

MODELLING AND MANAGING THE FUTURE CLOUD-EDGE CONTINUUM

PAUL TOWNEND UMEÅ UNIVERSITY, SWEDEN

MODERN DISTRIBUTED SYSTEMS AND DATA

UMEÅ UNIVERSITY

Cloud is eating software

Cloud will become majority of software market within 5 years

"TRADITIONAL CLOUD COMPUTING"

Users connect to large data centres

(e.g. Facebook, Google, etc.)

These are powerful resources

Lots of servers, storage, bandwidth, etc.

Expensive, slow to build, huge impact on power grids and the environment

DATA CENTRES AS COMPLEX SYSTEMS-OF-SYSTEMS

GOOGLE DATA CENTRE, HAMINA, FINLAND

25

26

RECENT

MENU

The Biggest Problem in AI? Lying Chatbots

DataCenter

Knowledge.

MAY 30, 2023

Biden's Former Tech Adviser on What Washington Is Missing About Al

MAY 30, 2023

HPE and Ampere Take Aim at Intel With Vision of Arm-Based Open RAN Server

Amazon's Answer to ChatGPT Seen as Incomplete

MAY 24, 2023

Are Data Centers Taking Over Oregon's

COMPANIES > GOOGLE (ALPHABET)

Google Using Sea Water to Cool Finland Project

Google will use cool sea water in the cooling system for its new data center in Hamina, Finland, which may be the first sea-cooled data center. The initiative continues Google's focus on data center efficiency and sustainability.

Rich Miller | Sep 15, 2010

Google will use cool sea water in the cooling system for its new data center in Hamina,

The Cloud-Edge Continuum and its characteristics

THE CLOUD-EDGE CONTINUUM

Platform heterogeneity

Resource constrained devices

Infrastructural dynamicity

Secure orchestration over public networks

Massive complexity

High energy consumption

DATA CENTRE AND NETWORK ENERGY CONSUMPTION

A. Anders, T. Edler, "On global electricity usage of communication technology: trends to 2030.", Challenges 6, no. 1 (2015): 117-157

Modelling and Managing the Future Cloud-Edge Continuum - Paul Townend

Managing complexity: Containers and Serverless computing

Average Startup Time (Seconds) for a KVM Linux Virtual Machine and a Container Over Five Measurements

We have an infrastructure to instantiate, run, and manage containers almost instantly

Why not virtualise network functions?

Network address translation Firewalls Routing services Etc. Run and manage the network on cheap commodity servers

The challenge then becomes: running and managing the network on cheap commodity servers

Container orchestrators are crucial for deploying, managing, and monitoring container systems

Container engines deploy container images, running container runtimes

Container orchestrators manage the runtimes and the live system as a whole

CONTAINER ORCHESTRATION PROVIDERS

IBM Cloud Kubernetes Service

Azure Kubernetes Service (AKS)

Google Kubernetes Engine

By far the leading container orchestration platform in the world

CAN SERVERLESS HELP?

SERVERLESS

Users / developers:

Application functionality composed of invokable services (FaaS)

Cloud providers:

Auto-provision, deploy, and scale the services based on range of criteria

Abstract infrastructure from applications

How does this work in a Cloud-Edge continuum, given the characteristics discussed?

Serverless at the Edge: Research challenges

Cognitive Cloud-Edge management: disaggregated, highly distributed, SDNs, etc. **Deployment and migration of functions:** Overlays to abstract heterogeneity etc.

Seamless user access and programming models: automatic offload with specific requirements **Secure and trusted execution:** Fine-grained control in multi-provider networks

New serverless functionalities: Long-term execution, location-awareness, etc. **Energy efficiency and adaptation to green energy:** Placement, renewables, models, etc.

AI models and optimisation techniques:

How to accurately manage and predict without incurring excessive latency or overhead

RECAP OF CLOUD-EDGE

Conceptual models:

Stochastic process algebra, Discrete event simulation, Queueing theory, Approximation theory, Game theory, etc.

Need of modelling solutions:

Understanding the behavior, performance, and resource orchestration in cloud-edge systems.

Few formal models of federated Cloud-Edge systems exist

None adequately represent and integrate energy and network considerations

How to model the system	How to maintain energy-perf trade-offs
Stochastic features, network, pricing,	Best practices, Conflicting SLOs,
energy distribution, policies, etc.	local & global optima, etc.
How to combine multiple models Model types, granularities, scaling, interactions	How to model energy-driven systems Power grids capacities, renewables, service levels
How to model different system regions	How to develop validation models
Optimization, heterogeneity, monitoring,	Scalability scenarios, Iterative testing, mobility,
scheduling	topology, network behavior, energy, etc.

SovereignEdge.COGNIT

European Open Source for Europe's Next-Gen Edge Cloud

Building a Sovereign Edge Cloud Stack for the III Digital Decade

https://sovereignedge.eu/

PROJECT PARTICIPANTS

Umea University, Sweden

Paul Townend

Monowar Bhuyan

P-O Ostberg

Erik Elmroth

Ikerlan, Spain

Idoia de la Iglesia

Marco González

Iván Valdés

Aritz Brosa

Martxel Lasa

Goiuri Peralta

Samuel Pérez

Open Nebula, Spain
Alberto P. Martí
Constantino Vázquez
Marco Mancini
Ignacio M. Llorente
Michael Abdou
ACISA, Spain
Joan Iglesias
Antonio Lalaguna
Behnam Ojaghi

SUSE, Germany Torsten Hallmann Holger Pfister

Nature 4.0, Italy
Riccardo Valentini
Francesco Renzi
Micaela Onorati
RISE, Sweden
Thomas Timoudas
Daniel Olsson
Johan Kristiansson
Shuai Zhu
Atende, Poland

Dominik Bocheński Tomasz Piasecki Grzegorz Gil

CETIC, Belgium Nikolaos Matskanis Philippe Massonet Sébastien Dupont Malik Bouhou **Phoenix Systems, Poland** Kaja Swat Tomasz Korniluk Marek Białowąs

Gerard Świderski

Rafał Jurkiewicz

10+ organisations 40 researchers

COGNIT architecture and use cases

Modelling and Managing the Future Cloud-Edge Continuum - Paul Townend

MAIN ARCHITECTURE

Stateless component responsible for managing the life cycle of the Serverless Runtimes

AI reasoning. First version will look at workload placement based on renewable power source availability

Infrastructure

FOUR USE CASES

COGNIT TESTBED

Commercial and Research Data Center

DCD Best Data Center Initiative 2017

IEEE Scale Award 2017

RISE SICS, NORTHERN SWEDEN

Building 2000+ Node Container Facility

An open source reference implementation for serverless Continuum computing

First version released in September 2023, more advanced version in March 2024

All versions of COGNIT will be tested in physical + virtual testbeds and use cases

Happy to collaborate, incorporate interesting new technologies, etc.

Going forward

	Energy-aware Autonomous management Intelligently allocate resources: e.g. target renewable energy, etc.	Horizon Europe SovereignEdge (2023-2025)
	Efficiently monitor, predict, and audit at massive scale How to adaptively do this to avoid huge overhead?	WASP WARA-Ops (2023-2025)
Α	formal model for energy-aware Cloud-Edge Systems Integrate energy providers, pricing, renewables, etc. into existing Cloud-Edge models	WASP Academic PhD (2023-2026)

WARA-OPS

V//R/ OPERATIONAL DATA

••		ARA-Ops Dataportal ×	+				
	C	O A https://demo.a	autodc.erdc.ericsson.net	/tabselect			
	$\nabla M \wedge H$						
			≔	Q	-		
			CATALOG	OVERVIEW	FILES	JUPYTERHUB ABOUT	
			_ select a dataset [admin] 5Gdata			-	
				D		talan.	
				D	ataset ca	talog	
C	arch enter a datas	et name or tag					
		Dataset name 个	Organization	User role	Creation date	Short Description	Tags
~	ERICSSON	5Gdata	Ericsson	admin	2023-10-26	5G device data relating quality of service with radio conditions.	5G, cell, geo, LTE, mobile, NR, QoS, radio
~	Schneider Electric	CrashDump	Schneider Electric	. h	2023-11-01	Building-automation DevOps crash dump analysis data.	building-automation, DevOps
~	ERICSSON	ERDCmetrics	Ericsson	user	2023-10-26	Server hard- and software metrics data from the Ericsson Research Data Center in Lund.	cloud, datacenter, ERDC, metrics, openstack, server
~	EUROPEAN SPALLATION SOURCE	ESSControlSystem	ESS	user	2023-11-01	control system data from the european spallation source.	control system, ess, linear accelerator, spallation
~	ERICSSON	srs	Ericsson	admin	2023-11-01	5G mimo base station data	5G, antenna, channel estimate, channel quality, SRS, uplink
-							

MEDIA

HOME > NEWS > C Bahn powe data d Small nuc Bond style March 07, 2023 f 🍠 i Swedish data

The company, together plans Stockholm wh households, a

center, accord

Molntjänsterna slukar el – nu ska forskarna lösa problemet

Molntjänsterna slukar el – nu ska forskarna lösa problemet

Får tillgång till telekomföretagets serverhall • Ska öka effektiviteten C Uppdaterad: 3 februari, 2022 ¹ Publicerad: 3 februari, 2022

Vi blir allt mer digitala och molntjänster drar mycket el: enligt beräkningar som EUkommissionen gjort kommer nästan en tiondel av elproduktion i världen gå åt till våra internetaktiviteter år 2030. Nu ska forskare vid Umeå universitet försöka hitta metoder som ökar effektiviteten och får ut mer av elen som förbrukas.

– När du tittar på en video på Youtube spelas den egentligen upp någon annan stans, på ett datacenter på någon plats i Europa, säger Paul Townend, universitetslektor i datavetenskap vid Umeå universitet

Får tillgång till serverhall

En stor serverhall drar ungefär lika mycket el som 80 000 villor. För att ta reda på hur man ska kunna energieffektivisera kommer forskarna få tillgång till telekomföretaget Ericssons serverhall i Lund.

Duranton Contributor about tech, deep tech, gro

BERG, GERMANY - MARCH ... [+] GETTY IMAGES

ome to the wild wor al infrastructure of o unts of electricity and ake.

"Vi hoppas kunna minska energiåtgången med upp till 25 procent" – se Umeåforskaren Paul Townend i klippet. Foto: TT/Victoria Skeidsvoll/Umeå universitet

Molntjänster slukar el – Umeåforskare: "Bråttom att effektivisera dessa"

UPPDATERAD 8 FEBRUARI 2022 PUBLICERAD 8 FEBRUARI 2022

Världens datacenter förbrukar allt mer el, så pass att de inom åtta år ser ut att kräva nio procent av all elförsörjning. Nu hoppas forskare i Umeå hitta en lösning – med hjälp av artificiell intelligens. Se mer i klippet.

s TikTok data for mmunition

plans to increase demands of nearby

SVT Play Bar

rers has said efforts to meet een stymied by a new TikTok e region close to its biggest

How do we model and integrate energy and network into Cloud-Edge? How do we monitor at massive-scale without being overwhelmed with data? How do we deal with conflicting demands between DCs and energy providers?

How do we optimise and negotiate in near real-time?

How do we store so much information for later audit?

Where does ML and other Al fit into this?

What are the key components we need to introduce into our models?

How to integrate network models into our existing Cloud-Edge models?

How to integrate (lightweight) AI/ML for 6G?

Rapid anomaly detection

Behavioural prediction

What orchestration technology is appropriate?

An example of container orchestration for energy

UMEÅ UNIVERSITY

Virtualise resources – and **schedule workloads** in a more effective manner

WHAT CAN WE DO WITH SMARTER SCHEDULING?

Over-allocation	Interference	Optimise hardware	
Allocate more work on the same nodes	Avoid contention between co-located workloads	Allocate work until nodes are at "optimum" efficiency	
Use less machines	Reduce power, improve performance	Reduce power, improve performance	

CASE STUDY

Commercial and Research Data Center

DCD Best Data Center Initiative 2017

IEEE Scale Award 2017

RISE SICS, NORTHERN SWEDEN

Building 2000+ Node Container Facility

WIND TUNNEL BASED SERVER MODELLING

SERVER MODELLING

Actual readings (in blue) Predicted values (orange)

HOW ENVIRONMENT AFFECTS POWER

INITIAL EXPERIMENT

UTILISATION AT DIFFERENT TIME PERIODS

Benchmark Job Placement

RESULTS

RESULTS IN SUMMARY

sysbench-10

215 nodes
OCP Hardware
Variety of workloads
Kubernetes containers
No prior workload knowledge

10-20% power savings12 terabytes of telemetry data

Overhead of Scheduler: 10ms per incoming workload

UMEÅ UNIVERSITY

paul.townend @ umu.se

