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Motivation

Advantages:

O

O

O

distributed data
parallel processing
privacy preservation
personalization
physical constraints

O

O

O

Collaborative Learning

T

Challenges: Distributed

connection failures
data heterogeneity

adversarial attacks

X

scalability

server failure
directed communications
communication-efficiency
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Plan for Today

 PART |: Federated Learning, Personalization & Asynchrony
 PART ll: Decentralized Learning & Robustness, Model Agnostic Meta-Learning

 PART IlI: Reinforcement Learning & Moreau Envelopes



PART |

PersA-FL.: Personalized Asynchronous Federated Distributed
Learning



Challenges:

Federated Distributed Learning ° cata heterogenelly

o asynchronous communications

number of clients

* := min X'zln (x
f = f(x) - n;fx
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local cost function

e central server
 parameters

* heterogeneous distributions Stochastic cost over data batch D;:
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FedAvg Algorithm

1.server sends its current set of parameters to a subset of clients

2. selected client 1 perform Q steps of local updates (stochastic gradient descent) on f;

3. server waits to receive all local updates back
Agents

global update global update global update
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4.server aggregates all the updates (average)

local update  upload delay
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Asynchronous Communications

Limitations of synchronous algorithms:
* |imited bandwidth
» different delays
e parallel communication
e connection reliability

* unavailability




Communication & Update Schedule
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Personalization

 Why do we need personalization?
Personalized Federated Learning

Federated Learning Local Learning

Model relationship o identical tasks o o very different tasks
Cloud Server learning o few data o similar tasks (same nature) o large data
Upload model Distribute model o few data
parameters relationships
.- So Examples:
4 4 ) e Search Query Auto-Completion
e Smart Keyboard Prediction
e Email Quick Reply
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Personalized Federated Distributed Cost

Vanilla Federated Learning Personalized Federated Learning

TS S
mln f(w Zfz fél@{F(wy n;Fz( )}

. _
Fy(w) := fi(w — aVfi(w)) Fi(w) = min { £:(6) + 5 16: — wl’}
i ER
MAML, Fallah et al. Moreau Envelopes, Dinh et al.
VFi(w) = (I — aV?fi(w)) V fi(w — aV f;(w)) VE;(w) = Mw — 0;(w))

R A
0,(1) = arg min [fz-wi) + 210 - w||2]
0, cR4 2

o Hessian-vector product approximation o exact solution approximation



Personalization

 Why do we need personalization?
Personalized Distributed Optimization

Distributed Optimization Local Optimization

o identical tasks o very different tasks
o few data o similar tasks (same nature) o large data

o few data

Examples:
e Search Query Auto-Completion
e Smart Keyboard Prediction
e Email Quick Reply
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Personalized (Distributed) Optimization

Distributed optimization different personalization budget
min f(X Z fix «(2) .
weR Z o solve personalized cost
- = = = =
z" f2(z)
o solve FL
o fine-tune

1. exploiting shared properties
2.use local properties f 1 (Z)
3. Inspired by fine-tuning

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn' Pieter Abbeel ' > Sergey Levine '



Personalization Setup: Multi-step MAML

° 1 steps of stochastic gradient
descent (personalization budget)

*(u) _ (U) (U)
Z = arg min £’ F;
gm Z

F{(z) = E,, [£fi(¥; (...(¥; (z,D;fg) ), D)),
V,(z,D;) =z — aVﬁ-(z, D;)

ﬁ(Z) = ‘?‘Si"’pi [Z(Z, 'Sl)]




PersA-FL (server)

Algorithm 1 [Personalized] Asynchronous Federated Learning (Server)

1. input: model w®, t = 0, server stepsize 8.
2: repeat
3: if the server receives an update A;, from some client i;€[n| then

4
5)
6:
7

witl «— wt — 5A2t
t—t+1
end if
until not converge
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Algorithm 2 [Personalized] Asynchronous Federated Learning (Client ¢)

1: input: number of local steps @), local stepsize n, MAML stepsize o, Moreau Envelope
(ME) regularization parameter A\, minimum batch size b, estimation error v.

2: repeat
3: read w from the server > download phase
fi(w, Dy) Z bi(w, &) 4 Wi ¢ W
5 €D, 5: for g =0 to )—1 do > local updates

6 sample a data batch D; , from distribution p; V 3 options:

> Option A (AFL)
fi(w) y

£ Wi,g+1 <= Wig — NV f i(wz’,qa Di,q)

> Option B (PersA-FL: MAML)
B 8: sample two data batches D; ,D;  from distribution p;
FO(w) = filw - aV fi(w)) T T L

9: Wi g+1  Wig — 17 [I —aV2 fi(wi g, Di,q)] Vi (wi,q_avfi(wi,qa Di,q)api,q)
> Option C (PersA FL: ME)

10: hi(6:, w; qapz q) = fi(6:, D a) + % 165 — w’i,qnz 3

FO () = min, [7:(6) + %“ 0, — wl 11: minimize h; (05, Wi q,D; q) w.r.t. 6; up to accuracy level v to find 0;(w; q):
[ VA (6(wi) wi, i )| <

12: Wi g1 Wig — NA(wig — 0;(wiq))

13: end for

14: A,,; W0 — WiQ

15: client ¢ broadcasts A; to the server > upload phase

16: until not interrupted by the server




Convergence Result
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Asynchronous Setup: Concurrency

. upload/download =~ 4.4

* percentage of active users

e staleness
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Numerical Experiments: Heterogeneous Data

MNIST CIFAR-10
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Personalized Search Ranking

 Data:

* input: partial query

e output: a list of suggestions

» action: top k best suggestions
* Main Question:

* Identify top suggestions

* ranking problem

covid st3

covid statistics

covid stats

covid stats by state

covid statistics by state
covid state by state

covid stats usa

covid status

covid statistics worldwide
covid states

covid statistics by country




e 200 distinguished User IDs

* different personal preferences
* number of queries: [30, 100]

* list of suggestions: [2, 25]

* Potential suggestions: x3

* identify top suggestions among a small
group of proposals

Ul
©
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N
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o D

Personalized Search Ranking
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Personalized Ranking of Suggestions

e Model:

« Random Forest (Classic Model) Partial Query sl [=0ISERTTT

Clicked
» Prediction "

e MLP
Suggestion *
« MLP + CNN
* | oss Function: Sea 'C h
. Asynch.
* Binary Cross-Entropy & Synch
1.0 '
 Mean Square Error =
()
>
* Criterion: . 0.5
O
<
e accuracy 00
0 5 10 15 20

* normalized mean reciprocal rank (MRR) Time(s)



Numerical Result: Personalized Search Ranking
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* Weighted accuracy based on the location in the suggestion list



PART I

PARS-Push: Personalized, Asynchronous and
Robust Decentralized Optimization



Distributed Optimization

number of clients

* := min X'zln (x
f = f(x): n;fm

fi(x) = Le; ~p; Ui (X7 fz)]
— o
-

local cost function

e parameters

* heterogeneous distributions

Stochastic cost over data batch D;:

fi(x, Di) Z £i(X

gep




Decentralization Challenge

number of clients

local cost function

i local distribution

serverless = consensus




Network Setup

e G =(|n|,£) is a static, directed, and strongly-connected graph

e (7,7) € &£ iff there exists a directed link from node i to node
o Nim ={l(J,7) € £} U{i}

o N ={jl(i,)) € E} Ui} S @




Asynchronous Communications

Limitations of synchronous algorithms:
 communication delays
e connection reliability

* agent unavailability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL., VOL. AC-31, NO. 9, SEPTEMBER 1986 803

Distributed Asynchronous Deterministic and
Stochastic Gradient Optimization Algorithms

JOHN N. TSITSIKLIS, memsBer, 1Eeg, DIMITRI P. BERTSEKAS, reLLow, 1EEE, AND MICHAEL ATHANS, FELLOW, IEEE



Journal of Machine Learning Rescarch 21 (2020) 1-47 Submitted 12/18; Revised 2/20; Published 3/20

Asynchronous Communication Setup

Robust Asynchronous Stochastic Gradient-Push:
Asymptotically Optimal and Network-Independent
Performance for Strongly Convex Functions

Artin Spiridonoff ARTINGIBU.EDU
Alex Olshevsky ALEXOLSEIBU.EDU
Ioannis Ch. Paschalidis ANNISPE]
Division of Systems Engineering

A. each client 1 wakes up at least once in I, consequent rounds, o ..
B. the delays on each communication link are bounded by ', > 1,

C. each communication link fails at most I ! > () consecutive times.

o effective maximumdelayl', =1, +1,—1,

o each agent receives a message from its in-neighbors at least once every
I, = FW(Ff+ ) +1,



“Running Sums” Technique for Decentralized Consensus

Setup:
. initialize: x, € R?
cd7= N7 df= N

Sketch of the idea:

« ¢ sum of client i’s updates

i L
° P =+ — T when client i is active

l

o broadcasts ¢ to out-neighbors , when link (i, j) is active

o receives qux from in neighbors, when link (j, i) is active

. pg: copy of gb." from the most recent communication of node j to the server /

JEN
o pg — gb].x
. y:: slack scalar which is initialized with 1, push-sum variable Robust Distributed Average Consensus via
Exchange of Running Sums

Y y : defined and updated similarl
¢ P y C. N. Hadjicostis, N. H. Vaidya, and A. D. Dominguez-Garcia



1: Inmitialize: y; = 1, k; = —1, ¢F =0, ¢! = 0, Vi € [n],

PARS-Push Algorithm and ri; = —1, p = 0, p, = 0, V(3 ) € £.

2: for t=0,1,2,..., in parallel for all i € [n] do
3:  if node 7 wakes up then
t

4 mit)= 2, 0(r)

r=#Ki+1 @\
5: WEO) = Z; =
Multi-step personalization budget (i) 6 frr=0,13...,u—-1do 2
® - )Ly &y o
PP 9 7: Sample a batch D} . with size b from p; o
. (r+1) (r) - 3 (1) " Q
. . 8: Wi == W'i anz W‘i ’Di,f' Q
* Asynchronous Communications o end for 5
' =
10: Sample a batch D; , with size b from p; g
u—1 - -

o Message LOSS 11: X; '=X; — nz(t) [ H (I — av2fi (Wz(‘l'), D:J))] xvfi(wgu)’ Dfu) -g
r=0 ' &
. . 12: ’Fi =1 'c'—;
» Communication Delay 13: x = e,y = >
14: OF = @7 +xi, ¢ = &) + v s
15: Node i sends (¢¥, ¢?, k;) to N Cl
16: R := messages received from N~ &
17: for (¢;C,¢-37j, K,j) in R; do >
18: if Kj 2> Kij then E
19: Pl = @7, pi] = ¢Y, Kij = K; 3
20: end if 3
21: end for &
Stochastic gradient calculation 22 X; =X+ 2. (P — PY) @
_ JENT ®
Robust asynchronous aggregation 3. Vi =i+ > (pz.]%/ — Pf;’j) g
JENT g

2 P = P Pl = Pig s =

end if

Gradient-Push on an Augmented Communication Graph >
26: end for



PARS-Push Update Rule Analysis

) I, if node i wakes up at time ¢
T. —
’ 0, otherwise

) 1, if 7;(f) = 1 and the message from j to i arrives after an effective delay [ € [I',]
T-. —
J? 0, otherwise

Gradient-Push on an Augmented Communication Graph

[+ 7i(t) ) (4ol 1
xz(t—|—1) = (1 ’Tz(t) | d:_ n 1 Xz(t+2)-|;§:N;_ X]z(t)a _1) - M(t) (X(t) . A(t)),
| S A 1) = M)y (0).
&L (t41) == 74 (t) | %;4(t) Fi +LeraX;) (t+1), (t+1) == x;(t) /ui(t), Vi € [n]
Y 0}
il--t 1) = [ 1— l--t X.i: (t (¢ X : . , ~(u) t\T =Ny
Jz( +1) ( ;7‘32( )) _ J () + 7i( )d;— I 1- AD)]; = {gz_gt) ni(t) VFi( )(Zz(t),ﬁz') ; ZZ Z’

{M(t) }-t c z+ is a sequence of column stochastic mixing matrices



Assumptions: Smooth & Strongly-Convex

* Smoothness:
|Ve(z, &) — VL(Z,8)| <L|z—1z|

e Lipschitz Hessian:

VU(z, £) — V°U(Z, £)| < H”z — i”

« Strong Convexity:

Ve &) - Ve, &) = ulz -]
e Bounded Gradient:

IVE(z, 8)Il =G



Stochastic Gradient-Push for Strongly Convex
Functions on Time-Varying Directed Graphs

Angelia Nedi€ and Alex Olshevsky

Lemma 3: Let ¢ : R* — R be a p-strongly convex
function with © > 0 and have Lipschitz continuous gradients
with constant M > 0. Let v € R? and let u € R? be defined
by

u=v—a(Vqv)+ o)),

where o € (0, g£5] and ¢ : R* — R? is a mapping such that

lo(v)|| < ¢ for all v € R%.

Then, there exists a compact set YV C R% (which depends on
¢ and the funtion ¢(-) but not on «) such that

|v|| for all v & V
ll<{ B0t gy

where R = max,eyp {||z]| + (1/(8M?))||[Vq(2)||} +
(uc)/(8M?).



Convergence Guarantee: Smooth & Strongly-Convex

Strongly-Convex
Smooth

Bounded Variance

i) = u(l —al)® — auGH(1 — ap)*!

L) =L —aw)® + auGH(1 — ap)* !
2

2;(T) — *™

2 [ VE™ (z,9;) — VF™ (2)

< 6(u)? = 4(1 — ap)?* G2




Assumptions: Smooth & Non-Convex

* Smoothness:
| Ve(z, &) — VL(Z,8)| <L|z—1z|

e Lipschitz Hessian:

VU(z, £) — V2U(Z, £)| < H”Z — 2”

e Bounded Gradient:

IVE(z, )] =G

e Awake Nodes:



Convergence Guarantee: Smooth & Non-Convex

Smooth L(v) = (L + auGH)(1 + aL)?*,

. 2
Bounded Variance E,, HVFZ.(U)(Z,Q‘}Z-) — VFZ.(“)(z)H < 6(u)?
Vi ={Dir}rp

i

N =



Personalization Impact
big = al, B; + Ciq

1
2n

|=]*

fi(z) = ﬂgiqu,,; (biq — Qg z)2

2.00 =@= Generic Shared Loss (1)

- == Multi-Step MAML Loss (4)

1.00s

Test Error

1.25

1.00s




Robustness to Asynchrony

10—
:" s Algorithm 1
= . = = =+ Stochastic Gradient-Push [21]
-
]
=
O
-

0 50 100 150 200 250 300
1terations

Fig. 3: Robustness to asynchronous communications, idle
agents, message losses and delays.



PART i

On First-Order Meta-Reinforcement Learning
with Moreau Envelopes




Motivation

Iearn to learn tasks

N

'II‘

O?(_) )

quickly learn
new task

_.\;{

=)

Multi-Task RL

M

o Identical tasks

Meta-RL

o similar tasks (same nature)

Local RL

o very different tasks



Multi-Task RL Setup

o a set of Markov Decision Processes (MDPs) {M;};c7 from distribution p

» maximize the expected discounted reward over a finite number of steps {0,1,..., H}
o for each task ¢ € Z, the states and actions are S, and A,

o initial state distribution u; : S; — A(S;)

o transition kernel P; : S; x A; — A(S;), Pi(sk|s;, a;) is the probability of transitioning from state
s; € S; to s, € §; by taking action a; € A,

o reward function r; : S;xA; — [0, R]
o discounted factor v € (0, 1)
. M’& — (827 Aia P’ia T'iy i, /Y)

o value of a trajectory 7; = (s?, a} A1 gH).

i’ai,...



Policy Gradient RL

o policy function 7; : S; — A(A;) determines the probability of each action a; given a state s; as
T z(az\sz)

o Policy Gradient Reinforcement Learning (PGRL): parameterize the policy by a d-dimensional
parameter w € R? | i.e., m;(+|-; w)

o the probability of trajectory 7; = (s?,a?,...,a" !, sH) is
H-1 H-1
qi(Ti; w) = pi(s;) H mi(az]si; w) H Pi(si sy, ai),
h=0 h=0

« the average reward value for each task 7+ € Z 1s

Jz'('w) = Ly g (w) [Rz(n)] )

 1n multi-task reinforcement learning, we seek to optimize

J(w) = E;, [J;(w)] .



Policy Gradient Approach

 the full gradient of the value function 1s

VJi(w) = Eringi(w) 19:(Ti; )]
with stochastic policy gradient g;(-; w)

H-1
7'2, = Z lOgﬂ'z h‘s w) R?(Tz):
where RI(7;) = 7l ri(st, al).
I=h

« To deal with the computational intractability of the full gradient, we approximate this term by a
stochastic policy gradient over a batch D; of trajectories sampled from distribution ¢;(-; w), i.e.,

Z gi(Ti; w

T €D;

vJ D;;w) :
( |D|

where VJ;(w)=E [VZ-(D?;; w)] ;



Meta-Reinforcement Learning

o we formulate the joint multi-task setup via Moreau Envelope Meta-Reinforcement Learning cost
(MEMRL)

o 1n Model-Agnostic Meta- Reinforcement Learning (MAML) framework, the goal 1s to maximize the
following cost function:

max V,(’w) = ‘:iwp [VZ(’LU)] a

— meta-learning d
---- learning/adaptation weR

/weﬂvcg with V! (w) = J;(w + aV J;(w)).
VL,
VE] /,,/’. 0?

9* /,/ \\\ .
1° ¢ 6’2



Moreau Envelope Meta-Reinforcement Learning (MEMRL)

Algorithm 1 MEMRL: First-Order Moreau Envelope Meta-Reinforcement Learning

1: input: regularization parameter ), inexact approximation precision v, meta stepsize «, task batch
size B, trajectory batch size D.
initialize: v’ € R% ¢t < 0
repeat
sample a batch of tasks B' C Z with size B
for all tasks ¢ € B* do )
find 6;(w’) such that for a batch of trajectories D; (of size D) sampled from g;(+; 6;(w?)) to
maximize F; (-;-, w") up to accuracy level v with

A A o

~ - A
Fy (Dy; 63, w) = J; (Di; 6:) — 2 116 — w]”

HVE (Df;éi(wt),wt) ’ <v
7.  end for 5
8:  wt! + (I—aX)w'® + I(lx?_t)\l > 6;(w?)
90 t<+t+1 ieBt
10: until not converged .
11: output: 1) 0;" « w', k + 0,
2) sample a batch of trajectories D, with size D with respect to g;(-; 67°),
3) While not Hvﬁ; (D% 004, wt) || < v
Bi-level optimization a) sample a batch of trajectories D"* with size D with respect to g;(-; 07°),
b) 6/ 6% + B[ VI(DI; 0%) — MO —u),

c) k< k+1,



Convergence Result

Lemma 2 (Properties of V;). Let Assumption 1 hold and \ > kL for some k>1, and G,L as in
Lemma 1. Then, for all i € T and w,v € RY, the following properties hold:

[VVi(w)|| <G,
[VVi(w) — VVi()|| < L|lw -,

where [ := —2-.
k—1

Theorem 1 (MEMRL Convergence). Let Assumption 1 hold, A>L, and o = ~. Then for any timestep
T > 4L?, the following property holds for the iterates of Algorithm 1:

A4L°

- AW? 8LG?
" (A=L)2 BVT
. ID | S8aL\2G?
" (A\=L)2BVT (A—L)2BDVT’

where G, L as in Lemma 1, and L as in Lemma 2.



Numerical Experiment

r - Task 1
4 4 ¥ Task 2

A
20) Task 3 /‘
S ) ‘ \.l \
*r— 15 -

X X t

Fig. 1: The performance of our MEMRL algorithm on discrete 2D-navigation for |Z|=3 tasks with different
underlying MDPs. (Left) The navigation map at iteration ¢ = (0 starting from a random location (black
triangle) on the grid. The stars indicate the destination of each task ¢ € Z. Pentagons indicate the end
of a trajectory when it fails to reach its destination (star). (Middle) The navigation map at iteration
t = 120, where the adapted meta-policy for each task is optimal. (Right) The evolution of individual
reward functions given the adapted meta-policy on each task. Each curve is the empirical mean of the
reward obtain over 10 independent trajectories conditioned on the approximated policy parameter 6.



Conclusion

We:
» studied federated learning under personalization and asynchronous updates
* proposed PersA-Fl algorithm to address this problem

* showed a first-order stationary convergence for our proposed algorithm under both
MAML and ME personalization costs

e compared the performance of our algorithm with its counterparts on heterogeneous
data



Conclusion

We:

» studied decentralized optimization under personalization and asynchronous
updates with message loss and delay,

* proposed PARS-Push algorithm for personalized, asynchronous, and robust
decentralized optimization,

* showed the convergence of our algorithm for strongly-convex and non-convex
function classes.



Discussion

 Formulated the Meta-Reinforcement Learning problem with Moreau Envelopes
» Studied the convergence analysis of this problem for non-convex setups

. Provided numerical results of the performance of this formulation on 2D
navigation problem

* Extending the theoretical analysis to the convex function class
» Study this problem for distributed multi-agent setups

* Exploring the connections of this problem to LP



