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Individual Fairness

Similar individuals should be treated in a similar way

Demographic Parity

Same positive rate across PA groups

Equalised Odds

¥ and PA are independent, conditional on Y
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Individual Fairness

Demographic Parity

P(Y=11PA=0)=P(Y=1|PA=1)

Equalised Odds

P(Y=11PA=0,Y=y)=P(V=1|PA=1,Y=y), ye{0,1}
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Left: Construct spaces Right: Observed spaces are the
are idealized versions of typical inputs (features) and
features and decisions and outputs (decisions) of machine
may be unobservable. learning procedures.
Constructs Observations
Example Constructs Observational Example Observations
Process

Intelligence 1Q Score
SAT Score

Features

Construct -
Mechanisms lechanisms

Grit
Success in High School High School GPA

College GPA
Postl:;:;s[sa”fzef%fug:ge Detsons # Years to Graduate
Post-College Salary
Observational
Process

TSorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian (2021). “The (Im)possibility of
Fairness”. In: Communications of the ACM.
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The (Im)possibility of Fairness’

WYSIWYG

Construct space and observed space maintain
the relative position of individuals w.r.t. the task.
Aligns with individual fairness.

We're All Equal

Within a given construct space all groups are
essentially the same. Aligns with group fairness.

TSorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian (2021). “The (Im)possibility of
Fairness”. In: Communications of the ACM.
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In-Processing Add constraints or regularisation terms to improve fairness

Post-Processing Adjust the predictions after fitting the model
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U+

Original Data Undersampling Oversampling Both

2Vladimiro Gonzélez-Zelaya, Julidn Salas, Dennis Prangle, and Paolo Missier (2021). “Optimising Fairness
through Parametrised Data Sampling”. In: International Conference on Extending Database Technology.
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The positive predictions for U increase by:

» Undersampling negative instances
» Oversampling positive instances
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Age Country Gender Ethnicity Combined PA

(20-30] Mexico Male Latin
(30-40] Canada Female White

16



Dealing with Multiple PAs wglini it

University

Age Country Gender Ethnicity Combined PA

(20-30] Mexico Male Latin
(30-40] Canada Female White

16



E=INewcastle

University

Dealing with Multiple PAs

Age Country Gender Ethnicity Combined PA

(20-30] Mexico Male Latin
(30-40] Canada Female White

Subgroup PR 0.2 0.3 0.4 0.1

16



E=INewcastle

Dealing with Multiple PAs

University

Age Country Gender Ethnicity Combined PA

(20-30] Mexico Male Latin
(30-40] Canada Female White

Subgroup PR 0.2 0.3 0.4 0.1
Dataset PR 0.3 0.3 0.3 0.3

16



Dealing with Multiple PAs P hehcastle

Age Country Gender Ethnicity Combined PA

(20-30] Mexico Male Latin
(30-40] Canada Female White

Subgroup PR 0.2 0.3 0.4 0.1
Dataset PR 0.3 0.3 0.3 0.3
Difference —0.1 +0.0 +0.1 —0.2

16



Dealing with Multiple PAs P hehcastle

Age Country Gender Ethnicity Combined PA

(20-30] Mexico Male Latin
(30-40] Canada Female White

Subgroup PR 0.2 0.3 0.4 0.1
Dataset PR 0.3 0.3 0.3 0.3
Difference —0.1 +0.0 +0.1 —0.2 Sum = —0.2

16



Dealing with Multiple PAs P hehcastle

Age Country Gender Ethnicity Combined PA
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Age Country Gender Ethnicity Combined PA
(20-30] Mexico Male Latin Unfavoured
(30-40] Canada Female White
Subgroup PR 0.4 0.4 0.1 0.4
Dataset PR 0.3 0.3 0.3 0.3
Difference +0.1 +0.1 —0.2 +0.1 Sum = +0.1
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Age Country Gender Ethnicity Combined PA
(20-30] Mexico Male Latin Unfavoured
(30-40] Canada Female White Favoured
Subgroup PR 0.4 0.4 0.1 0.4
Dataset PR 0.3 0.3 0.3 0.3
Difference +0.1 +0.1 —0.2 +0.1 Sum = +0.1
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(a) Single PA: Gender (b) Multiple PAs: Gender, Age, Race, Country
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Both aim at concealing sensitive information while preserving data utility:

Fairness To prevent classifier behaviours related to sensitive data
Privacy To protect sensitive data from disclosure to adversaries
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Quasi-ldentifiers Collection of features such that their values may be used
to re-identify an individual
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Privacy Definitions Newcastle
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Quasi-ldentifiers Collection of features such that their values may be used
to re-identify an individual

k-Anonymity Dataset records’ are indistinguishable from at least R — 1
other records w.r.t. Qls

k-Group Set of indistinguishable records in a k-anonymous dset

t-Closeness The PA distributions of the k-groups are similar
to the whole dataset’s

19
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3 Josep Domingo-Ferrer and Viceng Torra (2005). “Ordinal, Continuous and Heterogeneous k-Anonymity

through Microaggregation”. In: Data Mining and Knowledge Discovery 11, pp. 195-212.
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1. Cluster D into (m, n)-fairlets (sets of m unfavoured and n favoured
records) using the MDAV algorithm, where

m .
—%M, subjecttom+n==~k
n|F

4Vladimiro Gonzélez-Zelaya, Julian Salas, David Megias, and Paolo Missier (2023). “Fair and Private Data
Preprocessing through Microaggregation”. In: ACM Transactions on Knowledge Discovery from Data.
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Fair-MDAV* Overview Newcastle

University

1. Cluster D into (m, n)-fairlets (sets of m unfavoured and n favoured
records) using the MDAV algorithm, where

m .
~ ||LFI|’ subjecttom+n==~k

2. Microaggregate the feature values with their corresponding fairlet’s

mean/mode, except for PA and Class, whose original values are kept

3. Locally correct the fairness of each fairlet by relabelling its records
depending on their PA values, so that

W

[V

where T modulates the correction

4Vladimiro Gonzélez-Zelaya, Julian Salas, David Megias, and Paolo Missier (2023). “Fair and Private Data
Preprocessing through Microaggregation”. In: ACM Transactions on Knowledge Discovery from Data.
22
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Example Data (1, 2)-Fairlets
id X PA Class id X Xmg PA Class Fair Class
a 1T F 1 a 1 467 F 1 1
b 2 U 0 b 2 467 U 0 1
C 3 U 1 — NE 3 933 U 1 1
d 11 F 0 d 11 467 F 0 0
e 12 F 0 e 12 933 F 0 0
f 13 F 1 f 13 933 F 1 1
g 14 F 1 g Dropped

23
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The following parameter values were tested over three benchmark

datasets °:
Description Parameter Values
o m [ {51
Fairlet Size for k € {10, 20, ---,100}
n R—m
Fairness Correction T 0,0.1,---,1
Microaggregation ma True, False

5Census Income, COMPAS, and German Credit, available online
24
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» Steps that transform the raw input data into its final form as a training set
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Preprocessing Pipelines P hehcastle

» Steps that transform the raw input data into its final form as a training set
» Some are required by the classification framework:

» Encoding categorical variables

» Imputing missing data
» Others may optionally be deployed:

» Class balancing
» Feature selection
» Feature scaling

» Steps usually combined into pipelines based on best-practice
considerations, with model performance as the main objective

26
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Preprocessors and Ordering

o T o (a) Generate 1 random pipelines
Encoder enc  one-hot, ordinal, target, leave one out (LOO), weight of evidence (WOE), count iRandon Bpellies

|imputer imp  mean, median, most frequent 1 one-hot_enc, mean_imp, under_samp, norm_scale, k-best_sel
Sampler samp none, under, over ——| 2 ordinal_enc, mean_imp, under_samp, k-best_sel, norm_scale
Scaler scale  none, maxabs, minmax, norm, quantile 3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp.
Feature Selector el none, k-best 4 count_enc, mean_imp, over_samp, no_sel, norm_scale
order (samp, scale, sel), (samp, sel, scale),

(b) Preprocess data, lean classifiers and sort pipelines by objective metric; top one becomes the elite [id 3]

id_Sorted Pipelines Objective Ppornt_Paure
3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp. 0256 4/
4 count_enc, mean._imp, over.samp, no_sel, norm_scale 0406 3/10
1 one-hot_enc, mean_imp, under_samp, norm_scale, k-best_sel 0689 2/10
2 ordinal_enc, mean_imp, under_samp, k-best_sel, norm_scale 078 110
(d) Choose a gene with uniform probabilty [Sampler]
and crossover the parents’ gene-values [ids 3, 4 -+ 5, 6] (c) Choose parents with Pparen [ids 3, 4]
i [ia_crossover Pipelines | [ia” parent i |

3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp
4 count_enc, mean_imp, over_samp, no_sel, norm_scale

() Each gene may mutate
with P(mutate) = m [Order inid 1+ 7] (e) Append a non-elite pipeline with P,

*|'5 " one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp [+—————————————|
6 count_enc, mean_imp, no_samp, no_sel, norm_scale

e [id 1]
id_Mutated Pipelines id_Mutable Pipelines
5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp 5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp |,_
6 count_enc, mean_imp, no_samp, no_sel, norm_scale 6 count_enc, mean_imp, no_samp, no_sel, norm_scale
7 one-hot_enc, mean_imp, k-best_sel, under_samp, norm_scale 1 one-hot_enc, mean_imp, under_samp, norm_scale, k-best_sel

(g) Append the non-mutated efite [id 3]

id_First Generation Pipelines Objective

5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp  0.458

6 count_enc, mean_imp, no_samp, no_sel, norm_scale 02

For subsequent generations, 7 one-hot_enc, mean_imp, k-best_sel, under_samp, norm_scale 0520
repeat from (b) 3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp 0

6Vladimiro Gonzélez-Zelaya, Julidn Salas, Dennis Prangle, and Paolo Missier (2023). “Preprocessing
Matters: Automated Pipeline Selection for Fair Classification”. In: MDAl 2023.
28
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Conclusions Newcastle
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» There are multiple incompatible fairness definitions

» Definitions should align with world-views

» Possible to correct fairness through data pre-processing

» Can use fairness-specific methods or optimise pipeline choices

» Fairness and privacy can be achieved simultaneously
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