evolves in time according to

dxi(t)
dt

= rixi(t)

⎛

⎝Ki +
N∑

j=1

αijxj(t)

⎞

⎠ . (1)

The intra-specific interaction coefficients αii will be set to
αii = −1, following, for example, [4,21]. For simplicity,
we set the basic growth rates ri to unity. The quantities
Ki denote carrying capacities; if there are no interactions
between species (αij = 0 for i ̸= j) then ẋi = xi(Ki − xi).
We focus on the case Ki = 1 for all i. The interaction
coefficients αij (i ̸= j) finally represent the (per capita)
effect of species on one another. A negative coefficient αij

indicates a competitive effect of species j on species i.
In our setup the couplings αij (i ̸= j) are drawn from

a Gaussian random distribution [4,5,25,26,31] character-
ized by its mean and covariance matrix. We introduce a
model parameter controlling the correlation between the
interaction coefficients αij and αji, and hence the fraction
of prey-predator pairs in the artificial ecological commu-
nity. A prey-predator pair consists of two species i and j
for which αij and αji have opposite signs, i.e., a pair in
which the presence of say species i has a detrimental effect
on species j, whereas the presence of species j is beneficial
for individuals of species i, see also [16].

Specifically for any pair i < j of species we set

αij =
µ

N
+

σ√
N

zij , αji =
µ

N
+

σ√
N

zji, (2)

where zij and zji are drawn from a Gaussian distribution
with zij = 0, z2

ij = 1, and zijzji = γ. The overbar de-
scribes averages over the Gaussian ensemble. The scaling
of the moments of the αij with N is necessary to produce a
well-defined limit N → ∞ in which the statistical mechan-
ics theory applies. The parameter −1 ≤γ ≤1 character-
izes the correlations between zij and zji. For γ = 1 one
has αij = αji with probability one. For γ = 0, zij and zji

are uncorrelated, and for γ = −1 one has zij = −zji with
probability one. In the limit of large system size, N → ∞,
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ity and variability on the level of inter-species interactions
and address questions of feasibilty as well. While a for-
mal mathematical equivalence between replicator systems
and Lotka-Volterra systems (of a different dimensionality)
can be established (see, e.g., [8]) replicator systems are

inherently bounded by definition, and do not allow for
runaway solutions. In Lotka-Volterra systems, on the con-
trary, the total biomass is a dynamical quantity, and can
be computed analytically from the statistical physics the-
ory. Furthermore, as we will see below, Lotka-Volterra
systems show an instability, distinctly different from that
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from phases in which characteristic quantities such as the
biomass and individual species concentrations can diverge
in time. No such regime is found in random replicator
systems, where instead bounded and potentially chaotic
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Lotka-Volterra random community model. –
Similarly to [23] we consider a generalized Lotka-Volterra
model describing the dynamics of an interacting commu-
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dependent number density of individuals of species i is
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αii = −1, following, for example, [4,21]. For simplicity,
we set the basic growth rates ri to unity. The quantities
Ki denote carrying capacities; if there are no interactions
between species (αij = 0 for i ̸= j) then ẋi = xi(Ki − xi).
We focus on the case Ki = 1 for all i. The interaction
coefficients αij (i ̸= j) finally represent the (per capita)
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indicates a competitive effect of species j on species i.
In our setup the couplings αij (i ̸= j) are drawn from

a Gaussian random distribution [4,5,25,26,31] character-
ized by its mean and covariance matrix. We introduce a
model parameter controlling the correlation between the
interaction coefficients αij and αji, and hence the fraction
of prey-predator pairs in the artificial ecological commu-
nity. A prey-predator pair consists of two species i and j
for which αij and αji have opposite signs, i.e., a pair in
which the presence of say species i has a detrimental effect
on species j, whereas the presence of species j is beneficial
for individuals of species i, see also [16].

Specifically for any pair i < j of species we set
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+
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+

σ√
N

zji, (2)

where zij and zji are drawn from a Gaussian distribution
with zij = 0, z2

ij = 1, and zijzji = γ. The overbar de-
scribes averages over the Gaussian ensemble. The scaling
of the moments of the αij with N is necessary to produce a
well-defined limit N → ∞ in which the statistical mechan-
ics theory applies. The parameter −1 ≤γ ≤1 character-
izes the correlations between zij and zji. For γ = 1 one
has αij = αji with probability one. For γ = 0, zij and zji

are uncorrelated, and for γ = −1 one has zij = −zji with
probability one. In the limit of large system size, N → ∞,
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a given pair of species i ̸= j forms a predator-prey pair
(αijαji < 0) if and only if zij and zji are of opposite sign.
The percentage p of predator-prey interactions can hence
be worked out by performing a suitable Gaussian integral
over the joint distribution of zij and zji. This leads to an
explicit, non-linear and decreasing dependence of p on γ.
In particular one has p = 1 for γ = − 1 (for γ = − 1 the
system consists fully of predator-prey interactions and in
the limit of large N); one has p = 1/2 for γ = 0 (50%
predator-prey pairs), and p = 0 for γ = 1 (i.e., no prey-
predator pairs are present for γ = 1). In all cases, the
remaining fraction of 1 − p interaction pairs is not of the
predator-prey type. In the limit N → ∞, half of these
will be of a mutualistic interaction type (αij and αji both
positive), and the other half of a strictly competitive type
(αij and αji both negative).

Path-integral analysis. – We study the random com-
munity Lotka-Volterra model, eq. (1), in the limit of a
large number of interacting species (N → ∞) using dy-
namical methods from spin-glass physics [10–13,15].

The starting point of the path-integral analysis are the
N -species Lotka-Volterra equations

dxi(t)
dt

= rixi(t)

⎛

⎝Ki +
N∑

j=1

αijxj + h(t)

⎞

⎠ , (3)

where we have added a perturbation field h(t), which will
be used to generate dynamical response functions and sus-
ceptibilities. This field is a theoretical device and is set to
zero at the end of the calculation. The dynamical moment-
generating functional is given by

Z[ψ] =
∫

[Dx]
∏

it

exp

(
i
∑

i

∫
dtψi(t)xi(t)

)

×δ

(
ẋi − xi(t)

[
1 +

N∑

j=1

αijxj + h(t)
])

, (4)

where δ(· · · ) denotes the (functional) Dirac delta distri-
bution, and restricts the integral to all paths allowed by
the Lotka-Volterra dynamics. The notation [Dx] indi-
cates a functional integral over trajectories of the system.
The variables ψi(t) represent external source fields; Z[ψ]
hence describes the (functional) Fourier transform of the
measure generated by the Lotka-Volterra dynamics in the
space of possible trajectories. Performing the average over
all possible realizations of interaction matrix entries {αij}
along the lines of [25,26,31] leads, in the limit N → ∞, to
the following stochastic process for the concentration x(t)
of a representative species:

dx(t)
dt

= x(t)
[
1 − x(t) + µM(t)

+ γσ2

∫ t

0
G(t, t′)x(t′)dt′ + η(t) + h(t)

]
, (5)

see the Supplementary Material Supplementary
material.pdf (SM) for details. We now describe
the different ingredients of this process. We have coloured
Gaussian noise η(t), with temporal correlations given
self-consistently by ⟨η(t)η(t′)⟩ = σ2⟨x(t)x(t′)⟩, where
⟨. . . ⟩ denotes an average over the process in eq. (5).
The effective-species concentration x(t) thus is a random
process itself. A further component of the effective dy-
namics is the non-Markovian term coupling back in time
through the integral over t′. This term and the coloured
noise η are remnants of the initial randomness of the
species interactions {αij}. The key quantities describing
the dynamics of the model are the correlation function
C(t, t′), the response function G(t, t′) and the average
species concentration M(t), or equivalently the total
biomass in the system at time t. These order parameters
are to be obtained self-consistently as averages over
realizations of the effective-species process as

C(t, t′) = ⟨x(t)x(t′)⟩,

G(t, t′) =
〈

δx(t)
δh(t′)

〉
,

M(t) = ⟨x(t)⟩.

(6)

A fixed-point ansatz limt→∞ x(t) = x∗, limt→∞ η(t) = η∗,
with both x∗ and η∗ static random variables then leads to
M(t) ≡ M , and C(t, t′) ≡ σ2q, where q = ⟨(x∗)2⟩. This
is similar to the procedure in [26,31]. Within this fixed-
point ansatz G(t, t′) becomes time-translation invariant,
i.e., G(t, t′) is a function only of τ = t − t′. Causality
dictates G(τ) = 0 for τ < 0. We write χ =

∫ ∞
0 dτ G(τ).

This ansatz leads to

x∗[1 − x∗ + µM + γσ2χx∗ + η∗] = 0, (7)

so that fixed points can take values x∗ = 0 and x∗ =
(1 + µM + η∗)/(1 − γσ2χ). The latter solution is only
physical if it is non-negative, so that we have

x∗(η∗) =
1 + µM + η∗

1 − γσ2χ
H

(
1 + µM + η∗

1 − γσ2χ

)
, (8)

where H(x) is the Heaviside function, H(x) = 1 for x > 0,
and H(x) = 0 else. Note that η∗ is a Gaussian random
variable, as indicated above, so x∗ is a random quantity as
well. These results re-iterate that a fraction of the N ini-
tial species dies out during the transients of the Lotka-
Volterra dynamics, and is no longer present at the fixed
points.

Following the lines of [26,31] to perform the average over
the ensemble of fixed points one finds closed non-linear
integral equations (see the SM),

χ =
1

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2, (9)

M =
√

qσ

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z), (10)

1 =
σ2

(1 − γσ2χ)2

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z)2, (11)
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a given pair of species i ̸= j forms a predator-prey pair
(αijαji < 0) if and only if zij and zji are of opposite sign.
The percentage p of predator-prey interactions can hence
be worked out by performing a suitable Gaussian integral
over the joint distribution of zij and zji. This leads to an
explicit, non-linear and decreasing dependence of p on γ.
In particular one has p = 1 for γ = − 1 (for γ = − 1 the
system consists fully of predator-prey interactions and in
the limit of large N); one has p = 1/2 for γ = 0 (50%
predator-prey pairs), and p = 0 for γ = 1 (i.e., no prey-
predator pairs are present for γ = 1). In all cases, the
remaining fraction of 1 − p interaction pairs is not of the
predator-prey type. In the limit N → ∞, half of these
will be of a mutualistic interaction type (αij and αji both
positive), and the other half of a strictly competitive type
(αij and αji both negative).

Path-integral analysis. – We study the random com-
munity Lotka-Volterra model, eq. (1), in the limit of a
large number of interacting species (N → ∞) using dy-
namical methods from spin-glass physics [10–13,15].

The starting point of the path-integral analysis are the
N -species Lotka-Volterra equations

dxi(t)
dt

= rixi(t)

⎛

⎝Ki +
N∑

j=1

αijxj + h(t)

⎞

⎠ , (3)

where we have added a perturbation field h(t), which will
be used to generate dynamical response functions and sus-
ceptibilities. This field is a theoretical device and is set to
zero at the end of the calculation. The dynamical moment-
generating functional is given by

Z[ψ] =
∫

[Dx]
∏

it

exp

(
i
∑

i

∫
dtψi(t)xi(t)

)

×δ

(
ẋi − xi(t)

[
1 +

N∑

j=1

αijxj + h(t)
])

, (4)

where δ(· · · ) denotes the (functional) Dirac delta distri-
bution, and restricts the integral to all paths allowed by
the Lotka-Volterra dynamics. The notation [Dx] indi-
cates a functional integral over trajectories of the system.
The variables ψi(t) represent external source fields; Z[ψ]
hence describes the (functional) Fourier transform of the
measure generated by the Lotka-Volterra dynamics in the
space of possible trajectories. Performing the average over
all possible realizations of interaction matrix entries {αij}
along the lines of [25,26,31] leads, in the limit N → ∞, to
the following stochastic process for the concentration x(t)
of a representative species:

dx(t)
dt

= x(t)
[
1 − x(t) + µM(t)

+ γσ2

∫ t

0
G(t, t′)x(t′)dt′ + η(t) + h(t)

]
, (5)

see the Supplementary Material Supplementary
material.pdf (SM) for details. We now describe
the different ingredients of this process. We have coloured
Gaussian noise η(t), with temporal correlations given
self-consistently by ⟨η(t)η(t′)⟩ = σ2⟨x(t)x(t′)⟩, where
⟨. . . ⟩ denotes an average over the process in eq. (5).
The effective-species concentration x(t) thus is a random
process itself. A further component of the effective dy-
namics is the non-Markovian term coupling back in time
through the integral over t′. This term and the coloured
noise η are remnants of the initial randomness of the
species interactions {αij}. The key quantities describing
the dynamics of the model are the correlation function
C(t, t′), the response function G(t, t′) and the average
species concentration M(t), or equivalently the total
biomass in the system at time t. These order parameters
are to be obtained self-consistently as averages over
realizations of the effective-species process as

C(t, t′) = ⟨x(t)x(t′)⟩,

G(t, t′) =
〈

δx(t)
δh(t′)

〉
,

M(t) = ⟨x(t)⟩.

(6)

A fixed-point ansatz limt→∞ x(t) = x∗, limt→∞ η(t) = η∗,
with both x∗ and η∗ static random variables then leads to
M(t) ≡ M , and C(t, t′) ≡ σ2q, where q = ⟨(x∗)2⟩. This
is similar to the procedure in [26,31]. Within this fixed-
point ansatz G(t, t′) becomes time-translation invariant,
i.e., G(t, t′) is a function only of τ = t − t′. Causality
dictates G(τ) = 0 for τ < 0. We write χ =

∫ ∞
0 dτ G(τ).

This ansatz leads to

x∗[1 − x∗ + µM + γσ2χx∗ + η∗] = 0, (7)

so that fixed points can take values x∗ = 0 and x∗ =
(1 + µM + η∗)/(1 − γσ2χ). The latter solution is only
physical if it is non-negative, so that we have

x∗(η∗) =
1 + µM + η∗

1 − γσ2χ
H

(
1 + µM + η∗

1 − γσ2χ

)
, (8)

where H(x) is the Heaviside function, H(x) = 1 for x > 0,
and H(x) = 0 else. Note that η∗ is a Gaussian random
variable, as indicated above, so x∗ is a random quantity as
well. These results re-iterate that a fraction of the N ini-
tial species dies out during the transients of the Lotka-
Volterra dynamics, and is no longer present at the fixed
points.

Following the lines of [26,31] to perform the average over
the ensemble of fixed points one finds closed non-linear
integral equations (see the SM),

χ =
1

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2, (9)

M =
√

qσ

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z), (10)

1 =
σ2

(1 − γσ2χ)2

∫ ∆

−∞

dz√
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a given pair of species i ̸= j forms a predator-prey pair
(αijαji < 0) if and only if zij and zji are of opposite sign.
The percentage p of predator-prey interactions can hence
be worked out by performing a suitable Gaussian integral
over the joint distribution of zij and zji. This leads to an
explicit, non-linear and decreasing dependence of p on γ.
In particular one has p = 1 for γ = − 1 (for γ = − 1 the
system consists fully of predator-prey interactions and in
the limit of large N); one has p = 1/2 for γ = 0 (50%
predator-prey pairs), and p = 0 for γ = 1 (i.e., no prey-
predator pairs are present for γ = 1). In all cases, the
remaining fraction of 1 − p interaction pairs is not of the
predator-prey type. In the limit N → ∞, half of these
will be of a mutualistic interaction type (αij and αji both
positive), and the other half of a strictly competitive type
(αij and αji both negative).

Path-integral analysis. – We study the random com-
munity Lotka-Volterra model, eq. (1), in the limit of a
large number of interacting species (N → ∞) using dy-
namical methods from spin-glass physics [10–13,15].

The starting point of the path-integral analysis are the
N -species Lotka-Volterra equations

dxi(t)
dt

= rixi(t)

⎛

⎝Ki +
N∑

j=1

αijxj + h(t)

⎞

⎠ , (3)

where we have added a perturbation field h(t), which will
be used to generate dynamical response functions and sus-
ceptibilities. This field is a theoretical device and is set to
zero at the end of the calculation. The dynamical moment-
generating functional is given by

Z[ψ] =
∫

[Dx]
∏

it

exp

(
i
∑

i

∫
dtψi(t)xi(t)

)

×δ

(
ẋi − xi(t)

[
1 +

N∑

j=1

αijxj + h(t)
])

, (4)

where δ(· · · ) denotes the (functional) Dirac delta distri-
bution, and restricts the integral to all paths allowed by
the Lotka-Volterra dynamics. The notation [Dx] indi-
cates a functional integral over trajectories of the system.
The variables ψi(t) represent external source fields; Z[ψ]
hence describes the (functional) Fourier transform of the
measure generated by the Lotka-Volterra dynamics in the
space of possible trajectories. Performing the average over
all possible realizations of interaction matrix entries {αij}
along the lines of [25,26,31] leads, in the limit N → ∞, to
the following stochastic process for the concentration x(t)
of a representative species:

dx(t)
dt

= x(t)
[
1 − x(t) + µM(t)

+ γσ2

∫ t

0
G(t, t′)x(t′)dt′ + η(t) + h(t)

]
, (5)

see the Supplementary Material Supplementary
material.pdf (SM) for details. We now describe
the different ingredients of this process. We have coloured
Gaussian noise η(t), with temporal correlations given
self-consistently by ⟨η(t)η(t′)⟩ = σ2⟨x(t)x(t′)⟩, where
⟨. . . ⟩ denotes an average over the process in eq. (5).
The effective-species concentration x(t) thus is a random
process itself. A further component of the effective dy-
namics is the non-Markovian term coupling back in time
through the integral over t′. This term and the coloured
noise η are remnants of the initial randomness of the
species interactions {αij}. The key quantities describing
the dynamics of the model are the correlation function
C(t, t′), the response function G(t, t′) and the average
species concentration M(t), or equivalently the total
biomass in the system at time t. These order parameters
are to be obtained self-consistently as averages over
realizations of the effective-species process as

C(t, t′) = ⟨x(t)x(t′)⟩,

G(t, t′) =
〈

δx(t)
δh(t′)

〉
,

M(t) = ⟨x(t)⟩.

(6)

A fixed-point ansatz limt→∞ x(t) = x∗, limt→∞ η(t) = η∗,
with both x∗ and η∗ static random variables then leads to
M(t) ≡ M , and C(t, t′) ≡ σ2q, where q = ⟨(x∗)2⟩. This
is similar to the procedure in [26,31]. Within this fixed-
point ansatz G(t, t′) becomes time-translation invariant,
i.e., G(t, t′) is a function only of τ = t − t′. Causality
dictates G(τ) = 0 for τ < 0. We write χ =

∫ ∞
0 dτ G(τ).

This ansatz leads to

x∗[1 − x∗ + µM + γσ2χx∗ + η∗] = 0, (7)

so that fixed points can take values x∗ = 0 and x∗ =
(1 + µM + η∗)/(1 − γσ2χ). The latter solution is only
physical if it is non-negative, so that we have

x∗(η∗) =
1 + µM + η∗

1 − γσ2χ
H

(
1 + µM + η∗

1 − γσ2χ

)
, (8)

where H(x) is the Heaviside function, H(x) = 1 for x > 0,
and H(x) = 0 else. Note that η∗ is a Gaussian random
variable, as indicated above, so x∗ is a random quantity as
well. These results re-iterate that a fraction of the N ini-
tial species dies out during the transients of the Lotka-
Volterra dynamics, and is no longer present at the fixed
points.

Following the lines of [26,31] to perform the average over
the ensemble of fixed points one finds closed non-linear
integral equations (see the SM),

χ =
1

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2, (9)

M =
√

qσ

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z), (10)

1 =
σ2

(1 − γσ2χ)2

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z)2, (11)
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a given pair of species i ̸= j forms a predator-prey pair
(αijαji < 0) if and only if zij and zji are of opposite sign.
The percentage p of predator-prey interactions can hence
be worked out by performing a suitable Gaussian integral
over the joint distribution of zij and zji. This leads to an
explicit, non-linear and decreasing dependence of p on γ.
In particular one has p = 1 for γ = − 1 (for γ = − 1 the
system consists fully of predator-prey interactions and in
the limit of large N); one has p = 1/2 for γ = 0 (50%
predator-prey pairs), and p = 0 for γ = 1 (i.e., no prey-
predator pairs are present for γ = 1). In all cases, the
remaining fraction of 1 − p interaction pairs is not of the
predator-prey type. In the limit N → ∞, half of these
will be of a mutualistic interaction type (αij and αji both
positive), and the other half of a strictly competitive type
(αij and αji both negative).

Path-integral analysis. – We study the random com-
munity Lotka-Volterra model, eq. (1), in the limit of a
large number of interacting species (N → ∞) using dy-
namical methods from spin-glass physics [10–13,15].

The starting point of the path-integral analysis are the
N -species Lotka-Volterra equations

dxi(t)
dt

= rixi(t)

⎛

⎝Ki +
N∑

j=1

αijxj + h(t)

⎞

⎠ , (3)

where we have added a perturbation field h(t), which will
be used to generate dynamical response functions and sus-
ceptibilities. This field is a theoretical device and is set to
zero at the end of the calculation. The dynamical moment-
generating functional is given by

Z[ψ] =
∫

[Dx]
∏

it

exp

(
i
∑

i

∫
dtψi(t)xi(t)

)

×δ

(
ẋi − xi(t)

[
1 +

N∑

j=1

αijxj + h(t)
])

, (4)

where δ(· · · ) denotes the (functional) Dirac delta distri-
bution, and restricts the integral to all paths allowed by
the Lotka-Volterra dynamics. The notation [Dx] indi-
cates a functional integral over trajectories of the system.
The variables ψi(t) represent external source fields; Z[ψ]
hence describes the (functional) Fourier transform of the
measure generated by the Lotka-Volterra dynamics in the
space of possible trajectories. Performing the average over
all possible realizations of interaction matrix entries {αij}
along the lines of [25,26,31] leads, in the limit N → ∞, to
the following stochastic process for the concentration x(t)
of a representative species:

dx(t)
dt

= x(t)
[
1 − x(t) + µM(t)

+ γσ2

∫ t

0
G(t, t′)x(t′)dt′ + η(t) + h(t)

]
, (5)

see the Supplementary Material Supplementary
material.pdf (SM) for details. We now describe
the different ingredients of this process. We have coloured
Gaussian noise η(t), with temporal correlations given
self-consistently by ⟨η(t)η(t′)⟩ = σ2⟨x(t)x(t′)⟩, where
⟨. . . ⟩ denotes an average over the process in eq. (5).
The effective-species concentration x(t) thus is a random
process itself. A further component of the effective dy-
namics is the non-Markovian term coupling back in time
through the integral over t′. This term and the coloured
noise η are remnants of the initial randomness of the
species interactions {αij}. The key quantities describing
the dynamics of the model are the correlation function
C(t, t′), the response function G(t, t′) and the average
species concentration M(t), or equivalently the total
biomass in the system at time t. These order parameters
are to be obtained self-consistently as averages over
realizations of the effective-species process as

C(t, t′) = ⟨x(t)x(t′)⟩,
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〈
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with both x∗ and η∗ static random variables then leads to
M(t) ≡ M , and C(t, t′) ≡ σ2q, where q = ⟨(x∗)2⟩. This
is similar to the procedure in [26,31]. Within this fixed-
point ansatz G(t, t′) becomes time-translation invariant,
i.e., G(t, t′) is a function only of τ = t − t′. Causality
dictates G(τ) = 0 for τ < 0. We write χ =
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0 dτ G(τ).

This ansatz leads to
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so that fixed points can take values x∗ = 0 and x∗ =
(1 + µM + η∗)/(1 − γσ2χ). The latter solution is only
physical if it is non-negative, so that we have
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, (8)

where H(x) is the Heaviside function, H(x) = 1 for x > 0,
and H(x) = 0 else. Note that η∗ is a Gaussian random
variable, as indicated above, so x∗ is a random quantity as
well. These results re-iterate that a fraction of the N ini-
tial species dies out during the transients of the Lotka-
Volterra dynamics, and is no longer present at the fixed
points.

Following the lines of [26,31] to perform the average over
the ensemble of fixed points one finds closed non-linear
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dictates G(τ) = 0 for τ < 0. We write χ =
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physical if it is non-negative, so that we have
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variable, as indicated above, so x∗ is a random quantity as
well. These results re-iterate that a fraction of the N ini-
tial species dies out during the transients of the Lotka-
Volterra dynamics, and is no longer present at the fixed
points.
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integral equations (see the SM),

χ =
1

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2, (9)

M =
√

qσ

1 − γσ2χ

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z), (10)

1 =
σ2

(1 − γσ2χ)2

∫ ∆

−∞

dz√
2π

e−z2/2(∆ − z)2, (11)

48004-p3

12

FIG. 7. Agreement between the stochastic GLV system and
its DMFT description for a choice of parameters for which the
dynamics converges to equilibrium. The physical parameters
are µ = 0, � = 1, ⌧ = 1 and the initial distribution is uniform
on [0, 1]. The GLV system is composed of S = 103 species.
The trajectories of 5 representative species are shown. The
GLV average is obtained over 100 realizations. The simula-
tion parameters are �t = 0.1 and, for the DMFT algorithm,
Niter = 50, Ntrajs = 5 · 105.

FIG. 8. Agreement between the stochastic GLV system
and its DMFT description for a choice of parameters that
exhibits unbounded growth. The physical parameters are
µ = 0, � = 1, ⌧ = 10�3. The GLV system is composed of
S = 103 species. The trajectories of 5 representative species
are shown. The simulation parameters are �t = 10�5 and,
for the DMFT algorithm, Niter = 200, Ntrajs = 103.

Strictly speaking, given that for any choice of µ and � we can find initial conditions for which the dynamics diverges,238

a phase diagram analogous to the one of the quenched ⌧ ! 1 limit cannot be obtained. We nevertheless analysed239

in more depth the case in which the initial condition is drawn from the predicted stationary distribution Eq. 5 and240

obtained the “phase diagram” of Figure 4.241

Simulation of the DMFT equation242

The self-consistent DMFT equation Eq. (2) is numerically solved using the iterative method presented in [41] which243

is briefly recalled here.244

An initial guess is made for the mean of the process M(t) and the correlation of the noise C(t, t0). As reported in245

[41] and as shown in Fig. 6 the results are independent on this initial guess. Given the matrix C(t, t0) one can generate246

a realization of the noise ⌘(t) by first performing a Cholesky decomposition C = LL† and then computing ⌘ = Lu,247

where u is a vector with components drawn independently from a normal distribution. A small identity matrix is248

added to C(t, t0) before performing the Cholesky decomposition for numerical stabilization. In the white noise limit,249

given that the self-consistent relation for the correlation of the noise simplifies to E(⌘(t)⌘(t0)) = E(x2(t))�(t� t0), the250

noise can be generated without performing the Cholesky decomposition.251

With M(t) and a realization of the noise ⌘(t) Eq. (2) can be integrated. We did this using the second-order252

Heun’s method [42]. We chose this method for easier comparison of results with the white-noise limit, where the253

Stratonovich-Heun algorithm [43] was used. The numerical integration of Eq. (2) is repeated with the same M(t) and254

C(t, t0) a number of times Ntrajs. After doing so new estimates Mnew(t) and Cnew(t, t0) can be found by averaging255

over these Ntrajs trajectories. M(t) and C(t, t0) is finally softly updated as M(t) = (1 � ↵)Mold(t) + ↵Mnew(t). We256

fixed ↵ = 0.3 for all the simulations as in [41].257

The procedure is repeated a number of Niter times. Convergence is exponential in the number of iterations and for258

all simulations is reached after 200 iterations or sooner for the chosen values of Ntrajs.259

It works!
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Fig. 3: (Colour online) Probability for the system to end up in
a stable feasible stationary state vs. the variance σ2 of inter-
action matrix entries. Symbols are from simulations of com-
munities with N = 200 species, vertical dashed lines mark the
threshold variance σ2

c as obtained from the theory. The sys-
tem is predicted to be unstable above σ2

c . Predictions of the
theory are hence confirmed by the simulations, in which sta-
ble communities of surviving species are found for σ2 < σ2

c ,
and where unstable behavior is observed above the threshold
variance of interactions. We set µ = −1, the percentage of
predator-prey pairs is 33.3%, 50% and 66.6% for the left, cen-
tral and right curves, respectively, corresponding to predicted
values σ2

c = 0.88, σ2
c = 2 and σ2

c = 8 of the threshold variance
of interaction strengths.

where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare
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Fig. 4: (Colour online) Species abundance and rank abundance
distributions. The solid line is from the theory, the shaded area
in the main panel from simulations. A percentage of species
(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
totic densities (leftmost bin). Parameters are µ = −1, σ = 1,
αij and αji drawn independently for each pair i ≠ j (50% of all
species pairs are of the predator-prey type). The inset shows
the corresponding rank abundance distribution (solid line from
theory, markers from simulations). Species are ordered accord-
ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
plot shows abundance of the n-th species as a function of the
relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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φσ(1 + γ). The stability condition hence
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φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).
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out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
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model. As opposed to the case of replicator models the
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tion of individuals per species) is not held constant, but a
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excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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Fig. 2: (Colour online) (a) Fraction φ = NS/N of surviving
species as a function of the variance of interaction coefficients
and for different percentages of predator-prey interactions in
the community. Markers are data from numerical simulations
(N = 300 species, averages over 20 runs), solid lines represent
the results from the statistical physics theory. Vertical dashed
lines show the border to instability for the ecosystems with
0% and 50% predator-prey interactions as predicted by the
theory (σ2

c = 0.5 and σ2
c = 2, respectively). (b) Biomass M vs.

variance of interaction strengths.

above. It is depicted in fig. 2(a). As seen in the figure
excellent agreement between theoretical predictions (lines)
and results from numerical simulations (markers) is ob-
tained, confirming the validity of our analytical approach.
The computer simulations of the Lotka-Volterra dynam-
ics, eq. (1), have been carried out using a first-order Euler
forward integration scheme with dynamical time-stepping
as well as a discrete-time formulation in terms of expo-
nential functions as described, for example, in [43]. Both
methods lead to identical results. Initial species concen-
trations are set to unity, xi(t = 0) = 1 for all i = 1, . . . , N .
Results presented in all figures are for initial community
sizes of typically N = 200–300, all data is averaged over
multiple (10–200) realizations of interaction matrices to
reduce statistical errors.

Figure 2 reveals a second central result of our analysis
(see also [40]): the size of the ecosystem in the asymptotic
state, NS = φN , is a decreasing function of the variance
σ2 of interaction strengths. Complexity in the interaction
matrix (as measured by σ2) hence leads to a reduced com-
plexity of the remaining community of species (measured
by NS). This finding is valid irrespectively of the correla-
tion character of the interaction matrix, i.e., independent
of the percentage of predator-prey pairs (see fig. 2(a)).
An increase of the complexity of interaction thus tends to
destabilize the ecosystem, while at the same time reduc-
ing the size of the food web of survivors. The size of the
remaining ecosystem and stability are thus positively cor-
related. As seen above in the analytical calculation, the
random community model is stable whenever more than
50 per cent of the initially present species survive, and it
is unstable otherwise (see also [26]).

To illustrate the behavior of the model further we de-
pict the biomass M of the ecosystem in fig. 2(b), as mea-
sured by the average concentration, M = N−1

∑
i xi.

While species diversity is reduced with increasing com-
plexity of interactions (panel (a)), the effects on the total

biomass depend on the composition of the community, and
in particular on the relative frequency of predator-prey
interactions. If only few predator-prey pairs are present,
biomass production is enhanced by diversity in the in-
teraction matrix. For an ecosystem composed entirely of
predator-prey pairs, however, the effects of the interaction
strength variability are minute and confined to a small re-
duction of biomass generated.

Feasibility. – Feasibility has been seen to be one of the
bottlenecks limiting the ability of species to co-exist [22].
A Lotka-Volterra community is said to be “feasible” if
all species have positive equilibrium concentrations, and
locally stable if it returns to equilibrium after small ex-
ternal perturbations. We have already examined the sta-
bility of the N -species Lotka-Volterra dynamics, and now
turn to its feasibility properties. To this end we have,
in numerical simulations, examined the eigenvalue prop-
erties of the community formed by the NS survivors of
the dynamics (all of which have positive concentrations
by definition). This community is subject to a dynamics
restricted to the NS non-extinct species, and gives rise to
a NS × NS stability matrix, of which we have obtained
the eigenvalues and stability properties numerically. In
detail, labeling the NS = φN ≤ N surviving species by
i = 1, . . . , NS and upon writing xi(t) = x∗

i +
√

x∗
i δi(t) with

x∗
i > 0 the concentration of species i at the fixed point,

and with δi(t) a small fluctuation, a linearisation of the
Lotka-Volterra dynamics leads to d

dtδi(t) =
∑NS

j=1 Sijδj(t),
with Sij =

√
x∗

i αij
√

x∗
j . See [44] for a similar calcula-

tion. The stability of the community of surviving species
is hence governed by the eigenvalues of the NS × NS sta-
bility matrix S. To analyze it, we have first integrated
the Lotka-Volterra dynamics, and have then identified
surviving species. For each sample generated we have then
numerically computed the eigenvalues of the so-obtained
stability matrix S. A feasible sample is then identified
as stable if the real parts of all NS eigenvalues of S are
negative.

Results are shown in fig. 3. The data confirms that
the community of survivors is robust against perturba-
tions throughout the stable phase predicted by the path-
integral theory. A feasible stable community hence exists
for σ2 < σ2

c . Further properties of this reduced commu-
nity can be found in [40]. Above the threshold value σ2

c

of interaction strengths the community of survivors is un-
stable, and there is no well-defined equilibrium state of
the system, but instead persistent exponential growth is
found, and the stability matrix is characterized by a pos-
itive real eigenvalue.

Simulations for fig. 3, have been stopped in the unsta-
ble phase once the total asymptotically diverging biomass
M exceeded a threshold of the order of 105. Such sam-
ples are identified as unstable. Extinction of species in
eq. (1) occurs exponentially, species hence become extinct
only asymptotically at infinite time. Surviving species in
simulations are identified as those for which xi(tf ) > ϑ,
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GLV with Time Correlated Stochastic Interactions

2

Let us consider xi(t), the population at time t of the species i. Then the dynamics of the AGLV system with colored
noise for S interacting species are given by

ẋi(t) = rixi(t)
⇥
1� xi(t)/Ki +

X

j 6=i

↵ij(t)xj(t) + hi(t)
⇤
, (1)

with i = 1, ..., S, and where ↵ij(t) = µ/S + �zij(t)/
p
S for i 6= j and {zij(t) : t > 0} are independent Gaussian36

random variables with zij(t) = 0, zij(t)zij(t0) = P (�t|⌧) = 1+2⌧/⌧0
2⌧ e��t/⌧ , where �t = |t � t0|; hi(t) is a possible37

time dependent external field. For simplicity, we set ⌧0, ri,Ki = 1 for i = 1, ..., S and we work with dimensionless38

variables/parameters. From this general annealed formulation with colored noise, the limit ⌧ ! 0 corresponds to39

the white noise (AWN) dynamics. In Fig. 1 we show the e↵ect of time-correlated noise in the species abundances40

evolution. Our proposed model presents a distinct characteristic, where species populations undergo recurring quasi-41

cycles of both high and low abundances, whose average frequency depends on the value of ⌧ . This cyclic behavior is42

instrumental in promoting the coexistence of multiple species within the ecosystem (as also noted in [19, 34]), and it43

is present for all ranges of ⌧ , including the limit ⌧ ! 0.44
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FIG. 1. Examples of four species abundances trajectories obtained by simulating eq. (1) for S = 30, h = 0 and di↵erent values
of the characteristic correlation time ⌧ . A) ⌧ = 0.1, µ = 0, � = 1, the dynamics is basically the one corresponding to the white
noise case (⌧ = 0); B) ⌧ = 1, µ = 0, � = 0.8, the time correlations start to play a role in the species dynamics; C) ⌧ = 10,
µ = 0, � = 0.6 species populations alternate long periods of high and low abundance similarly to what observed in the classic
quenched multi-attractors regime.
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46

The DMFT for the general AGLV eq. (1) is given by (see Supplementary Methods)

ẋ(t) = x(t)
⇥
1� x(t) + µM(t) + �⌘(t) + h(t)

⇤
, (2)

where M(t) = E(x(t)) and in the following we set h(t) = 0. The self-consistent Gaussian noise ⌘(t) is such that47

E(⌘(t)) = 0 and E(⌘(t)⌘(t0)) = P (�t|⌧)E(x(t)x(t0)).48

From Fig. (3) we can see that at stationarity, the (connected) auto-correlation function of x(t) has an exponential-
like decay

E(x(t)x(t0))� E2(x) ⇡
�
E(x2)� E2(x)

�
e�

|�t|
⌧x , (3)

and exploiting eq. (3) we can simplify the self consistency for ⌘ as E(⌘(t)⌘(t0)) = P (�t|⌧̄)E(x2), at least in the relevant
regime |�t| = |t� t0| ⌧ ⌧x, with the new e↵ective time scale ⌧̄ = 1/

⇥
1/⌧ +

�
1�E2(x)/E(x2)

�
/⌧x

⇤
(see Supplementary

Methods for further details). With this simplification we can now use the Unified Colored Noise Approximation
(UCNA) [35] on eq. (2), which leads to the stationary SAD

P ⇤
⌧ (x) =

x�1+�⌧
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⌧̄
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where x > 0, Z is the normalization constant, that can be computed analytically, �⌧ = (1 + µM⇤)/D(⌧), D(⌧) =
�2E⇤(x2)(1 + 2⌧)⌧̄(⌧)/2⌧ and x̄ = 1 + µM⇤ (E⇤(·) denotes the average with the distribution P ⇤

⌧ and M⇤ = E⇤(x)).
As anticipated, we thus find that for all finite ⌧ no extinction occurs as also confirmed by numerically integrating
eq. (1) for 30 species (see Fig. 2). Notice that P ⇤

⌧ (x) is basically an interpolation between a truncated Gaussian (
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FIG. 1. Examples of four species abundances trajectories obtained by simulating eq. (1) for S = 30, h = 0 and di↵erent values
of the characteristic correlation time ⌧ . A) ⌧ = 0.1, µ = 0, � = 1, the dynamics is basically the one corresponding to the white
noise case (⌧ = 0); B) ⌧ = 1, µ = 0, � = 0.8, the time correlations start to play a role in the species dynamics; C) ⌧ = 10,
µ = 0, � = 0.6 species populations alternate long periods of high and low abundance similarly to what observed in the classic
quenched multi-attractors regime.
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FIG. 1. Examples of four species abundances trajectories obtained by simulating eq. (1) for S = 30, h = 0 and di↵erent values
of the characteristic correlation time ⌧ . A) ⌧ = 0.1, µ = 0, � = 1, the dynamics is basically the one corresponding to the white
noise case (⌧ = 0); B) ⌧ = 1, µ = 0, � = 0.8, the time correlations start to play a role in the species dynamics; C) ⌧ = 10,
µ = 0, � = 0.6 species populations alternate long periods of high and low abundance similarly to what observed in the classic
quenched multi-attractors regime.
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FIG. 1. Examples of four species abundances trajectories obtained by simulating eq. (1) for S = 30, h = 0 and di↵erent values
of the characteristic correlation time ⌧ . A) ⌧ = 0.1, µ = 0, � = 1, the dynamics is basically the one corresponding to the white
noise case (⌧ = 0); B) ⌧ = 1, µ = 0, � = 0.8, the time correlations start to play a role in the species dynamics; C) ⌧ = 10,
µ = 0, � = 0.6 species populations alternate long periods of high and low abundance similarly to what observed in the classic
quenched multi-attractors regime.
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FIG. 1. Examples of four species abundances trajectories obtained by simulating eq. (1) for S = 30, h = 0 and di↵erent values
of the characteristic correlation time ⌧ . A) ⌧ = 0.1, µ = 0, � = 1, the dynamics is basically the one corresponding to the white
noise case (⌧ = 0); B) ⌧ = 1, µ = 0, � = 0.8, the time correlations start to play a role in the species dynamics; C) ⌧ = 10,
µ = 0, � = 0.6 species populations alternate long periods of high and low abundance similarly to what observed in the classic
quenched multi-attractors regime.
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The DMFT for the general AGLV eq. (1) is given by (see Supplementary Methods)

ẋ(t) = x(t)
⇥
1� x(t) + µM(t) + �⌘(t) + h(t)

⇤
, (2)

where M(t) = E(x(t)) and in the following we set h(t) = 0. The self-consistent Gaussian noise ⌘(t) is such that47

E(⌘(t)) = 0 and E(⌘(t)⌘(t0)) = P (�t|⌧)E(x(t)x(t0)).48

From Fig. (3) we can see that at stationarity, the (connected) auto-correlation function of x(t) has an exponential-
like decay

E(x(t)x(t0))� E2(x) ⇡
�
E(x2)� E2(x)

�
e�

|�t|
⌧x , (3)

and exploiting eq. (3) we can simplify the self consistency for ⌘ as E(⌘(t)⌘(t0)) = P (�t|⌧̄)E(x2), at least in the relevant
regime |�t| = |t� t0| ⌧ ⌧x, with the new e↵ective time scale ⌧̄ = 1/

⇥
1/⌧ +

�
1�E2(x)/E(x2)

�
/⌧x

⇤
(see Supplementary

Methods for further details). With this simplification we can now use the Unified Colored Noise Approximation
(UCNA) [35] on eq. (2), which leads to the stationary SAD

P ⇤
⌧ (x) =

x�1+�⌧

Z

✓
1

⌧̄
+ x

◆
e�

x
D� ⌧̄

2D (x�x̄)2 , (4)

where x > 0, Z is the normalization constant, that can be computed analytically, �⌧ = (1 + µM⇤)/D(⌧), D(⌧) =
�2E⇤(x2)(1 + 2⌧)⌧̄(⌧)/2⌧ and x̄ = 1 + µM⇤ (E⇤(·) denotes the average with the distribution P ⇤

⌧ and M⇤ = E⇤(x)).
As anticipated, we thus find that for all finite ⌧ no extinction occurs as also confirmed by numerically integrating
eq. (1) for 30 species (see Fig. 2). Notice that P ⇤

⌧ (x) is basically an interpolation between a truncated Gaussian (
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Phase diagram for GLV with time dependent
interactions in the limit t -> 0

4

FIG. 3. Gray lines represent the empirical auto-correlation function calculated as E(x(t)x(t +�t)) � E2(x) (averaged over t)
for each of the S = 30 species simulated using the AGLV with ⌧ = 1 (µ = 0 and � = 0.8. The blue dashed line represents
the exponential fit, while the thick red line represents the exponential decay given by the ansatz eq. (3) using the parameters
obtained from P ⇤(x) in Fig. 2B. For these parameters set, we find ⌧x = 2 (see Supplementary Methods for details), and thus
we expect that our ansatz works for �t < 2 (i.e., on the left of the vertical line indicating �t = 2).

FIG. 4. Phase Space Diagram for the annealed white noise case. We show the AGLV dynamics as a function of the mean (µ)
and the standard deviation (�) of the species’ interaction strengths. In the unbounded growth region, as predicted analytically,
the species abundance dynamics diverge for finite times. In the darker brown region, although the stationary solution of the
DMFT equation exists, it is not reachable by the dynamics and also here we have a singularity for finite times. In the lighter
blue region, for initial conditions taken from the stationary distribution Eq. (5), a stationary state exists and it corresponds to
the Gamma distribution as given by Eq. (5). The gradient between the blue and brown regions indicates a region of numerical
uncertainty.

for a large enough number of species (see Supplementary Methods). However, understanding the divergence at finite69

times due to the non-linearity of the Fokker-Planck equation and its dependence on initial conditions is left for future70

works[37]71

In this study, we have undertaken an investigation into the GLV equations with annealed disorder, incorporating72

finite correlation time, and have determined the corresponding dynamical mean field for a large number of species. The73

inclusion of temporal stochastic fluctuations in the strengths of species interactions has resulted in a remarkably diverse74

SAD is a Gamma distribution

3

peaked at x > 0) and a Gamma distribution. The former is known to be the solution for the SAD of the DMFT
in the case of random quenched interactions in the single equilibrium phase [18, 20], while the latter we will show
is the exact solution of the AWN case, corresponding to the limit ⌧̄ ⇠ ⌧ ! 0 of eq. (2). In the AWN limit, in fact,
the DMFT equation is the same of eq. (2), but in this case with E(⌘(t)⌘(t0)) = ⌃2(t)�(t � t0), ⌃2(t) = E(x2(t)),
and the multiplicative noise term x(t)⌘(t) should be interpreted in the Stratonovich sense [36]. At stationarity, the
self-consistency imposes M⇤ = E⇤(x) and ⌃⇤2 = E⇤(x2). The exact stationary distribution P ⇤

0 can be derived from
the Fokker-Planck Equation corresponding to eq. (2) and it reads

P ⇤
0 (x) =

��

�(�)
x�1+�e��x, (5)

and it coincides with the limits of P ⇤
⌧ (x) when ⌧ ! 0. We also have that lim⌧!0 �⌧ = 2(1 + µM⇤)/(�2⌃⇤2) ⌘ � with

M⇤ = 1/(1� µ) and ⌃⇤2 = �(� + 1)/�2. In this way we can write explicitly the SAD’s parameters as a function of µ
and � as (see Supplementary Methods):

� =
�2

2
�(� + 1); � =

2

�2
(1� µ)� 1. (6)

The histograms in Figure 2 show the probability distributions for the stationary species abundances obtained by49

simulating the full AGLV equations given by eq. (1) for the same parameters used in Fig. 1. The predicted SADs50

by the DMFT are plotted as continuous lines and given, respectively, by eq. (4) and in (A) also by eq. (5), denoted51

by the dark blue dashed line. In the latter case, the distribution parameters are directly calculated from eq. (6) as52

a function of µ and �. For eq. (4) instead, the parameters are obtained by first fitting the distribution and then53

checking the agreement with the self-consistent equations (error below 5%, see Supplementary Methods).54

FIG. 2. The histograms represent the Species Abundance Distributions (SADs) obtained by simulating the full AGLV system
given by eq. (1), while the continuous lines are the corresponding SADs given by the DMFT A) of both the colored case eq. (4)
with ⌧ = 0.1 and the white noise Annealed case given by eq. (5); B-C) Colored noise AGLV (eq. (4)) with ⌧ = 1 and ⌧ = 10,
respectively. The analytical DMFT perfectly describes the SAD given by the numerical simulations of the full system simulated
for S = 30 species. Initial conditions of the populations in all cases are drawn from xi ⇠ U [0.1, 0, 2], where U denotes the
uniform distribution, while the value µ and � is as in Fig. 1.

Using the chosen value of the correlation time, ⌧ , the parameters D(⌧) and ⌧̄(⌧) given by our analytical framework,55

we can deduce the value of ⌧x in eq. (3). The red line in Figure 3 shows that indeed the predicted value of ⌧x is56

consistent with the decay of E(x(t))(x(t0)) obtained by simulating the full AGLV system given by eq. (1) (error below57

5%, see Supplementary Methods).5859

Since � > 0 and E(x) > 0, in order for the stationary solution to exist, we have the conditions � <
p

2(1� µ) and60

µ  1, leading to a lower bound for the unbounded growth phase of the AGLV as shown in Fig. 4. However, by solving61

numerically the self-consistent eq. (2) (see Supplementary Methods) and also performing the numerical simulation of62

the entire GLV systems, we find that below this bound, even though a stationary solution exists, it may not be reached.63

In particular, in the red region of Fig. 4, independently of the initial condition for x(t = 0), there is a singularity at64

finite times, leading to the explosion of the species population. In the green region instead, if we start close to the65

predicted stationary solution P ⇤(x), then we always find that the stationary solution is reached and it coincides with66

the one predicted by the DMFT eq. (5). However, there is a set of initial conditions (for su�ciently large x(t = 0))67

for which x(t) may diverge for finite t. Such divergent trajectories are also confirmed when we simulate the full eq. (1)68



Conclusions and future perspectives

Adding network dynamics and fluctuations favour species coexistence in 
ecological communities for both CRM and GLV models

In CRM this time dependency of  interactions arises from proteome allocations 
law in relation to the species growth rate.

In GLV adding temporal fluctuations in species interaction networks allows 
species coexistence also for large systems and explain SAD 

Combine quenched correlated interactions among species + temporal 
fluctations à CRM with GLV network dynamics.

Study effect of  sparsity on the specie interactions networks
Large system population dynamics with non-Gaussian interactions

Sandro Azaele1, 2, 3 and Amos Maritan1, 2, 3

1Laboratory of Interdisciplinary Physics, Department of Physics
and Astronomy “G. Galilei”, University of Padova, Padova, Italy
2INFN, Sezione di Padova, via Marzolo 8, Padova, Italy - 35131

3National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy

Abstract: We investigate the Generalized Lotka-Volterra (GLV) equations, a central model in
theoretical ecology, where species interactions are assumed to be fixed over time and heterogeneous
(quenched noise). Recent studies have suggested that the stability properties and abundance distri-
butions of large disordered GLV systems depend, in the simplest scenario, solely on the mean and
variance of the distribution of species interactions. However, empirical communities deviate from
this level of universality.

In this article, we present a generalized version of the dynamical mean field theory for non-
Gaussian interactions that can be applied to various models, including the GLV equations. Our
results show that the generalized mean field equations have solutions which depend on all cumu-
lants of the distribution of species interactions, leading to a breakdown of universality. We leverage
on this informative breakdown to extract microscopic interaction details from the macroscopic dis-
tribution of densities which are in agreement with empirical data. Specifically, in the case of sparse
interactions, which we analytically investigate, we establish a simple relationship between the dis-
tribution of interactions and the distribution of species population densities.

I. INTRODUCTION

The exploration of the links between the microscopic characteristics of physical systems and their (macroscopic)
collective behaviour dates back to the dawn of statistical mechanics. In his doctoral thesis the Dutch physicist J.D.
van der Waals showed how to understand the macroscopic phases of liquids and gases in a unified way [1]. By making
certain assumptions about the finite size and the mutual attractive forces of particles, he explained that a fluid can
exist in either of two different macroscopic states, which have different densities. He also showed that it is possible to
switch from one to another through what we now dub a phase transition.

Since its inception, this approach has hugely increased its power and found applications in fields that are far from
physics [2–4]. Today we have tools to understand systems where individual entities interact and produce large scale
patterns. Ecology makes no exception and offers further challenges which are not present in the physics context [5–
10]. Also, the rise of next-generation sequencing techniques has resulted in a growing wealth of ecologically significant
data. These data are instrumental in characterizing microbial communities across various environments and involving
a vast number of species [11]. However, despite such a deluge of empirical data, our understanding of the underlying
mechanisms and functioning of these biological systems remains far from complete. Indeed, we have not understood
yet the fundamental equations that describe the evolution of an ecosystem under generic conditions, and usually the
existence of a Hamiltonian or constants of motion is a sign that a model may introduce some unrealistic biological
features [5, 6]. Thus, although ecological systems cannot be thought of as physical systems in thermal equilibrium,
they anyway possess general laws [12].

One of the emergent patterns is the distribution of population densities across species (SAD or RSA) [7, 13]. This
informs us about how many species are rare with only a few individuals and how many are widespread and common.
The SAD of highly diverse communities is quite uneven, but the most remarkable feature is its apparent universality
[14, 15]: despite major ecological differences between ecosystems, the shape of the distribution is remarkably similar.
The SAD of coral reefs, tropical forests, breeding birds or even bacterial communities can often be described by curves
that are well approximated by gamma-like distributions [14, 16].

What is the nature of this universality [17]? Does it reflect fundamental laws of community assembly or is that simply
an inescapable statistical pattern which does not really help understanding how ecosystems work [18]? Archetypal
structures of interactions, including competition, mutualism or parasitism, may guide the search for the underpinnings
of coarse-grained properties. Emergent patterns may also be the result of a bottom-up control of distribution of
resources among individuals. However, one may conjecture simpler explanations: species have different characteristics
and have evolved a variety of traits, but none of them play a central role in the ecosystem assembly and individuals
interact with no specific structure. This ‘heterogeneity without order’ hypothesis could underpin generic features of
ecosystems, including the variation of species’ abundances [19].

Whilst the shortcomings of this parsimonious assumption are well-recognized, it is also clear its simplicity: ecosystem
assemblages are not primarily shaped by regular motifs in the interactions of individuals or by species’ traits which
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