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Intro (1/4): How do we evaluate Al techniques? H

Standard datasets (Benchmarks) Worse:
With standard metrics
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Intro (2/4): XAl Supplants Quiddity of Data H

Test image Evidence for animal being a Siberian husky Evidence for animal being a transverse flute

Explanations using
attention maps

Who explains the explanations [Rudin, 2019]?
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Intro (3/4): Standardness Fogs Meaning H
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Meaningful A Match enables
abstraction Dataset Fit? ) 1 derives trustworthy
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Use Case 4 Data Scientist b Meaningful Labels

We focus our debate on the relationship between the actual class labels in the dataset and the
underlying (implied) categories that are expressed in the essential complexity of the use case
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Intro (4/4): Essential Complexity H

> Essential complexity arises from unknown unknowns within the problem that have yet to
be discovered
> Essential complexity becomes central when creating explanations

> Three cases
1. Low essential complexity: Verifying an explanation is easy. Thus, it can be created post-hoc.
2. High essential complexity: Verifying an explanation is difficult. Use surrogate models instead.
3. Everything in-between: Use visualization (especially Dimensionality Reduction) to map the use
case to the first or second case.
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Low Essential Complexity (1/8): UNCOVER

Welcome at unCover
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> We proposed UNCOVER to classify whether a news story was written by a human or a Large-Language
Model github.com/hpicgs/unCover).
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Low Essential Complexity (2/8): TEM

> We adapted the Topic Flow Model from
Churchill et al.
to our Topic Evolution Model (TEM)

> Improving the filtering of stop words in
early periods

> Handling short documents where most
words would be filtered

> Handling an edge case of strictly
co-occurring terms by merging nodes

> We developed an alternative technique to
matching nodes

HMS
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An example evolution of our TEM model
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Low Essential Complexity (3/8): Human Output
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Low Essential Complexity (4/8): LLM Output
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Low Essential Complexity (5/8)

HMS
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Low Essential Complexity (6/8): Final Approach

> We trained a logistic regression over metric;_4 and over trigrams (stylometry)
> If both regressions agree, output the decision

> Otherwise, combine the outputs:

Stylometry output | TECM confidence l
uncertain | > 80%

SN

TECM output Al | < 70%

/N

Al Human | < 60%

/N

Human Uncertain
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Low Essential Complexity (7/8): Quantitative Eval

Character Syntactic Combined Final 100%
Trigrams Trigrams Stylometry TEcm Metric
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HMS 4
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Low Essential Complexity (8/8): Qualitative Eval H

« We interviewed 13 students with experience in Machine Learning or Natural Language
Processing and tasked them to correctly discern between generated and human-written
news-stories
* 9 out of 13 participants (= 69%): UnCover helped “strongly” (4 out of 6 points) or more
« 12 out of 13 participants (= 92%): Visualizations are “understandable” (4 out of 6 points)
or more with minimal training
« Before being questioned about it, five participants highlighted the explainable aspects of the tool.
« More than half of the participants actively changed their decision by using unCover.

* Most participants would use unCover again.
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The Evolution of Language (1/2)
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(¢) PCA Human-GPT-2 plot (d) PCA Human-GPT-3 plot

H M S H Digital Engineering Faculty, University of Potsdam & HMS Analytical Software GmbH | Tim Barz-Cech |17



The Evolution of Language (2/2)

HMS 4

(e) PCA Human-GPT-1 plot

(f) PCA Human-GROVER plot
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High Essential Complexity (1/6): Software Defects

Effort awareness

Vv

Just-in-time criterion

Vv

Labels

Vv

> From where?
> Representativeness?
> Timeliness?
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> Source last checked: 22nd May 2023 15:31
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High Essential Complexity (2/6): CPDP

Available Projects Target Project

Based on / Ant 1.3 /
Ant1.3
. Defect
Candidate Training Training Data Prediction
Ant 1.7 Data
Training Data .
i ) Training
/ arc / / arc / Selection / Version 1 /
—_— e Predictor
/ Xerces 1.4 / / Xerces 1.4 / / Version k /
Cross-Project Defect Prediction (CPDP) Aims to Predict Bugs from another project [?]
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High Essential Complexity (3/6): Limits of CPDP

> Many algorithms perform poorly when used in a Cross-Project Defect Prediction context

HMS

JURECZKO
AUC F-measure G-measure MCC
ALL-RF  0.66 (1) 0.32 (1) 0.43 (1) 017 (1)
Amasakil5-DT 0.6 (1) 0.38 (1) 0.49 (1) 0.2 (1)
CamargoCruz09-DT  0.58 (1) 0.37 (1) 0.5 (1) 0.18 (1)
Canforal3-MODEP  (0.52 (0.49) 0.44 (1) 0.48 (1) 0.19 (1)
CV-NET 0.71 (0.49) 049 (1) 0.46 (1) 0.29 (0.37)
Herbold13-RF  0.64 (1) 0.39 (1) 0.5 (1) 017 (1)
Kawatal5-RF  0.65 (1) 0.32 (1) 0.43 (1) 017 (1)
Koshgoftaar08-NET 0.6 (1) 0.32 (1) 04 (1) 0.23 (0.37)
Liul0-GP  0.63 (1) 0.51 (0.44) 0.52 (1) 023 (1)
Mal2-DT 0.6 (1) 0.37 (1) 0.49 (1) 0.18 (1)
Menzies11-RF  0.58 (0.49)  0.32 (1) 0.43 (1) 0.15 (1)
Naml3-NB - - - -
Namli5-DT  0.66 (1) 0.51 (0.44) 0.63 (042) 0.29 (0.37)
Nam15-RF  0.66 (1) 0.51 (0.44) 0.63 (042) 0.29 (0.37)
Panichellal4-CODEP-LR  0.59 (1) 0.3 (1 0.38 (1) 0.2 (1)
Peters12-RF  0.63 (1) 0.3 (1) 0.38 (1) 0.15 (1)
Peters13-LR 072 (049) 017 (0.44) 0.2 (0.42) 0.16 (1)
Peters15-DT  0.57 (1) 0.35 (1) 0.46 (1) 015 (1)
PHel5-RF  0.64 (1) 0.31 (1) 0.43 (1) 0.13 (0.37)
Random-RANDOM 0.5 (0.13) 0.37 (1) 0.49 (1) 0.00 (0.08)
Ryul4-VCBSVM 0.6 (1) 046 (0.44) 051D 0.18 (1)
Ryul5-DT  0.57 (0.49) 0.29 (1) 0.37 (1) 014 (1
Trivial-FIX 0.5 (0.13) 0.48 (1) 0.00 (0.13)  0.00 (0.08)
Turhan(09-DT  0.59 (1) 0.36 (1) 0.47 (1) 0.19 (1)
Uchigakil2-LE  0.74 (0.49) 0.08 (0.44) 0.09 (042) 0.1 (0.37)
Watanabe08-DT  0.59 (1) 0.37 (1) 0.5 (1) 0.13 (0.37)
YZhang15-BAG-DT  0.67 (1) 0.37 (1) 0.48 (1) 0.22 (1)
ZHel3-NB  0.62 (1) 046 (0.44) 052 (D 0.23 (1)
Zimmermann(9-LR  0.62 (1) 0.39 (1) 0.45 (1) 0.17 (1)
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High Essential Complexity (4/6): Our Approach |

Unsupervised techniques! (With informed critiques

> Cluster-Based Techniques

> Qutlier Mining Techniques
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High Essential Complexity (5/6): Our Approach Il

Classifying defects with different models enabled us to discover the predictive model of simple models

HMS
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High Essential Complexity (6/6): Results

HMS 4
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Dimensionality Reduction
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Using Dimensionality Reduction (DR) one can make high-dimensional data spaces plain in 2
dimensions ([Atzberger and Cech et al.,, 2024];

github.com/hpicgs/Topic-Models-and-Dimensionality-Reduction-Benchmark).

HMS 4
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Medium Essential Complexity (1/5): Guidelines

We computed more than 40.000 layouts in the domain of Natural Language Processing and
compared them via quality metrics and came up with the following guidelines:

1. Ensuring the independence of high-dimensional axes is recommended
(e.g., by applying a linear combination).
2. When optimizing for accuracy metrics, a Topic Model should be applied.
3. When optimizing for perception metrics, a Topic Model might not be necessary.

4. In doubt, use t-SNE with default parameters.
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Medium Essential Complexity (2/5): Method |

010(01010/0[8|0(0{=

MNIST is a dataset with hand-written numbers
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Medium Essential Complexity (3/5): Method Il

An Introduction to Atheism
by mathew <mathew@mantis.co.uk=

This article attempts to provide a general introduction to atheism. Whilst I
have tried to be as neutral as possible regarding contentious issues, you
should always remember that this document represents only one viewpoint. I
would encourage you to read widely and draw your own conclusions; some
relevant books are listed in a companion article.

To provide a sense of cohesion and progression, I have presented this article
as an imaginary conversation between an atheist and a theist. All the
questions asked by the imaginary theist are questions which have been cropped
up repeatedly on alt.atheism since the newsgroup was created. Some other
frequently asked questions are answered in a companion article.

Please note that this article is arguably slanted towards answering questions
posed from a Christian viewpoint. This is because the FAQ files reflect
questions which have actually been asked, and it is predominantly Christians
who proselytize on alt.atheism.

so when I talk of religlon, I am talking primarily about religions such as
Christianity, Judaism and Islam, which inveolve some sort of superhuman divine
being. Much of the discussion will apply to other religions, but some of it
may not.

"What is atheism?”

=Why is it more reasonable than the trend towards obesity and the trend towards
>depression? You can't just pick your two favorite trends, notice a correlation
>in them, and make a sweeping statement of generality. I mean, you CAN, and
=people HAVE, but that does not mean that it is a wvalid or reasonable thesis.
=At best it's a gross oversimplification of the push-pull factors people
=experience.

I agree, I recken it's television and the increase in fundamentalism.. You
think its the increase in pre-marital sex... others thinks its because
psychologlsts have taken over the crimilnal justice system and let wilolent
criminals con them into letting them out into the streets... others think
it's the increase in designer drugs... others think it's a communist plot.
Basically the social interactions of all the changing factors in our society
are far too complicated for us to control. We just have to hold on to the
panic handles and hope that we are heading for a soft landing. But one
things for sure, depression and the destruction of the nuclear family is not
due solely to sex out of marriage.

The 20 newsgroups dataset contains text that were gathered on 20 public mailing lists
(here two examples of the “atheist” mailing list is shown).

HMS
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Medium Essential Complexity (4/5): Method llI
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Medium Essential Complexity (5/5): Method IV ﬂ

Categories

A

Dataset Fit? : derives

Match enables
trustworthy
training

Meaningful
abstraction

~ « _matches

Use Case &~ Data Scientist - Meaningful Labels

Investigating datasets in a DR layout may enable matching categories in classes
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Discussion (1/2): No-Free-Lunch Theorem

“The ‘No Free Lunch’ theorem states
that, averaged over all optimization
problems, without re-sampling, all
optimization algorithms perform
equally well.” [Adam et al., 2019, p.1]
This implies that good results on one
dataset may not be applicable on
another one [Raji et al., 2021].

Photo by Jezael Melgoza on Unsplash
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Discussion (2/2): Curse of Dimensionality

“High-dimensional spaces show
surprising, counter-intuitive
geometrical properties that have a
large influence on the performances of
data analysis tools. Among these
properties, the concentration of the
norm phenomenon results in the fact
that Euclidean norms and Gaussian
kernels, both commonly used in
models, become inappropriate in
high-dimensional spaces”

[Verleysen and Francois, 2005, p.
758].

Photo bv Alexander Andrews on Unsplash
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Outlook (1/4): SDMX

Sde.iO Governance UseCases> Tools> Resources> Events Contact Q

Solutions for official statistics use cases

sdmx.io is not a single project but an ecosystem of open source tools,
patterns, guidance, learning materials and other resources like pre-
configured containerised environments that make the software quick and
simple to deploy.

sdmx.io
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Outlook (2/4): SDMX Lab

v0.1.0 Created: 2025-04-25 13:24 Labspace-iD: s4sf3455(kds3

SDMX lab Labspace:

2\ Development

For development purposes only.

Welcome to SDMX lab! If you are new to the lab, we encourage you to start at the Try It Yourself section.
Otherwise, you will find all relevant apps and tools below. If you want to request a feature or report a bug,
please contact sdmx@analytical-software.de.

Apps

Popular SDMX apps from the OpenSource community.

,3 Fusion Metadata Registry (FMR)

A feature-rich metadata registry that goes far beyond the essentials required by the SDMX
standard.

vil.19.4 m Fusion Metadata Registry Open -+

ﬂ .Stat Suite

A comprehensive, modular, and open-source solution for data management and
dissemination based on the SDMX standard.

v25.0.0 m Data Lifecycle Manager Open »

analytical-software.de/en /sdmx/
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Outlook (3/4): Keywords |

HMS
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Outlook (4/4): Keywords Il

demographics
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Conclusions H

> We used a tool-focused approach that allows for practical evaluations but also increases
the probability of a software defect that alters the data

> In addition, the interpretative approach renders the investigation necessarily incomplete
and open for further investigation

> However, we found practical evidence and discovered our central hypothesis from our data
> Thus, essential complexity was found to be a central property when creating explanations
> Contributes to concerns on “sociotechnical frictions” (e.g. )
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