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Procedural Fairness

» Focus on process

» Hard to quantify
» Just a few papers
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Protected Attribute (PA) Newcastle

University

The Protected Attributes (PAs) of a dataset are the features
prone to an unjustified discriminatory decision

Race or Skin Colour

>
» Sex or Gender
> Age

» Income Level
>

Education



Some Fairness Definitions P hehcastle

Fairness Through Unawareness

Y =f (X\{PA})

Demographic Parity

PY=11PA=0)=P(Y =1|PA=1)

Equality of Opportunity

PY=1/PA=0,Y=1)=P(Y=1|PA=1,Y=1)
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Some Fairness Definitions P hehcastle

Fairness Through Unawareness

The PA is not explicitly used during the decision process

Demographic Parity

Same positive rate across PA groups (equality of outcomes)

Equality of Opportunity

Same true positive rate across PA groups

Fairness definitions are usually incompatible with each other
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The Evolution of an Accidental Meme — https://link.medium.com/eFYERDAJINU



https://link.medium.com/eFYERDAJNU
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In-Processing Add constraints or regularisation terms to improve fairness

Post-Processing Adjust the predictions after fitting the model
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Protected Attribute
» Favoured _|_ |
» Unfavoured
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Class
> Positive U F
> Negative - -



Fairness Correction Through Resampling' P hehcastle

U- U-

Original Data Undersampling Oversampling Both

"Vladimiro Gonzélez-Zelaya, Julidn Salas, Dennis Prangle, and Paolo Missier (2021). “Optimising Fairness
through Parametrised Data Sampling”. In: 24th International Conference on Extending Database
Technology, EDBT 2021.
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An Optimal Linear Classifier (Accuracy) R oeastie
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The positive predictions for U increase by:

» Undersampling negative instances
» Oversampling positive instances
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Analogously, positive predictions for F decrease by:

» Oversampling negative instances
» Undersampling positive instances



The Optimal Resampling Parameter P hehcastle
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Age Country Gender Race Combined PA

(20-30] Mexico Male Latino Unfavoured
(30-40] Canada Female White

Subgroup PR
Data Set PR 0.3 0.3 0.3 0.3
Difference
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Age Country Gender Race Combined PA
(20-30] Mexico Male Latino Unfavoured
(30-40] Canada Female White
Subgroup PR 0.4 0.4 0.1 0.4
Data Set PR 0.3 0.3 0.3 0.3
Difference +0.1 +0.1 —0.2 +0.1 Sum = +0.1
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Age Country Gender Race Combined PA
(20-30] Mexico Male Latino Unfavoured
(30-40] Canada Female White Favoured
Subgroup PR 0.4 0.4 0.1 0.4
Data Set PR 0.3 0.3 0.3 0.3
Difference +0.1 +0.1 —0.2 +0.1 Sum = +0.1



Multiple PA Correction P hehcastle

(a) Single PA: Gender (b) Multiple PAs: Gender, Age, Race, Country
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Ways a Process Can Be Fair (Rawls 1971) Newcastle
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Perfect Procedural Fairness

If followed correctly, a fair outcome is guaranteed

Imperfect Procedural Fairness

If followed correctly, a fair outcome is likely

Pure Procedural Fairness

Fairness is given by the process itself, outcomes are irrelevant



Automated Decision Making (ADM) Perceptions R oeastie
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» Generally considered less fair than Human Decision Making (HDM)
(Acikgoz, Davison, Compagnone, and Laske 2020)

» Perceived as more fair for mechanical tasks (Lee 2018)
» Can by more consistent and accurate (Dawes, Faust, and Meehl 1989)

» Has no emotions-related bias (Martinez-Miranda and Aldea 2005)
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The Justice Rules (Leventhal 1980) R oeastie
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260 McNuggets? McDonald’s Ends
@ Accuracy A.IL Drive-Through Tests Amid Errors

r o Ordering mistakes frustrated customers during nearly three years
Consistency

of tests. But competitors like White Castle and Wendy's say their
AL ordering systems have been highly accurate.

28 Representativeness

1o 659 min Leammore smreniiarice D[]

IT1 Bias Suppression
X Correctability
» Ethicality

Damian Dovarganes/Associated Press
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Can we predict when and where a
@ Accuracy crime will take place?
Consistency
28 Representativeness
IJi Bias Suppression
X Correctability
» Ethicality

! - 4

Can algorithms really predict where new crimes will take place?

21



The Justice Rules (Leventhal 1980) R oeastie
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@ Accuracy Amazon scrapped 'sexist Al' tool
Consistency

A8 Representativeness
IJi Bias Suppression
X Correctability

» Ethicality

| The algorithm repeated bi
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@ Accuracy

. a revolution in cancer care. It’s nowhere
Consistency close
#R Representativeness § cotn -t

i Bias Suppression
X Correctability
» Ethicality
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Robodebt: Illegal Australian welfare
@ Accuracy hunt drove people to despair
Consistency

28 Representativeness
IJi Bias Suppression
X Correctability

» Ethicality
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Clearview Al fined by Dutch agency for
@ Accuracy facial recognition database
{4 Consistency (0] [na] (<]
28 Representativeness

it Bias Suppression ARTIFICIAL INTELLIGENCE
X Correctability ,f; -
» Ethicality T
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Justice Rules Newcastle
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: s A
@ Accuracy Orwellian’ Al lie detector

project challenged in EU court
"4 Consistency

28 Representativeness

Transparency suit highlights questions
T B i as S u p p ress i on of ethics and efficacy attached tothe

bloc’s flagship R&D program

¥ Correctability

11:23 AM PST - February 5, 2021

» Ethicality

¥ Explainability

-H Transparency

Alegal challenge was heard today in Europe’s Court of Justice in relation to a

ong controversial EU-funded research project using artificial intelligence for facial
Accountability

“lie detection” with the aim of speeding up immigration checks.
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Justice Rules are Transversal to ADM Phases

ADM Phases
JL

Data Modelling

Data Generation

Data Acquisition

Historical Bias

Societal Bias

Which data to use

How to preprocess

Performance Metrics

Model Flexibility

”| Model Explainability

Model Transparency

Assumptions

Model Deployment

= Newcastle
University

Fair Decision Data
Data Drifts

Evidence of Utility
Usage Transparency

Auditability

Decision Challenging

Right to an Explanation

>
=
Actionable Reasons

Human consideration

22



Can the Rules Be Metricised (or Visualised)? P hehcastle

(Kind of) Natural Metrics

Accuracy Overall model performance

Consistency Similar performance across groups
Representativity Data vs population diversity

Correctability Proportion of corrected decisions

23



Can the Rules Be Metricised (or Visualised)? P hehcastle

(Kind of) Natural Metrics

Accuracy Overall model performance

Consistency Similar performance across groups
Representativity Data vs population diversity

Correctability Proportion of corrected decisions

Hard(er) to Metricise

Bias Supression Funding sources, perceived bias
Ethicality Adherence to legal frameworks
Transparency Proportion of documented components
Explainability Use of explainers, user comprehension

23



Nutritional Labels / Procedural Radar R oeastie
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Accuracy

Accuracy 90 95 90 85 90

Consistency Qnsistency
Representativeness

Bias Suppression

Transparency

Explainability Correctaility Represgntativeness

Correctability

Ethicality

ExplainabMty uppression

Transparency
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What Needs to Be Done Newcastle
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Design Define metrics and visualisations
Test Run a fairness-perception study
Refine Identify and correct key concerns

Deploy Implement procedural dashboard

25



Conclusions Newcastle

University

» Distributive fairness is easier to metricise
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Thank You! Questions?
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