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Motivation

Network coordination games:
▶ strategic complements e�ects
▶ adoption of beliefs or behavioral attitudes, spread of a new

technology (Morris, 2000), (Montanari and Saberi, 2010)

Network anti-coordination games:
▶ the strategic substitutes e�ect
▶ competition for resources, gains from di�erentiation

(Bramoullé 2007), (Monaco and Sabarwal, 2016)

Mixed network coordination/anti-coordination (CAC)
games:

▶ a model of heterogeneous interactions over a network system
▶ coexisting coordinating and anti-coordinating agents

(Grabish and Li, 2019), (Ramazi et all, 2023)

Relevance of the topological structure of the graph in determining existence and structure of

equilibrium con�gurations and dynamical properties of the network systems
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Network games (Jackson and Zenou, 2015)

Models for strategic interactions over interconnected systems

Game: (V,A, {ui}i∈V)
▶ Agent set: V
▶ Action set: A
▶ Utilities: ui : AV → R, i ∈ V

Network game
▶ Agent set coincides with node set of a

graph G = (V, E ,W )
▶ Utilities depend only on their action and

their neighbors' actions
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Mixed network coordination anti-coordination (CAC) game

Finite agent set V = R∪ S
- R coordinating agents
- S anti-coordinating agents

⋆ Agent types δi =

{
1 if i ∈ R
−1 if i ∈ S

⋆ Agent weights di ∈ R

Undirected graph structure G = (V, E ,W )
▶ W : non-negative, symmetric, no self loops

Binary action set A = {−1,+1}
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xi ∈ A action of i and x−i ∈ AV\{i} actions of others
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Wijxixj − dixi

xi ∈ A action of i and x−i ∈ AV\{i} actions of others
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Nash Equilibria: existence and reachability
Best-response function

Bi (x−i ) = argmax
xi∈A

ui (xi , x−i )

(Pure strategy) Nash equilibria: con�gurations x∗ in X such that

x∗i ∈ Bi (x
∗
−i ) , ∀i ∈ V .

N set of Nash equilibria

We focus on existence of Nash equilibria and their reachability via best response
(BR)-paths:

▶ a length-ℓ BR-path from x to y is a sequence (x (0) = x , . . . , x (ℓ) = y) such that ∀k , ∃ik in V
such that

x
(k)
−ik

= x
(k−1)
−ik

, x
(k)
ik

∈ Bik (x
(k−1)
−ik

) .

▶ N is reachable from x ∈ X if there is a BR path from x to some y ∈ N
▶ N is globally reachable if it is reachable from every x ∈ X
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Example

set of coordinating agents R
set of anti-coordinating agents S
No preferences: di = 0 for all i

Unweighted graph G with Wij ∈ {0, 1} for all i , j

A coordinating agent "wakes up" and observes the current state

Then, updates the strategy according to the best-response (coordinates with the majority)
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Potential games (Monderer and Shapley 1996)

A game (V,A, {ui}i∈V) is an (exact) potential game if there exists Φ : AV → R (called
potential function) such that

ui (yi , x−i )− ui (xi , x−i ) = Φ(yi , x−i )− Φ(xi , x−i )

For every player, utility variation incurred in changing unilaterally the action is the same as the
corresponding variation in potential.
→ Set of Nash equilibria N is nonempty and globally reachable
→ Asynchronous best-response dynamics converges in �nite time
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Network coordination game (V = R)

Utilities: ui (xi , x−i ) =
∑
j∈V

Wijxixj + dixi

Symmetric two-agent game, undirected graph → The network game is potential

If di = 0 for all i → Potential game (straightforward)

It actually holds in general

Proposition

If undirected graph, then potential function

Φc(x) =
1

2

∑
i,j∈V

Wijxixj +
∑
i∈V

dixi

The set of Nash equilibria is nonempty and globally reachable (Ramazi et al, 2016).

Characterization of Nash equilibria based on cohesiveness of subsets (Morris, 2000)
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Network anti-coordination game (V = S)

Utilities: ui (xi , x−i ) = −
∑
j∈V

Wijxixj − dixi

Symmetric two-agent game, undirected graph → The network game is potential

If di = 0 for all i → Potential game (straightforward)

It actually holds in general

Proposition

If undirected graph, then potential function

Φa(x) = −Φc(x) = −1

2

∑
i,j∈V

Wijxixj −
∑
i∈V

dixi

The set of Nash equilibria is nonempty and globally reachable (Ramazi et al, 2016)

Characterization of Nash equilibria not trivial
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Parenthesis: signed networks G = (V , E , W̄ )

Utilities: ui (xi , x−i ) =
∑
j∈V

W̄ijxixj + dixi

W̄ij ≥ 0 for all i , j → network coordination game

W̄ij ≤ 0 for all i , j → network anti-coordination game

W̄ij ∈ R for all i , j → it is still a potential game.

Proposition

If undirected graph, then potential function

Φ(x) =
1

2

∑
i,j∈V

W̄ijxixj +
∑
i∈V

dixi

The set of Nash equilibria is nonempty and globally reachable

Characterization of Nash equilibria not trivial (related to computation of frustration)
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Mixed network coordination/anti-coordination game

Proposition

One edge between a coordinating agent and an anti-coordinating agent

→ not a potential game

The discoordination game admits no Nash equilibria
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Existence of equilibria depends on network structure

R coordinating agents, S anti-coordinating agents, di = 0 for all i

-1

1

1

1

1

1

A.

-1

1
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1

1

-1

B.

-1

?

1

1

1

?

C.

A two (symmetric) Nash equilibria where coordinating agents are at consensus

B two (symmetric) Nash equilibria where coordinating agents are not at consensus

C no Nash equilibria
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Convergence to equilibria depends on network structure

R coordinating agents, S anti-coordinating agents, di = 0 for all i
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?

two (symmetric) Nash equilibria where coordinating agents are at consensus

N is not globally reachable

⋆ even when the set of Nash equilibria is non-empty, it might not be globally reachable
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Takeaways

1 Irregular network topology and heterogeneous preferences are not su�cient to cause nonexistence
of Nash equilibria; coexistence of coordinating and anti-coordinating agents plays a crucial
role

2 existence of Nash equilibria depends on the network structure, the value of the threshold
parameter and the roles of agents

3 even when the set of Nash equilibria is non-empty, it might not be globally reachable

→ The study of Nash equilibria for the mixed network CAC game is a challenging problem.

We focus on Nash equilibria that are consensus on the coordinating side

how does the presence of anti-coordinating agents and the structure of interconnections a�ect the
behavior of the coordinating agents?
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Preliminary considerations

Utility of coordinating agent i ∈ R:

ui (xi , x−i ) =
∑
j∈V

Wijxixj + dixi = xi

∑
j∈V

Wijxj + di



De�nition of best response function:

Bi (x−i ) := argmax
xi∈A

ui (xi , x−i )

Best response function of coordinating agent i in R:

Bi (x−i ) = sign

∑
j ̸=i

Wijxj + di



= sign

 ∑
j playing 1

Wij −
∑

j playing -1

Wij + di
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Results: existence

Recall: Bi (x−i ) = sign(
∑

j playing 1 Wij −
∑

j playing -1 Wij + di ) for all coordinating agents

IDEA: a consensus con�guration for coordinating agents can be an equilibrium for the whole game
provided that coordinating agents are su�ciently cohesive.

R coordinating agents, S anti-coordinating agents

Notation: wR
i =

∑
j∈R Wij and wS

i =
∑

j∈S Wij

Theorem (Su�cient condition for existence)

If, for all i in R, it holds
wR
i + adi ≥ wS

i

(*)

for some a in {±1}. Then, the network CAC game admits at least one Nash equilibrium where
coordinating agents play action a.

(*) is a generalization of the idea of cohesiveness in (Morris, 2000) (characterization of Nash
equilibria in network coordination games).
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Example 1: idea behind the proof
R coordinating agents, S anti-coordinating agents, di = 0 for all i

for all i in R, wR
i ≥ wS

i

→ when playing 1, coordinating agents are in equilibrium

regardless of the actions of anti-coordinating agents

the network anti-coordination game with stubborn agents is potential

→ exists NE.
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Example 2

R coordinating agents, S anti-coordinating agents, di = 0 for all i

1 3

4

2

5 7

8

6

9

10

wR
i ≥ wS

i for all i ⇒ there exists a Nash equilibrium where coordinating agents are at

consensus.

Is it globally reachable?

No

IDEA: for an action to spread to the whole coordinating population and be stable, there

cannot be sub-groups of coordinating agents which are excessively cohesive
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Indecomposability

External �elds h− and h+ in RV such that h−i ≤ h+i for all i

GR = (R, E ,W ) is (h−, h+)-indecomposable if for every partition R = R+ ∪R−, ∃i ∈ R such
that either

i ∈ R+ and wR+

i + h+i < wR−

i or i ∈ R− and wR−

i − h−i < wR+

i .

IDEA: suppose all nodes in R+ play 1 and all nodes in R− play −1. Then, at least one node in
R+ or R− is not in equilibrium with the external �els h+i or h−i , respectively.

→ cohesiveness is violated by at least one node i in R+ or in R−.
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Example

GR is (h−, h+)-indecomposable if for every partition R = R+ ∪R−, ∃i ∈ R such that either

i ∈ R+ and wR+

i + h+i < wR−

i or i ∈ R− and wR−

i − h−i < wR+

i .

1

3

4

2

GR is (h−, h+)-indecomposable for h− = (−2,−1, 0,−1) and h+ = (2, 1, 0, 1)

R+ = {1} then satis�ed by node 1: indeed, wR+

1 + h+1 = 2 < 3 = wR−

1

R+ = {1, 2} then satis�ed by node 3: indeed, wR−

3 − h−3 = 1 < 2 = wR+

3

R+ = {1, 2, 3} then satis�ed by node 4: indeed, wR−

4 − h−4 = 1 < 2 = wR−

1

...

General idea:

node 3 has three edges and no external �eld → it must be in a subset with at least two other nodes

nodes 2 and 4 have 2 edges and external �eld between −1 and +1 → cannot be alone.

nodes 1 has 3 edges and external �eld between −2 and +2 → cannot be alone.
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1

3
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R is not (h−, h+)-indecomposable for h− = −1 and h+ = 1

R+ = {1, 2} and R− = {3, 4}

wR+
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Results: reachability

GR: graph restricted to the set of coordinating agents R
GR is (h−, h+)-indecomposable if for every partition R = R+ ∪R−, ∃i ∈ R such that either

i ∈ R+ and wR+

i + h+i < wR−

i or i ∈ R− and wR−

i − h−i < wR+

i .

IDEA:

▶ max external �eld: h+i = di + wS
i ("worst case scenario": anti-coordinating agents play 1)

▶ min external �eld: h−i = di − wS
i ("worst case scenario": anti-coordinating agents play −1)

Theorem (Su�cient condition for stability)

Assume that

for all i in R, wR
i + adi ≥ wS

i for some a in {±1} (cohesiveness)

GR is (h−, h+)-indecomposable in GR with h+i = di + wS
i and h−i = di − wS

i for all i

Then the set of Nash equilibria where coordinating agents are at consensus is non-empty and globally
reachable.
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Example

R coordinating agents, S anti-coordinating agents, di = 0 for all i

1

3

4

2

5 66

wR
i ≥ wS

i for all i in V → existence of NE

wS = (2, 1, 0, 1) → h+ = (2, 1, 0, 1) and h− = −h+

GR is (h−, h+)-indecomposable
→ the set of NE where coordinating agents are at consensus is
nonempty and globally reachable

1

3

4

2

5 66

wR
i ≥ wS

i for all i in V → existence of NE

wS = 1 → h− = −1 and h+ = 1

GR is not (h−, h+)-indecomposable
→ the theorem does not apply.
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Extensions: Linear Threshold Dynamics with external �eld h(t)

Directed graph G = (V, E ,W )

state Xi (t) in {−1, 1} for all i in V
(Independent rate-1) Poisson clock of agent i clicks at time t > 0:

Xi (t) =


+1 if

∑
j WijXj(t) + hi (t) > 0

Xi (t
−) if

∑
j WijXj(t) + hi (t) = 0

−1 if
∑

j WijXj(t) + hi (t) < 0 .

Necessary and su�cient conditions for global stability of consensus equilibria

1

2

3

4

5
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Linear Threshold Dynamics with external �eld h(t)

Directed graph G = (V, E ,W )

h− ≤ h(t) ≤ h+

G not (h−, h+)-indecomposable

∃h∗ ∈ (h−, h+) such that it polarizes with
h(t) = h∗ for all t

G is (h−, h+)-indecomposable

⋆ CASE 1: wi ≥ −h−i and wi ≥ h+i for all i

⋆ absorbed in �nite time in a consensus
con�guration (N(t) =

∑
i Xi (t))
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Linear Threshold Dynamics with external �eld h(t)

Directed graph G = (V, E ,W )

h− ≤ h(t) ≤ h+

G is (h−, h+)-indecomposable

⋆ CASE 2: wi ≥ −h−i and wi ≱ h+i for all i

⋆ absorbed in �nite time in x∗ = +1
(N(t) =

∑
i Xi (t))
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Linear Threshold Dynamics with external �eld h(t)

Directed graph G = (V, E ,W )

h− ≤ h(t) ≤ h+

G is (h−, h+)-indecomposable

⋆ CASE 3: wi ≱ −h−i and wi ≱ h+i for all i

⋆ there exists h(t) such that X (t) �uctuates
forever (N(t) =

∑
i Xi (t))
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Summary

Network games with a mixture of coordinating and anti-coordinating agents

Su�cient conditions on network topology for existence and reachability of Nash equilibria that
are consensus on the side of coordinating agents [1]

⋆ generalized role of cohesiveness in mixed games

⋆ novel notion of indecomposability

Related work[2]

complete characterization of the set of Nash equilibria in the complete graph (no network
structure, conditions on thresholds)

[1] Arditti, Como, Fagnani, V., (CDC 2021) [2] V., Como, Fagnani, Arditti (IFAC 2020)

M. Vanelli On mixed CAC games 26/09/2023 35 / 38



Summary

Network games with a mixture of coordinating and anti-coordinating agents

Su�cient conditions on network topology for existence and reachability of Nash equilibria that
are consensus on the side of coordinating agents [1]

⋆ generalized role of cohesiveness in mixed games

⋆ novel notion of indecomposability

Related work[2]

complete characterization of the set of Nash equilibria in the complete graph (no network
structure, conditions on thresholds)

[1] Arditti, Como, Fagnani, V., (CDC 2021) [2] V., Como, Fagnani, Arditti (IFAC 2020)

M. Vanelli On mixed CAC games 26/09/2023 35 / 38



Extensions

Interpretation of the results:

robustness of pure network coordination games against the change of behavior of a subset of
agents

Linear Threshold Dynamics (LTD) with time-varying threshold rule (exogenous signal, external
in�uence) on weighted directed interaction networks [3]

Necessary and su�cient conditions for global stability of consensus equilibria

Novel notion of robust improvement paths

⋆ pure coordinating games are supermodular (best response dynamics coincide with LTD)

[3] Arditti, Como, Fagnani, V., Robust Coordination of Linear Threshold Dynamics on Directed
Weighted Networks (Submitted to IEEE TAC)

M. Vanelli On mixed CAC games 26/09/2023 36 / 38



Extensions

Interpretation of the results:

robustness of pure network coordination games against the change of behavior of a subset of
agents

Linear Threshold Dynamics (LTD) with time-varying threshold rule (exogenous signal, external
in�uence) on weighted directed interaction networks [3]

Necessary and su�cient conditions for global stability of consensus equilibria

Novel notion of robust improvement paths

⋆ pure coordinating games are supermodular (best response dynamics coincide with LTD)

[3] Arditti, Como, Fagnani, V., Robust Coordination of Linear Threshold Dynamics on Directed
Weighted Networks (Submitted to IEEE TAC)

M. Vanelli On mixed CAC games 26/09/2023 36 / 38



Current and further work

Current work:

Mixed network CAC games on directed graphs

Supermodular property of network coordination games

Further work

Extensions and connections to signed graphs

Necessary conditions

Nonconsensus equilibria

Non independent external �elds

Computational tractability of indecomposability

M. Vanelli On mixed CAC games 26/09/2023 37 / 38



Thank you for your attention!
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