

More than Positive Weights: Structural Balance and Random Walks

Yu Tian

Wallenberg Initiative on Networks and Quantum information (WINQ) fellow Nordic Institute for Theoretical Physics (Nordita)

28 Sep 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Overview

Background

Signed networks Structural characterisation Dynamical characterisation Experiments

Complex-weighted networks

- Retail industry: huge turnover but small margins.
- Product relationships: complements and substitutes.

Signed Networks

ъ

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Research interest: Network science

- Structural properties: clustering / community detection on networks, spectral properties via adjacency matrix and graph Laplacian.
- Dynamical properties: linear dynamics such as random walks, and nonlinear dynamics such as linear threshold models.

Research interest: Network science

- Structural properties: clustering / community detection on networks, spectral properties via adjacency matrix and graph Laplacian.
- Dynamical properties: linear dynamics such as random walks, and nonlinear dynamics such as linear threshold models.

 \rightarrow Signed networks

Signed networks

What if there are negative connections?

Signed networks

What if there are negative connections?

Signed Networks

Structural balance

A specific type of signed networks that are relatively stable.

- Motivation (Harary, 1953; Cartwright and Harary, 1956): "friend of a friend is a friend, enemy of a friend is an enemy, while enemy of an enemy is a friend".
- Mathematical interpretation: no cycle with an odd number of negative edges, which defines the cycle to be "negative".

ж

ヘロト ヘ戸ト ヘヨト ヘヨト

Structural balance

A specific type of signed networks that are relatively stable.

- Motivation (Harary, 1953; Cartwright and Harary, 1956): "friend of a friend is a friend, enemy of a friend is an enemy, while enemy of an enemy is a friend".
- Mathematical interpretation: no cycle with an odd number of negative edges, which defines the cycle to be "negative".
- Structural Theorem for Balance (Harary, 1953):
 G = (V, E) is structurally balanced ⇔
 V = V₁ ∪ V₂ with V₁ ∩ V₂ = Ø s.t. any edge
 within each node subset is positive while any edge
 between the two node subsets is negative.

Structural antibalance

The opposite to structural balance.

- Definition: no cycle with an odd number of positive edges.
- Structural Theorem for Antibalance (Harary, 1957): G = (V, E) is structurally antibalanced ⇔ V = V₁ ∪ V₂ with V₁ ∩ V₂ = Ø, s.t. any edge within each node subset is negative while any edge between the two node subsets is positive.

・ロト ・ 一下・ ・ ヨト ・ ヨト

Signed Networks

э

Classification

Structurally balanced, structurally antibalanced, and strictly unbalanced signed networks.

Strictly unbalanced: if it is neither balanced nor antibalanced.

Structurally balanced

Structurally antibalanced

Strictly unbalanced

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Signed Networks

э.

Classification

Structurally balanced, structurally antibalanced, and strictly unbalanced signed networks.

Strictly unbalanced: if it is neither balanced nor antibalanced.

Structurally balanced

Structurally antibalanced

Strictly unbalanced

- \rightarrow Characterisation of weighted signed networks $G = (V, E, \mathbf{W})$:
 - ▶ signed weight matrix $\mathbf{W} = (W_{ij}) \in \mathbb{R}^{n \times n}$, where n = |V| and $W_{ij} \neq 0$ if $(v_i, v_j) \in E$;
 - unsigned weights matrix $\mathbf{\bar{W}} = (\mathbf{\bar{W}}_{ij}) \in (\mathbb{R}_+ \cup \{0\})^{n \times n}$, where $\mathbf{\bar{W}}_{ij} > 0$ if $(v_i, v_j) \in E$.

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the signed weight matrix $\mathbf{W} = \mathbf{U} \Lambda \mathbf{U}^{T}$, and the unsigned one $\mathbf{\bar{W}} = \mathbf{\bar{U}} \Lambda \mathbf{\bar{U}}^{T}$:

- 1. Structurally balanced: $\Lambda = \overline{\Lambda}, U = I_1 \overline{U}$.
- 2. Structurally antibalanced: $\Lambda = -\overline{\Lambda}, U = I_1\overline{U}.$

 I_1 denote the diagonal matrix whose (i, i) element is 1 if $i \in V_1$ and -1 otherwise, where V_1, V_2 denote the corresponding bipartition for either balanced or antibalanced networks

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the signed weight matrix $\mathbf{W} = \mathbf{U} \Lambda \mathbf{U}^{T}$, and the unsigned one $\mathbf{\bar{W}} = \mathbf{\bar{U}} \Lambda \mathbf{\bar{U}}^{T}$:

- 1. Structurally balanced: $\Lambda = \overline{\Lambda}, U = I_1 \overline{U}$.
- 2. Structurally antibalanced: $\Lambda = -\overline{\Lambda}, U = I_1\overline{U}$.

 I_1 denote the diagonal matrix whose (i, i) element is 1 if $i \in V_1$ and -1 otherwise, where V_1, V_2 denote the corresponding bipartition for either balanced or antibalanced networks

Signed Networks

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the signed weight matrix $\mathbf{W} = \mathbf{U} \Lambda \mathbf{U}^{T}$, and the unsigned one $\mathbf{\bar{W}} = \mathbf{\bar{U}} \Lambda \mathbf{\bar{U}}^{T}$:

- 1. Structurally balanced: $\Lambda = \overline{\Lambda}, U = I_1 \overline{U}$.
- 2. Structurally antibalanced: $\Lambda = -\overline{\Lambda}, U = I_1\overline{U}$.

 I_1 denote the diagonal matrix whose (i, i) element is 1 if $i \in V_1$ and -1 otherwise, where V_1, V_2 denote the corresponding bipartition for either balanced or antibalanced networks

$$I_{1} = \begin{bmatrix} 1 & \ddots & 0 \\ & \ddots & & 0 \\ & & & -1 \\ & & & -1 \\ & & & & -1 \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ \vdots \\ \vdots \\ 10 \end{bmatrix}$$

Signed Networks

-

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the signed weight matrix $\mathbf{W} = \mathbf{U} \Lambda \mathbf{U}^{T}$, and the unsigned one $\mathbf{\bar{W}} = \mathbf{\bar{U}} \Lambda \mathbf{\bar{U}}^{T}$:

- 1. Structurally balanced: $\Lambda = \overline{\Lambda}, U = I_1 \overline{U}$.
- 2. Structurally antibalanced: $\Lambda = -\bar{\Lambda}, U = I_1 \bar{U}$.

 I_1 denote the diagonal matrix whose (i, i) element is 1 if $i \in V_1$ and -1 otherwise, where V_1, V_2 denote the corresponding bipartition for either balanced or antibalanced networks

Proof ideas:

- 1. for balanced networks, $\mathbf{W} = \mathbf{I}_1 \overline{\mathbf{W}} \mathbf{I}_1$;
- 2. for antibalanced networks, $\mathbf{W} = -\mathbf{I}_1 \mathbf{\bar{W}} \mathbf{I}_1$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Spectral properties: Strictly unbalanced networks

When the signed network is neither balanced nor antibalanced.

Theorem (Spectral Theorem for Strict Unbalance)

A signed network G is strictly unbalanced if and only if $\rho(\mathbf{W}) < \rho(\bar{\mathbf{W}})$, where $\rho(\mathbf{W}) = \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } \mathbf{W}\}.$

Spectral properties: Strictly unbalanced networks

When the signed network is neither balanced nor antibalanced.

Theorem (Spectral Theorem for Strict Unbalance)

A signed network G is strictly unbalanced if and only if $\rho(\mathbf{W}) < \rho(\bar{\mathbf{W}})$, where $\rho(\mathbf{W}) = \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } \mathbf{W}\}.$

Proof ideas:

- If G is either balanced or antibalanced, $\rho(\mathbf{W}) = \rho(\bar{\mathbf{W}})$.
- ▶ Lemma: If G is strictly unbalanced, we can find two walks between nodes $v_i, v_j \in V$ of the same length but of different signs.
- ► The previous conflict will contract the spectral radius via the definition $\rho(\mathbf{W}) = ||\mathbf{W}||_2 = \max_{||\mathbf{x}||_2=1} ||\mathbf{W}\mathbf{x}||_2.$

Extension to signed networks: polarisation on each node.

▶ Weight matrix: $\mathbf{W} = \mathbf{W}^+ - \mathbf{W}^-$, where $W_{ij}^+ = |W_{ij}|$ if $W_{ij} > 0$ (0 otherwise), and $W_{ii}^- = |W_{ij}|$ if $W_{ij} < 0$ (0 otherwise).

Extension to signed networks: polarisation on each node.

- ▶ Weight matrix: $\mathbf{W} = \mathbf{W}^+ \mathbf{W}^-$, where $W_{ij}^+ = |W_{ij}|$ if $W_{ij} > 0$ (0 otherwise), and $W_{ij}^- = |W_{ij}|$ if $W_{ij} < 0$ (0 otherwise).
- ▶ Node degree: $d_i = d_i^+ + d_i^-$, where $d_i^+ = \sum_j W_{ij}^+$ and $d_i^- = \sum_j W_{ij}^-$.

Extension to signed networks: polarisation on each node.

- ▶ Weight matrix: $\mathbf{W} = \mathbf{W}^+ \mathbf{W}^-$, where $W_{ij}^+ = |W_{ij}|$ if $W_{ij} > 0$ (0 otherwise), and $W_{ij}^- = |W_{ij}|$ if $W_{ij} < 0$ (0 otherwise).
- ▶ Node degree: $d_i = d_i^+ + d_i^-$, where $d_i^+ = \sum_j W_{ij}^+$ and $d_i^- = \sum_j W_{ij}^-$.
- State values: $x_i^+(t), x_i^-(t)$ as density of positive, negative walkers, resp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extension to signed networks: polarisation on each node.

- ▶ Weight matrix: $\mathbf{W} = \mathbf{W}^+ \mathbf{W}^-$, where $W_{ij}^+ = |W_{ij}|$ if $W_{ij} > 0$ (0 otherwise), and $W_{ij}^- = |W_{ij}|$ if $W_{ij} < 0$ (0 otherwise).
- ▶ Node degree: $d_i = d_i^+ + d_i^-$, where $d_i^+ = \sum_j W_{ij}^+$ and $d_i^- = \sum_j W_{ij}^-$.
- State values: $x_i^+(t), x_i^-(t)$ as density of positive, negative walkers, resp.

•
$$x_j^+(t) = \sum_i \frac{1}{d_i} \left(W_{ij}^+ x_i^+(t-1) + W_{ij}^- x_i^-(t-1) \right);$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extension to signed networks: polarisation on each node.

- ▶ Weight matrix: $\mathbf{W} = \mathbf{W}^+ \mathbf{W}^-$, where $W_{ij}^+ = |W_{ij}|$ if $W_{ij} > 0$ (0 otherwise), and $W_{ij}^- = |W_{ij}|$ if $W_{ij} < 0$ (0 otherwise).
- ▶ Node degree: $d_i = d_i^+ + d_i^-$, where $d_i^+ = \sum_j W_{ij}^+$ and $d_i^- = \sum_j W_{ij}^-$.
- State values: $x_j^+(t), x_j^-(t)$ as density of positive, negative walkers, resp.

$$\begin{array}{l} \bullet \quad x_j^+(t) = \sum_i \frac{1}{d_i} \left(W_{ij}^+ x_i^+(t-1) + W_{ij}^- x_i^-(t-1) \right); \\ \bullet \quad x_j^-(t) = \sum_i \frac{1}{d_i} \left(W_{ij}^- x_i^+(t-1) + W_{ij}^+ x_i^-(t-1) \right). \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extension to signed networks: polarisation on each node.

▶ Weight matrix: $\mathbf{W} = \mathbf{W}^+ - \mathbf{W}^-$, where $W_{ij}^+ = |W_{ij}|$ if $W_{ij} > 0$ (0 otherwise), and $W_{ij}^- = |W_{ij}|$ if $W_{ij} < 0$ (0 otherwise).

▶ Node degree:
$$d_i = d_i^+ + d_i^-$$
, where $d_i^+ = \sum_j W_{ij}^+$ and $d_i^- = \sum_j W_{ij}^-$.

State values: $x_j^+(t), x_j^-(t)$ as density of positive, negative walkers, resp.

$$\begin{aligned} & \star_{j}^{+}(t) = \sum_{i} \frac{1}{d_{i}} \left(W_{ij}^{+} x_{i}^{+}(t-1) + W_{ij}^{-} x_{i}^{-}(t-1) \right); \\ & \star_{j}^{-}(t) = \sum_{i} \frac{1}{d_{i}} \left(W_{ij}^{-} x_{i}^{+}(t-1) + W_{ij}^{+} x_{i}^{-}(t-1) \right). \\ & x_{j}(t) = \sum_{i} \frac{1}{d_{i}} \left(W_{ij}^{+} - W_{ij}^{-} \right) \left(x_{i}^{+}(t-1) - x_{i}^{-}(t-1) \right) = \sum_{i} \frac{1}{d_{i}} W_{ij} x_{i}(t-1). \end{aligned}$$

Hence, $\mathbf{x}(t) = \mathbf{P}\mathbf{x}(t-1)$, where $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$, $\mathbf{D} = \mathbf{Diag}(\mathbf{d})$, and $\mathbf{d} = (d_i)$.

RDITA Linköping 2023

Signed Networks

Structurally balanced signed networks.

Proposition

P has eigenvalue 1 if and only if G is balanced.

Structurally balanced signed networks.

Proposition

P has eigenvalue 1 if and only if G is balanced.

Proof ideas:

•
$$P = D^{-1/2} P_{sym} D^{1/2}$$
, where $P_{sym} = D^{-1/2} W D^{-1/2}$

•
$$\lambda_{max}(\mathbf{\bar{P}}_{sym}) = 1$$
; Spectral Theorems.

э

Structurally balanced signed networks.

Proposition

 \mathbf{P} has eigenvalue 1 if and only if G is balanced.

Proof ideas:

•
$$\mathbf{P} = \mathbf{D}^{-1/2} \mathbf{P}_{sym} \mathbf{D}^{1/2}$$
, where $\mathbf{P}_{sym} = \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$

•
$$\lambda_{max}(\mathbf{\bar{P}}_{sym}) = 1$$
; Spectral Theorems.

Proposition

If G is balanced and is not bipartite, then the steady state is $\mathbf{x}^* = (x_i^*)$ where

$$x_j^* = \begin{cases} (\mathbf{x}(0)^T \mathbf{I}_1 \mathbf{1}) d_j / (2m), & \text{if } v_j \in V_1, \\ -(\mathbf{x}(0)^T \mathbf{I}_1 \mathbf{1}) d_j / (2m), & \text{otherwise,} \end{cases}$$

where $2m = \sum_j d_j$, and $\mathbf{1}$ is the all-one vector.

Linköping 2023

э

◆日 > < 同 > < 国 > < 国 >

Structurally antibalanced signed networks.

Proposition

P has eigenvalue -1 if and only if G is antibalanced.

Signed Networks

э

Structurally antibalanced signed networks.

Proposition

P has eigenvalue -1 if and only if G is antibalanced.

Linköping 2023

Proposition

If G is antibalanced and is not bipartite, then the random walks have different limits for odd or even times, denoted by $\mathbf{x}^{*o} = (x_j^{*o})$ and $\mathbf{x}^{*e} = (x_j^{*e})$, respectively, where

$$x_j^{*o} = \begin{cases} -(\mathbf{x}(0)^T \mathbf{I}_1 \mathbf{1}) d_j / (2m), & \text{if } v_j \in V_1, \\ (\mathbf{x}(0)^T \mathbf{I}_1 \mathbf{1}) d_j / (2m), & \text{otherwise,} \end{cases}$$

while

$$\mathbf{x}_{j}^{*e} = \begin{cases} (\mathbf{x}(0)^{\mathsf{T}} \mathbf{I}_{1} \mathbf{1}) d_{j} / (2m), & \text{if } \mathbf{v}_{j} \in V_{1}, \\ -(\mathbf{x}(0)^{\mathsf{T}} \mathbf{I}_{1} \mathbf{1}) d_{j} / (2m), & \text{otherwise.} \end{cases}$$

Signed Networks

э

Strictly unbalanced signed networks.

Proposition

 $\rho(\mathbf{P}) < 1$ if and only if G is strictly unbalanced.

Signed Networks

ж

Strictly unbalanced signed networks.

Proposition

 $\rho(\mathbf{P}) < 1$ if and only if G is strictly unbalanced.

Proposition

If G is strictly unbalanced, then the steady state is $\mathbf{0}$, the vector of zeros.

Signed Networks

э

Strictly unbalanced signed networks.

Proposition

 $\rho(\mathbf{P}) < 1$ if and only if G is strictly unbalanced.

Proposition

If G is strictly unbalanced, then the steady state is $\mathbf{0}$, the vector of zeros.

Further characterisation:

- "Distance" from being balanced: $d_b(G) = -(\lambda_{\max}(\mathbf{P}(G)) 1);$
- "Distance" from being antibalanced: $d_a(G) = \lambda_{\min}(\mathbf{P}(G)) (-1)$,

 \propto #edges disturbing the balanced or antibalanced structure, by perturbation analysis.

э.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Numerical experiments

Different types of signed networks.

Signed Networks

(1)

Numerical experiments

Evolution of the state values from the signed random walks.

Summary

Spreading and structural balance on signed networks.

- Structural properties: (i) classification based on structural balance, and (ii) characterisation of the spectral properties.
- Dynamical properties: characterisation of random walks in each type of signed networks.

Future directions

- Applications to various fields.
- More switching equivalence classes.

Main references:

YT, and R. Lambiotte. Spreading and structural balance on signed networks. *SIAM J. Appl. Dyn. Syst.*, Accepted, 2023.

Contact: yu.tian@su.se

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Background

Signed networks Structural characterisation Dynamical characterisation Experiments

Complex-weighted networks

Signed Networks

ж

ヘロト ヘロト ヘヨト ヘヨト

Complex-weighted networks

What if negative connections are not enough?

Signed Networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complex-weighted networks

What if negative connections are not enough?

Signed Networks

э

ヘロト 人間ト 人間ト 人間ト

Complex-weighted networks

What if negative connections are not enough?

500

ж

・ロト ・四ト ・モト ・モト

Structural balance

A specific type of complex-weighted networks that are relatively stable.

- Phase of cycles: sum of phases of composing edges.
- Structural balance: all cycles have phase 0 (up to multiples of 2π).

Signed Networks

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Structural balance

A specific type of complex-weighted networks that are relatively stable.

- Phase of cycles: sum of phases of composing edges.
- Structural balance: all cycles have phase 0 (up to multiples of 2π).
- Structural Theorem for Balance: G(V, E) is structurally balanced ⇔ partition {V_i}^{lp}_{i=1} s.t.
 - any edges within have phase 0,

Linköping 2023

- any edges between the same pair of node subsets have same phase,
- if we consider each node subset as a super node, the phase of any cycle is 0.

Structural antibalance

The opposite to structural balance.

- Definition: all cycles, after adding π to their composing edges, have phase 0 (up to multiples of 2π).
- Structural Theorem for Antibalance: G(V, E) is structurally antibalanced ⇔ partition {V_i}^{l_p}_{i=1} s.t.
 - any edges within have phase π ,
 - any edges between the same pair of node subsets have same phase,
 - if we consider each node subset as a super node, after adding π to their composing edges, the phase of any cycle is 0.

(a)

Structural antibalance

The opposite to structural balance.

- Definition: all cycles, after adding π to their composing edges, have phase 0 (up to multiples of 2π).
- Structural Theorem for Antibalance: G(V, E) is structurally antibalanced ⇔ partition {V_i}^{l_p}_{i=1} s.t.
 - any edges within have phase π ,
 - any edges between the same pair of node subsets have same phase,
 - if we consider each node subset as a super node, after adding π to their composing edges, the phase of any cycle is 0.

(a)

Strictly unbalanced: if it is neither balanced nor antibalanced.

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the complex weight matrix $W = U \wedge U^*$, and the one ignoring the phase $\bar{W} = \bar{U} \bar{\Lambda} \bar{U}^*$:

- 1. Structurally balanced: $\Lambda=\bar{\Lambda},\, \textbf{U}=\textbf{I}_{1}\bar{\textbf{U}}.$
- 2. Structurally antibalanced: $\Lambda = -\bar{\Lambda}, U = I_1 \bar{U}$.

I₁ denote the diagonal matrix whose (i, i) element is $\exp(i\theta_{1\sigma(i)})$, where $\sigma(\cdot)$ returns the node subset index, and θ_{hl} is the phase from V_h to V_l (balance) and is the phase after adding π to each composing edge (antibalance).

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the complex weight matrix $W = U \Lambda U^*$, and the one ignoring the phase $\bar{W} = \bar{U} \bar{\Lambda} \bar{U}^*$:

1. Structurally balanced: $\Lambda = \overline{\Lambda}, U = I_1 \overline{U}$.

Linköping 2023

2. Structurally antibalanced: $\Lambda = -\bar{\Lambda}, U = I_1 \bar{U}$.

I₁ denote the diagonal matrix whose (i, i) element is $\exp(i\theta_{1\sigma(i)})$, where $\sigma(\cdot)$ returns the node subset index, and θ_{hl} is the phase from V_h to V_l (balance) and is the phase after adding π to each composing edge (antibalance).

Signed Networks

(a)

Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the complex weight matrix $W = U \Lambda U^*$, and the one ignoring the phase $\bar{W} = \bar{U} \bar{\Lambda} \bar{U}^*$:

- 1. Structurally balanced: $\Lambda = \overline{\Lambda}, U = I_1 \overline{U}$.
- 2. Structurally antibalanced: $\Lambda = -\overline{\Lambda}$, $\mathbf{U} = \mathbf{I}_1 \overline{\mathbf{U}}$.

I₁ denote the diagonal matrix whose (i, i) element is $\exp(i\theta_{1\sigma(i)})$, where $\sigma(\cdot)$ returns the node subset index, and θ_{hl} is the phase from V_h to V_l (balance) and is the phase after adding π to each composing edge (antibalance).

46

Spectral properties: Strictly unbalanced networks

When the signed network is neither balanced nor antibalanced.

Theorem (Spectral Theorem for Strict Unbalance)

A complex-weighted network G is strictly unbalanced if and only if $\rho(\mathbf{W}) < \rho(\bar{\mathbf{W}})$, where $\rho(\mathbf{W}) = \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } \mathbf{W}\}$.

Signed Networks

A D > A P > A B > A B >

Spectral properties: Strictly unbalanced networks

When the signed network is neither balanced nor antibalanced.

Theorem (Spectral Theorem for Strict Unbalance)

A complex-weighted network G is strictly unbalanced if and only if $\rho(\mathbf{W}) < \rho(\bar{\mathbf{W}})$, where $\rho(\mathbf{W}) = \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } \mathbf{W}\}$.

Proof ideas:

- If G is either balanced or antibalanced, $\rho(\mathbf{W}) = \rho(\bar{\mathbf{W}})$.
- ▶ Lemma: If G is strictly unbalanced, we can find two walks between nodes v_i, v_j ∈ V of the same length but of different phases.
- ► The previous conflict will contract the spectral radius via the definition $\rho(\mathbf{W}) = ||\mathbf{W}||_2 = \max_{||\mathbf{x}||_2=1} ||\mathbf{W}\mathbf{x}||_2.$

Signed Networks

ъ

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Extension to complex-weighted networks.

• Weight matrix: $\mathbf{W} = \int_0^{2\pi} e^{i\theta} \mathbf{W}^{\theta} d\theta$, where $\mathbf{W}^{\theta} = (W_{ij}^{\theta})$ with $W_{ij}^{\theta} = |W_{ij}| \delta(\theta - \varphi_{ij})$ encoding the presence of an edge with phase θ .

э

・ロト ・ 一下・ ・ ヨト ・ ヨト

Extension to complex-weighted networks.

- Weight matrix: $\mathbf{W} = \int_0^{2\pi} e^{i\theta} \mathbf{W}^{\theta} d\theta$, where $\mathbf{W}^{\theta} = (W_{ij}^{\theta})$ with $W_{ij}^{\theta} = |W_{ij}|\delta(\theta \varphi_{ij})$ encoding the presence of an edge with phase θ .
- Node degree: $d_i = \sum_j |W_{ij}| = \sum_j r_{ij}$.

э

イロト 不得 トイヨト イヨト

Extension to complex-weighted networks.

- Weight matrix: $\mathbf{W} = \int_0^{2\pi} e^{i\theta} \mathbf{W}^{\theta} d\theta$, where $\mathbf{W}^{\theta} = (W_{ij}^{\theta})$ with $W_{ij}^{\theta} = |W_{ij}|\delta(\theta \varphi_{ij})$ encoding the presence of an edge with phase θ .
- Node degree: $d_i = \sum_j |W_{ij}| = \sum_j r_{ij}$.
- State values: walkers can have different phases, and after traversing an edge, walkers add the phase of the edge to the phase they originally have:

$$x_{j}^{ heta}(t+1) = \sum_{i}rac{1}{d_{i}}\int_{0}^{2\pi}W_{ij}^{arphi}x_{i}^{ heta-arphi}(t)darphi$$

Signed Networks

Extension to complex-weighted networks.

• Weight matrix: $\mathbf{W} = \int_0^{2\pi} e^{i\theta} \mathbf{W}^{\theta} d\theta$, where $\mathbf{W}^{\theta} = (W_{ij}^{\theta})$ with $W_{ij}^{\theta} = |W_{ij}|\delta(\theta - \varphi_{ij})$ encoding the presence of an edge with phase θ .

• Node degree:
$$d_i = \sum_j |W_{ij}| = \sum_j r_{ij}$$
.

Linköping 2023

State values: walkers can have different phases, and after traversing an edge, walkers add the phase of the edge to the phase they originally have:

$$\begin{aligned} x_j^{\theta}(t+1) &= \sum_i \frac{1}{d_i} \int_0^{2\pi} W_{ij}^{\varphi} x_i^{\theta-\varphi}(t) d\varphi \\ x_j(t+1) &= \int_0^{2\pi} e^{\mathrm{i}\theta} x_j^{\theta}(t+1) d\theta = \sum_i \frac{1}{d_i} \int_0^{2\pi} \left(\int_0^{2\pi} e^{\mathrm{i}\theta} W_{ij}^{\varphi} d\theta \right) x_i^{\theta-\varphi}(t) d\varphi \end{aligned}$$

Signed Networks

-

ヘロト ヘ戸ト ヘヨト ヘヨト

Extension to complex-weighted networks.

• Weight matrix: $\mathbf{W} = \int_0^{2\pi} e^{i\theta} \mathbf{W}^{\theta} d\theta$, where $\mathbf{W}^{\theta} = (W_{ij}^{\theta})$ with $W_{ij}^{\theta} = |W_{ij}|\delta(\theta - \varphi_{ij})$ encoding the presence of an edge with phase θ .

• Node degree:
$$d_i = \sum_j |W_{ij}| = \sum_j r_{ij}$$
.

Linköping 2023

State values: walkers can have different phases, and after traversing an edge, walkers add the phase of the edge to the phase they originally have:

$$\begin{aligned} x_{j}^{\theta}(t+1) &= \sum_{i} \frac{1}{d_{i}} \int_{0}^{2\pi} W_{ij}^{\varphi} x_{i}^{\theta-\varphi}(t) d\varphi \\ x_{j}(t+1) &= \int_{0}^{2\pi} e^{\mathrm{i}\theta} x_{j}^{\theta}(t+1) d\theta = \sum_{i} \frac{1}{d_{i}} \int_{0}^{2\pi} \left(\int_{0}^{2\pi} e^{\mathrm{i}\theta} W_{ij}^{\varphi} d\theta \right) x_{i}^{\theta-\varphi}(t) d\varphi \\ \text{Hence, } \mathbf{x}(t+1) &= \mathbf{P}\mathbf{x}(t), \text{ where } \mathbf{P} = \mathbf{D}^{-1} \mathbf{W}, \mathbf{D} = \mathbf{Diag}(\mathbf{d}), \text{ and } \mathbf{d} = (d_{i}). \end{aligned}$$

Signed Networks

-

Dynamical properties in a nutshell.

Structural balance: P has eigenvalue 1, and if G is not bipartite, the steady state is x^{*} = (x_j^{*}),

$$x_j^* = \exp\left(heta_{1\sigma(j)}\mathbf{i}\right)(\mathbf{x}(0)^*\mathbf{I}_1^*\mathbf{1})d_j/(2m),$$

where $2m = \sum_{j} d_{j}$, and **1** is the all-one vector.

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Dynamical properties in a nutshell.

Structural balance: P has eigenvalue 1, and if G is not bipartite, the steady state is x* = (x_j*),

$$x_j^* = \exp(\theta_{1\sigma(j)}\mathbf{i})(\mathbf{x}(0)^*\mathbf{I}_1^*\mathbf{1})d_j/(2m),$$

where $2m = \sum_{j} d_{j}$, and **1** is the all-one vector.

Structural antibalance: P has eigenvalue -1, and if G is not bipartite, the random walks have different limits x^{*o}, x^{*e} for odd or even times, resp., where x^{*o} = -x^{*} and x^{*e} = x^{*}.

э.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Dynamical properties in a nutshell.

Structural balance: P has eigenvalue 1, and if G is not bipartite, the steady state is x^{*} = (x_j^{*}),

$$x_j^* = \exp(\theta_{1\sigma(j)}\mathbf{i})(\mathbf{x}(0)^*\mathbf{I}_1^*\mathbf{1})d_j/(2m),$$

where $2m = \sum_{j} d_{j}$, and **1** is the all-one vector.

- Structural antibalance: P has eigenvalue -1, and if G is not bipartite, the random walks have different limits x^{*o}, x^{*e} for odd or even times, resp., where x^{*o} = -x^{*} and x^{*e} = x^{*}.
- Strict unbalance: $\rho(\mathbf{P}) < 1$, and the steady state is **0**, the vector of zeros.

ж

Summary

Structural balance and random walks on complex networks with complex weights.

- Structural properties: (i) classification based on structural balance, and (ii) characterisation of the spectral properties.
- Dynamical properties: extension and characterisation of random walks in each type of complex-weighted networks.

Signed Networks

3

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Summary

Structural balance and random walks on complex networks with complex weights.

- Structural properties: (i) classification based on structural balance, and (ii) characterisation of the spectral properties.
- Dynamical properties: extension and characterisation of random walks in each type of complex-weighted networks.

Applications

- Spectral clustering.
- Magnetic Laplacian.

Main references:

YT, and R. Lambiotte. Structural balance and random walks on complex networks with complex weights. *arXiv*, arXiv:2307.01813, 2023.

Contact: yu.tian@su.se

ъ