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About me: PhD research

▶ Retail industry: huge turnover but small margins.

▶ Product relationships: complements and substitutes.

▶ Further decision making: product-catalogue design, store layout, stock
levels, promotions ←− demand dynamics.
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Research interest: Network science

▶ Structural properties: clustering / community detection on networks,
spectral properties via adjacency matrix and graph Laplacian.

▶ Dynamical properties: linear dynamics such as random walks, and
nonlinear dynamics such as linear threshold models.
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Signed networks
What if there are negative connections?
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Structural balance
A specific type of signed networks that are relatively stable.

▶ Motivation (Harary, 1953; Cartwright and Harary, 1956): “friend of a
friend is a friend, enemy of a friend is an enemy, while enemy of an
enemy is a friend“.

▶ Mathematical interpretation: no cycle with an odd number of negative
edges, which defines the cycle to be “negative”.

▶ Structural Theorem for Balance (Harary, 1953):
G = (V ,E) is structurally balanced ⇔
V = V1 ∪ V2 with V1 ∩ V2 = ∅ s.t. any edge
within each node subset is positive while any edge
between the two node subsets is negative.
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Linköping 2023 Signed Networks 9



Structural antibalance
The opposite to structural balance.

▶ Definition: no cycle with an odd number of positive edges.

▶ Structural Theorem for Antibalance (Harary,
1957): G = (V ,E) is structurally antibalanced ⇔
V = V1 ∪ V2 with V1 ∩ V2 = ∅, s.t. any edge
within each node subset is negative while any
edge between the two node subsets is positive.
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Classification
Structurally balanced, structurally antibalanced, and strictly unbalanced signed networks.

▶ Strictly unbalanced: if it is neither balanced nor antibalanced.

Structurally balanced Structurally antibalanced Strictly unbalanced

→ Characterisation of weighted signed networks G = (V ,E ,W):

▶ signed weight matrix W = (Wij) ∈ Rn×n, where n = |V | and Wij ̸= 0 if
(vi , vj) ∈ E ;

▶ unsigned weights matrix W̄ = (W̄ij) ∈ (R+ ∪ {0})n×n, where W̄ij > 0 if
(vi , vj) ∈ E .
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Spectral properties
Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the signed weight matrix
W = UΛUT , and the unsigned one W̄ = ŪΛ̄ŪT :

1. Structurally balanced: Λ = Λ̄, U = I1Ū.

2. Structurally antibalanced: Λ = −Λ̄, U = I1Ū.

I1 denote the diagonal matrix whose (i , i) element is 1 if i ∈ V1 and −1
otherwise, where V1,V2 denote the corresponding bipartition for either
balanced or antibalanced networks
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Spectral properties
Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the signed weight matrix
W = UΛUT , and the unsigned one W̄ = ŪΛ̄ŪT :

1. Structurally balanced: Λ = Λ̄, U = I1Ū.

2. Structurally antibalanced: Λ = −Λ̄, U = I1Ū.

I1 denote the diagonal matrix whose (i , i) element is 1 if i ∈ V1 and −1
otherwise, where V1,V2 denote the corresponding bipartition for either
balanced or antibalanced networks

Proof ideas:

1. for balanced networks, W = I1W̄I1;

2. for antibalanced networks, W = −I1W̄I1.
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Spectral properties: Strictly unbalanced networks
When the signed network is neither balanced nor antibalanced.

Theorem (Spectral Theorem for Strict Unbalance)

A signed network G is strictly unbalanced if and only if ρ(W) < ρ(W̄), where
ρ(W) = max{|λi | : λi is an eigenvalue of W}.

Proof ideas:

▶ If G is either balanced or antibalanced, ρ(W) = ρ(W̄).

▶ Lemma: If G is strictly unbalanced, we can find two walks between nodes
vi , vj ∈ V of the same length but of different signs.

▶ The previous conflict will contract the spectral radius via the definition
ρ(W) = ||W||2 = max||x||2=1 ||Wx||2.
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Dynamics: Random walks
Extension to signed networks: polarisation on each node.

▶ Weight matrix: W = W+ −W−, where W+
ij = |Wij | if Wij > 0 (0

otherwise), and W−
ij = |Wij | if Wij < 0 (0 otherwise).

▶ Node degree: di = d+
i + d−

i , where d+
i =

∑
j W

+
ij and d−

i =
∑

j W
−
ij .

▶ State values: x+
j (t), x

−
j (t) as density of positive, negative walkers, resp.

▶ x+
j (t) =

∑
i

1
di

(
W+

ij x
+
i (t − 1) +W−

ij x
−
i (t − 1)

)
;

▶ x−
j (t) =

∑
i

1
di

(
W−

ij x
+
i (t − 1) +W+

ij x
−
i (t − 1)

)
.

xj(t) =
∑
i

1

di

(
W+

ij −W−
ij

) (
x+
i (t − 1)− x−

i (t − 1)
)
=

∑
i

1

di
Wijxi (t − 1).

Hence, x(t) = Px(t − 1), where P = D−1W, D = Diag(d), and d = (di ).

Linköping 2023 Signed Networks 19



Dynamics: Random walks
Extension to signed networks: polarisation on each node.

▶ Weight matrix: W = W+ −W−, where W+
ij = |Wij | if Wij > 0 (0

otherwise), and W−
ij = |Wij | if Wij < 0 (0 otherwise).

▶ Node degree: di = d+
i + d−

i , where d+
i =

∑
j W

+
ij and d−

i =
∑

j W
−
ij .

▶ State values: x+
j (t), x

−
j (t) as density of positive, negative walkers, resp.

▶ x+
j (t) =

∑
i

1
di

(
W+

ij x
+
i (t − 1) +W−

ij x
−
i (t − 1)

)
;

▶ x−
j (t) =

∑
i

1
di

(
W−

ij x
+
i (t − 1) +W+

ij x
−
i (t − 1)

)
.

xj(t) =
∑
i

1

di

(
W+

ij −W−
ij

) (
x+
i (t − 1)− x−

i (t − 1)
)
=

∑
i

1

di
Wijxi (t − 1).

Hence, x(t) = Px(t − 1), where P = D−1W, D = Diag(d), and d = (di ).
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Dynamics: Random walks
Structurally balanced signed networks.

Proposition

P has eigenvalue 1 if and only if G is balanced.

Proof ideas:

▶ P = D−1/2PsymD
1/2, where Psym = D−1/2WD−1/2.

▶ λmax(P̄sym) = 1; Spectral Theorems.

Proposition

If G is balanced and is not bipartite, then the steady state is x∗ = (x∗
j ) where

x∗
j =

{
(x(0)T I11)dj/(2m), if vj ∈ V1,

−(x(0)T I11)dj/(2m), otherwise,

where 2m =
∑

j dj , and 1 is the all-one vector.
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Dynamics: Random walks
Structurally antibalanced signed networks.

Proposition

P has eigenvalue −1 if and only if G is antibalanced.

Proposition

If G is antibalanced and is not bipartite, then the random walks have different
limits for odd or even times, denoted by x∗o = (x∗o

j ) and x∗e = (x∗e
j ),

respectively, where

x∗o
j =

{
−(x(0)T I11)dj/(2m), if vj ∈ V1,

(x(0)T I11)dj/(2m), otherwise,

while

x∗e
j =

{
(x(0)T I11)dj/(2m), if vj ∈ V1,

−(x(0)T I11)dj/(2m), otherwise.
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Dynamics: Random walks
Strictly unbalanced signed networks.

Proposition

ρ(P) < 1 if and only if G is strictly unbalanced.

Proposition

If G is strictly unbalanced, then the steady state is 0, the vector of zeros.

▶ Further characterisation:

▶ “Distance” from being balanced: db(G) = − (λmax(P(G))− 1);
▶ “Distance” from being antibalanced: da(G) = λmin(P(G))− (−1),

∝ #edges disturbing the balanced or antibalanced structure, by
perturbation analysis.
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Numerical experiments
Different types of signed networks.
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Numerical experiments
Evolution of the state values from the signed random walks.
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Summary
Spreading and structural balance on signed networks.

▶ Structural properties: (i) classification based on structural balance, and
(ii) characterisation of the spectral properties.

▶ Dynamical properties: characterisation of random walks in each type of
signed networks.

Future directions

▶ Applications to various fields.

▶ More switching equivalence classes.

Main references:

YT, and R. Lambiotte. Spreading and structural balance on signed networks. SIAM J.
Appl. Dyn. Syst., Accepted, 2023.

Contact: yu.tian@su.se
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Complex-weighted networks
What if negative connections are not enough?
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Structural balance
A specific type of complex-weighted networks that are relatively stable.

▶ Phase of cycles: sum of phases of composing edges.

▶ Structural balance: all cycles have phase 0 (up to multiples of 2π).

▶ Structural Theorem for Balance: G(V ,E) is

structurally balanced ⇔ partition {Vi}lpi=1 s.t.

▶ any edges within have phase 0,
▶ any edges between the same pair of node

subsets have same phase,
▶ if we consider each node subset as a super

node, the phase of any cycle is 0.
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Structural antibalance
The opposite to structural balance.

▶ Definition: all cycles, after adding π to their composing edges, have
phase 0 (up to multiples of 2π).

▶ Structural Theorem for Antibalance: G(V ,E) is

structurally antibalanced ⇔ partition {Vi}lpi=1

s.t.

▶ any edges within have phase π,
▶ any edges between the same pair of node

subsets have same phase,
▶ if we consider each node subset as a super

node, after adding π to their composing
edges, the phase of any cycle is 0.

▶ Strictly unbalanced: if it is neither balanced nor antibalanced.
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Spectral properties
Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the complex weight matrix
W = UΛU∗, and the one ignoring the phase W̄ = ŪΛ̄Ū∗:

1. Structurally balanced: Λ = Λ̄, U = I1Ū.

2. Structurally antibalanced: Λ = −Λ̄, U = I1Ū.

I1 denote the diagonal matrix whose (i , i) element is exp
(
iθ1σ(i)

)
, where σ(·)

returns the node subset index, and θhl is the phase from Vh to Vl (balance) and
is the phase after adding π to each composing edge (antibalance).
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Linköping 2023 Signed Networks 45



Spectral properties
Spectral properties of the weight matrix.

Theorem (Spectral Theorem for Balance and Antibalance)

Considering the unitary decompositions of the complex weight matrix
W = UΛU∗, and the one ignoring the phase W̄ = ŪΛ̄Ū∗:
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Spectral properties: Strictly unbalanced networks
When the signed network is neither balanced nor antibalanced.

Theorem (Spectral Theorem for Strict Unbalance)

A complex-weighted network G is strictly unbalanced if and only if
ρ(W) < ρ(W̄), where ρ(W) = max{|λi | : λi is an eigenvalue of W}.

Proof ideas:

▶ If G is either balanced or antibalanced, ρ(W) = ρ(W̄).

▶ Lemma: If G is strictly unbalanced, we can find two walks between nodes
vi , vj ∈ V of the same length but of different phases.

▶ The previous conflict will contract the spectral radius via the definition
ρ(W) = ||W||2 = max||x||2=1 ||Wx||2.
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Dynamics: Random walks
Extension to complex-weighted networks.

▶ Weight matrix: W =
∫ 2π

0
e iθWθdθ, where Wθ = (W θ

ij ) with

W θ
ij = |Wij |δ(θ − φij) encoding the presence of an edge with phase θ.

▶ Node degree: di =
∑

j |Wij | =
∑

j rij .

▶ State values: walkers can have different phases, and after traversing an
edge, walkers add the phase of the edge to the phase they originally have:

xθ
j (t + 1) =

∑
i

1

di

∫ 2π

0

Wφ
ij x

θ−φ
i (t)dφ

xj(t + 1) =

∫ 2π

0

e iθxθ
j (t + 1)dθ =

∑
i

1

di

∫ 2π

0

(∫ 2π

0

e iθWφ
ij dθ

)
xθ−φ
i (t)dφ

Hence, x(t + 1) = Px(t), where P = D−1W, D = Diag(d), and d = (di ).
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Dynamics: Random walks
Dynamical properties in a nutshell.

▶ Structural balance: P has eigenvalue 1, and if G is not bipartite, the
steady state is x∗ = (x∗

j ),

x∗
j = exp

(
θ1σ(j)i

)
(x(0)∗I∗11)dj/(2m),

where 2m =
∑

j dj , and 1 is the all-one vector.

▶ Structural antibalance: P has eigenvalue −1, and if G is not bipartite,
the random walks have different limits x∗o , x∗e for odd or even times,
resp., where x∗o = −x∗ and x∗e = x∗.

▶ Strict unbalance: ρ(P) < 1, and the steady state is 0, the vector of zeros.
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Summary
Structural balance and random walks on complex networks with complex weights.

▶ Structural properties: (i) classification based on structural balance, and
(ii) characterisation of the spectral properties.

▶ Dynamical properties: extension and characterisation of random walks in
each type of complex-weighted networks.

Applications

▶ Spectral clustering.

▶ Magnetic Laplacian.

Main references:

YT, and R. Lambiotte. Structural balance and random walks on complex networks
with complex weights. arXiv, arXiv:2307.01813, 2023.

Contact: yu.tian@su.se
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