Towards Visualising Procedural Fairness in Automated Decision Making

Vis-Empowered Human-in-the-Loop AI Focus Period

Vladimiro González-Zelaya 30 April 2025

Linköping University

Flavours of Fairness

Distributive Fairness

- Focus on outcomes
- Easy to quantify
- Lots of literature

Procedural Fairness

- Focus on process
- Hard to quantify
- Just a few papers

Flavours of Fairness

Distributive Fairness

- Focus on outcomes
- Easy to quantify
- Lots of literature

Procedural Fairness

- Focus on process
- Hard to quantify
- Just a few papers

Flavours of Fairness

Distributive Fairness

- Focus on outcomes
- Easy to quantify
- Lots of literature

Procedural Fairness

- Focus on process
- Hard to quantify
- Just a few papers

Distributive Fairness

Definition

The **Protected Attributes (PAs)** of a dataset are the features prone to an unjustified discriminatory decision

Examples

- Race or Skin Colour
- Sex or Gender
- ► Age
- Income Level
- Education

Some Fairness Definitions

Fairness Through Unawareness

 $\hat{Y} = f(X \setminus \{PA\})$

Demographic Parity

$$P(\hat{Y} = 1 | PA = 0) = P(\hat{Y} = 1 | PA = 1)$$

Equality of Opportunity

$$P(\hat{Y} = 1 | PA = 0, Y = 1) = P(\hat{Y} = 1 | PA = 1, Y = 1)$$

Fairness definitions are usually incompatible with each other

Fairness Through Unawareness

The PA is not explicitly used during the decision process

Demographic Parity

Same positive rate across PA groups (equality of outcomes)

Equality of Opportunity

Same true positive rate across PA groups

Fairness definitions are usually incompatible with each other

Fairness Through Unawareness

The PA is not explicitly used during the decision process

Demographic Parity

Same positive rate across PA groups (equality of outcomes)

Equality of Opportunity

Same true positive rate across PA groups

Fairness definitions are usually incompatible with each other

World View Alignment

The Evolution of an Accidental Meme — https://link.medium.com/eFYERDAJNU

Pre-Processing Modify the training set to "sample from a better world" In-Processing Add constraints or regularisation terms to improve fairness Post-Processing Adjust the predictions after fitting the model

Pre-Processing Modify the training set to "sample from a better world"

In-Processing Add constraints or regularisation terms to improve fairness

Post-Processing Adjust the predictions after fitting the model

Population Subgroups

Protected Attribute

- Favoured
- Unfavoured

Class

- Positive
- Negative

Population Subgroups

Protected Attribute

- Favoured
- Unfavoured
- Class
 - Positive
 - Negative

Population Subgroups

Protected Attribute

- Favoured
- Unfavoured

Class

- Positive
- Negative

Fairness Correction Through Resampling¹

¹Vladimiro González-Zelaya, Julián Salas, Dennis Prangle, and Paolo Missier (2021). "Optimising Fairness through Parametrised Data Sampling". In: 24th International Conference on Extending Database Technology, EDBT 2021.

An Optimal Linear Classifier (Accuracy)

An Optimal Linear Classifier (Accuracy)

The positive predictions for *U* increase by:

- Undersampling negative instances
- Oversampling positive instances

$U \xrightarrow{+} - - + + -$

$U \xrightarrow{+} b \xrightarrow{-} x$

$U \xrightarrow{+} b \xrightarrow{-} x$

Negative Undersampling Right of b

Negative Undersampling Right of b

$U \xrightarrow{+ + + + - - + + -}_{b} X$

Positive Oversampling Right of *b*

Positive Oversampling Right of *b*

Analogously, positive predictions for *F* decrease by:

- Oversampling negative instances
- Undersampling positive instances
The Optimal Resampling Parameter

	Age	Country	Gender	Race	Combined PA
					Unfavoured Favoured
ubgroup PR Data Set PR Difference					

	Age	Country	Gender	Race	Combined PA
					Unfavoured Favoured
Ibgroup PR Data Set PR Difference	0.3	0.3	0.3	0.3	

	Age	Country	Gender	Race	Combined PA
					Unfavoured Favoured
Subgroup PR Data Set PR Difference	0.2 0.3	0.3	0.4 0.3	0.1 0.3	

	Age	Country	Gender	Race	Combined PA
	<mark>(20-30]</mark> (30-40]	Mexico Canada			Unfavoured Favoured
Subgroup PR Data Set PR Difference	0.2 0.3	0.3 0.3	0.4 0.3	0.1 0.3	

	Age	Country	Gender	Race	Combined PA
	<mark>(20-30]</mark> (30-40]	<mark>Mexico</mark> Canada	Male Female	Latino White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Data Set PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	

	Age	Country	Gender	Race	Combined PA
	<mark>(20-30]</mark> (30-40]	<mark>Mexico</mark> Canada	Male Female	Latino White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Data Set PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	Sum = -0.2

	Age	Country	Gender	Race	Combined PA
	<mark>(20-30]</mark> (30-40]	<mark>Mexico</mark> Canada	Male Female	Latino White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Data Set PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	Sum = -0.2

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latino White	Unfavoured Favoured
Subgroup PR Data Set PR Difference	0.3	0.3	0.3	0.3	

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latino White	Unfavoured Favoured
Subgroup PR	0.4	0.4	0.1	0.4	
Data Set PR	0.3	0.3	0.3	0.3	
Difference	+0.1	+0.1	-0.2	+0.1	Sum = +0.1

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latino White	Unfavoured Favoured
Subgroup PR	0.4	0.4	0.1	0.4	
Data Set PR	0.3	0.3	0.3	0.3	
Difference	+0.1	+0.1	-0.2	+0.1	Sum = +0.1

Procedural Fairness

Perfect Procedural Fairness

If followed correctly, a fair outcome is guaranteed

Imperfect Procedural Fairness

If followed correctly, a fair outcome is likely

Pure Procedural Fairness

Fairness is given by the process itself, outcomes are irrelevant

- Generally considered less fair than Human Decision Making (HDM) (Acikgoz, Davison, Compagnone, and Laske 2020)
- Perceived as more fair for mechanical tasks (Lee 2018)
- Can by more consistent and accurate (Dawes, Faust, and Meehl 1989)
- Has no emotions-related bias (Martínez-Miranda and Aldea 2005)

Accuracy
 Consistency
 Representativeness
 Bias Suppression
 Correctability
 Ethicality

260 McNuggets? McDonald's Ends A.I. Drive-Through Tests Amid Errors

Ordering mistakes frustrated customers during nearly three years of tests. But competitors like White Castle and Wendy's say their A.I. ordering systems have been highly accurate.

Listen to this article - 6:53 min Learn more

🕆 Share full article

Damian Dovarganes/Associated Press

The Justice Rules (Leventhal 1980)

Accuracy
 Consistency
 Representativeness
 Bias Suppression
 Correctability
 Ethicality

Can we predict when and where a crime will take place?

Can algorithms really predict where new crimes will take place?

The Justice Rules (Leventhal 1980)

Accuracy
 Consistency
 Representativeness
 Bias Suppression
 Correctability
 Ethicality

Amazon scrapped 'sexist AI' tool

| The algorithm repeated bias towards men, reflected in the technology industry

Accuracy
 Consistency
 Representativeness
 Bias Suppression
 Correctability
 Ethicality

IBM pitched its Watson supercomputer as a revolution in cancer care. It's nowhere close

A STAT INVESTIGATION

EROS DERVISHI FOR STAT

The Justice Rules (Leventhal 1980)

Accuracy
 Consistency
 Representativeness
 Bias Suppression
 Correctability
 Ethicality

Robodebt: Illegal Australian welfare hunt drove people to despair

The "Robodebt" policy vilified recipients of welfare, an inquiry has found

The Justice Rules (Leventhal 1980)

Aa

Accuracy
 Consistency
 Representativeness
 Bias Suppression
 Correctability
 Ethicality

Clearview AI fined by Dutch agency for facial recognition database

September 3, 2024 9:21 PM GMT+1 · Updated 7 months ago

Al Artificial Intelligence words are seen in this illustration taken, May 4, 2023. REUTERS/Dado Ruvic/Illustration/File Photo Purchase Licensing Rights [2]

Accuracy Consistency **Representativeness** M Bias Suppression X Correctability Ethicality Explainability Transparency Secondability

A legal challenge was heard today in Europe's Court of Justice in relation to a controversial EU-funded research project using artificial intelligence for facial "lie detection" with the aim of speeding up immigration checks.

Justice Rules are Transversal to ADM Phases

Mewcastle

(Kind of) Natural Metrics

AccuracyOverall model performanceConsistencySimilar performance across groupsRepresentativityData vs population diversityCorrectabilityProportion of corrected decisions

Hard(er) to Metricise

Bias Supression Funding sources, perceived bias
 Ethicality Adherence to legal frameworks
 Transparency Proportion of documented component
 Explainability Use of explainers, user comprehension

(Kind of) Natural Metrics

AccuracyOverall model performanceConsistencySimilar performance across groupsRepresentativityData vs population diversityCorrectabilityProportion of corrected decisions

Hard(er) to Metricise

Bias Supression Funding sources, perceived bias
 Ethicality Adherence to legal frameworks
 Transparency Proportion of documented components
 Explainability Use of explainers, user comprehension

Nutritional Labels / Procedural Radar

What Needs to Be Done

Design Define metrics and visualisations
Test Run a fairness-perception study
Refine Identify and correct key concerns
Deploy Implement procedural dashboard

Distributive fairness is easier to metricise

- However, must be aligned to world views
- Procedural complements distributive fairness for trust
- Starting point: Leventhal 1980's rules for ADM
- Visualisations may bridge gap between concepts and perceptions

Distributive fairness is easier to metricise

- However, must be aligned to world views
- Procedural complements distributive fairness for trust
- Starting point: Leventhal 1980's rules for ADM
- Visualisations may bridge gap between concepts and perceptions

- Distributive fairness is easier to metricise
- However, must be aligned to world views
- Procedural complements distributive fairness for trust
- Starting point: Leventhal 1980's rules for ADM
- Visualisations may bridge gap between concepts and perceptions

- Distributive fairness is easier to metricise
- However, must be aligned to world views
- Procedural complements distributive fairness for trust
- Starting point: Leventhal 1980's rules for ADM
- Visualisations may bridge gap between concepts and perceptions

- Distributive fairness is easier to metricise
- However, must be aligned to world views
- Procedural complements distributive fairness for trust
- Starting point: Leventhal 1980's rules for ADM
- Visualisations may bridge gap between concepts and perceptions

- Distributive fairness is easier to metricise
- However, must be aligned to world views
- Procedural complements distributive fairness for trust
- Starting point: Leventhal 1980's rules for ADM
- Visualisations may bridge gap between concepts and perceptions