Three Preprocessing Approaches to Fairness Correction

Visualization-Empowered Human-in-the-Loop AI Focus Period

Vladimiro González-Zelaya 19 May 2025

Linköping University — Campus Norrköping

Talk Outline

Fairness Notions

Parametrised Data Sampling

Fair and Private Data Correction

Genetic Pipeline Optimisation

Fairness Notions

Protected Attribute (PA)

Definition

Feature of a dataset that is prone to an unjustified discriminatory decision

Examples

- ► Race or Skin Colour
- ▶ Sex or Gender
- ▶ Age

- ► Income Leve
- ▶ Education
- Nationality

Protected Attribute (PA)

Definition

Feature of a dataset that is prone to an unjustified discriminatory decision

Examples

- ► Race or Skin Colour
- Sex or Gender
- ► Age

- ► Income Level
- ► Education
- Nationality

Population Subgroups

Protected Attribute

- Favoured
- Unfavoured

Class

- Positive
- Negative

$$U+F+$$

Population Subgroups

Protected Attribute

- Favoured
- Unfavoured

Class

- Positive
- Negative

Population Subgroups

Protected Attribute

- Favoured
- Unfavoured

Class

- Positive
- Negative

Some Fairness Definitions

Individual Fairness

Similar individuals should be treated in a similar way

Demographic Parity

Same **positive rate** across PA groups

Equalised Odds

 \hat{Y} and PA are **independent**, conditional on Y

Some Fairness Definitions

Individual Fairness

$$d(x_1, x_2) \leqslant \delta \Rightarrow \hat{Y}(x_1) \approx \hat{Y}(x_2)$$

Demographic Parity

$$P(\hat{Y} = 1 \mid PA = 0) = P(\hat{Y} = 1 \mid PA = 1)$$

Equalised Odds

$$P(\hat{Y} = 1 \mid PA = 0, Y = y) = P(\hat{Y} = 1 \mid PA = 1, Y = y), y \in \{0, 1\}$$

The (Im)possibility of Fairness¹

¹Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian (2021). "The (Im)possibility of Fairness". In: *Communications of the ACM*.

The (Im)possibility of Fairness¹

WYSIWYG

Construct space and observed space maintain the relative position of individuals w.r.t. the task. Aligns with individual fairness.

We're All Equal

Within a given construct space all groups are essentially the same. Aligns with group fairness.

¹Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian (2021). "The (Im)possibility of Fairness". In: *Communications of the ACM*.

Ways to Correct Unfairness

Pre-Processing Modify the training set to "sample from a better world"

In-Processing Add *constraints* or *regularisation terms* to improve fairness

Post-Processing Adjust the predictions after fitting the model

Ways to Correct Unfairness

Pre-Processing Modify the training set to "sample from a better world"

In-Processing Add *constraints* or *regularisation terms* to improve fairness

Post-Processing Adjust the predictions after fitting the model

Parametrised Data Sampling

Fairness Correction Through Resampling²

²Vladimiro González-Zelaya, Julián Salas, Dennis Prangle, and Paolo Missier (2021). "Optimising Fairness through Parametrised Data Sampling". In: *International Conference on Extending Database Technology*.

An Optimal Linear Classifier (for Accuracy)

An Optimal Linear Classifier (for Accuracy)

The positive predictions for U increase by:

- ► Undersampling negative instances
- ► Oversampling positive instances

Predictions for *U*

Negative Undersampling Left of *b*

Negative Undersampling Left of \boldsymbol{b}

Negative Undersampling Left of *b*

Negative Undersampling Left of *b*

Negative Undersampling Right of *b*

Negative Undersampling Right of *b*

Positive Oversampling Left of *b*

Positive Oversampling Left of *b*

Positive Oversampling Right of *b*

Positive Oversampling Right of b

The Optimal Resampling Parameter

Age	Country	Gender	Ethnicity	Combined PA
(20-30]		Male		Unfavoured
(30-40]	Canada	remate	White	Favoured

Subgroup PR
Dataset PR
Difference

0.3 0.3 0.3 0.3

Age	Country	Gender	Ethnicity	Combined PA
(20-30]		Male		Unfavoured
(30-40]	Canada	remate	White	Favoured

Subgroup PR
Dataset PR
Difference

0.3 0.3 0.3 0.3

Combined PA	Ethnicity	Gender	Country	Age
Unfavoured Favoured			Mexico Canada	-
	0.1 0.3	0.4 0.3	0.3	0.2 0.3

Subgroup PR
Dataset PR

	Age	Country	Gender	Ethnicity	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR Difference	0.3	0.3	0.3	0.3	

	Age	Country	Gender	Ethnicity	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	

	Age	Country	Gender	Ethnicity	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	Sum = -0.2

	Age	Country	Gender	Ethnicity	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	Sum = -0.2

Subgroup PR
Dataset PR
Difference

Age	Country	Gender	Ethnicity	Combined PA
(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
0.3	0.3	0.3	0.3	

	Age	Country	Gender	Ethnicity	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
Subgroup PR	0.4	0.4	0.1	0.4	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	+0.1	+0.1	-0.2	+0.1	Sum = +0.1

	Age	Country	Gender	Ethnicity	Combined PA
	(20-30] (30-40]	Mexico Canada	Male Female	Latin White	Unfavoured Favoured
Subgroup PR	0.4	0.4	0.1	0.4	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	+0.1	+0.1	-0.2	+0.1	Sum = +0.1

Multiple PA Correction

Fair and Private Data Correction

Fairness and Privacy

Both aim at concealing sensitive information while preserving data utility:

Fairness To prevent classifier behaviours related to sensitive data

Privacy To protect sensitive data from disclosure to adversaries

Quasi-Identifiers Collection of features such that their values may be used to **re-identify** an individual

k-Anonymity Dataset records' are **indistinguishable** from at least k-1 other records w.r.t. Qls

k-Group Set of **indistinguishable** records in a k-anonymous dset

Quasi-Identifiers Collection of features such that their values may be used to **re-identify** an individual

*k***-Anonymity** Dataset records' are **indistinguishable** from at least k-1 other records w.r.t. Qls

k-Group Set of **indistinguishable** records in a k-anonymous dset

Quasi-Identifiers Collection of features such that their values may be used to **re-identify** an individual

k-Anonymity Dataset records' are **indistinguishable** from at least k-1 other records w.r.t. Qls

k-Group Set of **indistinguishable** records in a k-anonymous dset

Quasi-Identifiers Collection of features such that their values may be used to **re-identify** an individual

k-Anonymity Dataset records' are **indistinguishable** from at least k-1 other records w.r.t. Qls

k-Group Set of **indistinguishable** records in a k-anonymous dset

t-Closeness and k-Anonymity Example

t-Closeness and *k*-Anonymity Example

t-Closeness and *k*-Anonymity Example

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

³Josep Domingo-Ferrer and Vicenç Torra (2005). "Ordinal, Continuous and Heterogeneous k-Anonymity through Microaggregation". In: *Data Mining and Knowledge Discovery* 11, pp. 195–212.

Fair-MDAV⁴ Overview

1. Cluster D into (m, n)-fairlets (sets of m unfavoured and n favoured records) using the MDAV algorithm, where

$$\frac{m}{n} \approx \frac{|U|}{|F|}$$
, subject to $m + n = k$

- Microaggregate the feature values with their corresponding fairlet's mean/mode, except for PA and Class, whose original values are kept
- Locally correct the fairness of each fairlet by relabelling its records depending on their PA values, so that

$$\frac{|U^+|}{|U|} \geqslant \tau \cdot \frac{|F^+|}{|F|}$$
, where τ modulates the correction

⁴Vladimiro González-Zelaya, Julián Salas, David Megías, and Paolo Missier (2023). "Fair and Private Data Preprocessing through Microaggregation". In: *ACM Transactions on Knowledge Discovery from Data*.

Fair-MDAV⁴ Overview

1. Cluster D into (m, n)-fairlets (sets of m unfavoured and n favoured records) using the MDAV algorithm, where

$$\frac{m}{n} \approx \frac{|U|}{|F|}$$
, subject to $m + n = k$

- 2. **Microaggregate** the feature values with their corresponding fairlet's mean/mode, except for PA and Class, whose original values are kept
- Locally correct the fairness of each fairlet by relabelling its records depending on their PA values, so that

$$\frac{|U^+|}{|U|} \geqslant \tau \cdot \frac{|F^+|}{|F|}$$
, where τ modulates the correction

⁴Vladimiro González-Zelaya, Julián Salas, David Megías, and Paolo Missier (2023). "Fair and Private Data Preprocessing through Microaggregation". In: *ACM Transactions on Knowledge Discovery from Data*.

Fair-MDAV⁴ Overview

1. Cluster D into (m, n)-fairlets (sets of m unfavoured and n favoured records) using the MDAV algorithm, where

$$\frac{m}{n} \approx \frac{|U|}{|F|}$$
, subject to $m + n = k$

- 2. **Microaggregate** the feature values with their corresponding fairlet's mean/mode, except for PA and Class, whose original values are kept
- 3. **Locally correct the fairness** of each fairlet by relabelling its records depending on their PA values, so that

$$\frac{|U^+|}{|U|} \geqslant \tau \cdot \frac{|F^+|}{|F|}$$
, where τ modulates the correction

⁴Vladimiro González-Zelaya, Julián Salas, David Megías, and Paolo Missier (2023). "Fair and Private Data Preprocessing through Microaggregation". In: *ACM Transactions on Knowledge Discovery from Data*.

Fair-MDAV Example (k = 3, $\tau = 1$)

	Exam	ple [Data				(1,	2)-F	airlets	
id	Χ	PA	Class		id	Χ	X _{ma}	PA	Class	Fair Class
а	1	F	1		а	1	4.67	F	1	1
b	2	U	0		b	2	4.67	U	0	1
С	3	U	1	→	С	3	9.33	U	1	1
d	11	F	0		d	11	4.67	F	0	0
е	12	F	0		е	12	9.33	F	0	0
f	13	F	1		f	13	9.33	F	1	1
g	14	F	1		g			Dro	ppped	

Experimental Parameter Values

The following parameter values were tested over three benchmark datasets ⁵:

Description	Parameter	Values
Fairlet Size	m	
	n	k-m
Fairness Correction	τ	0, 0.1,, 1
Microaggregation	ma	True, False

⁵Census Income, COMPAS, and German Credit, available online

Fairness/Accuracy Trade-Off (Census Income Dataset)

Genetic Pipeline Optimisation

- Steps that transform the raw input data into its final form as a training set
- Some are required by the classification framework:
 - ► Encoding categorical variables
 - Imputing missing data
- ► Others may *optionally* be deployed:
 - Class balancing
 - ► Feature selection
 - ► Feature scaling
- Steps usually combined into pipelines based on best-practice considerations, with model performance as the main objective

- ▶ Steps that transform the raw input data into its final form as a training set
- ► Some are *required* by the classification framework:
 - Encoding categorical variables
 - Imputing missing data
- ► Others may *optionally* be deployed:
 - Class balancing
 - ► Feature selection
 - ► Feature scaling
- Steps usually combined into pipelines based on best-practice considerations, with model performance as the main objective

- ▶ Steps that transform the raw input data into its final form as a training set
- ► Some are *required* by the classification framework:
 - Encoding categorical variables
 - Imputing missing data
- ► Others may *optionally* be deployed:
 - Class balancing
 - ► Feature selection
 - ► Feature scaling
- Steps usually combined into pipelines based on best-practice considerations, with model performance as the main objective

- ▶ Steps that transform the raw input data into its final form as a training set
- ► Some are *required* by the classification framework:
 - Encoding categorical variables
 - Imputing missing data
- ► Others may *optionally* be deployed:
 - Class balancing
 - ▶ Feature selection
 - ► Feature scaling
- Steps usually combined into pipelines based on best-practice considerations, with model performance as the main objective

Pipeline-Space Fairness/Accuracy and Pareto Front

The FairPipes Algorithm⁶

ſ	Gene Tag Values			.,	nax, norm, quantile		1	(a) Generate n random pipelines		
				, most fre over , minmax,			id 1 2 3 4	Random Pipelines one-hot_enc, mean_imp, under_samp, norm_scale, k-best_st ordinal_enc, mean_imp, under_samp, k-best_sel, norm_scale one-hot_enc, medialn_imp, k-best_sel, norm_scale, no_samp		
					s data, learn classifiers and sort pipelines by objective metri			ric; top one becomes the elite [id 3] Objective Pparent Psyrvive		
				4 coun 1 one-	t_enc, mean_imp, hot_enc, mean_im	mp, k-best_sel, norm_scale, no_sam over_samp, no_sel, norm_scale p, under_samp, norm_scale, k-best_; , under_samp, k-best_sel, norm_scal	p 0.27 0.40 sel 0.68	276 4/10 1 106 3/10 3/6 189 2/10 2/6		
П	(d) Choose a gene with uniform probability [Sampler] and crossover the parents' gene-values [ids $3,4\to5,6$]							(c) Choose parents with P_{parent} [ids 3, 4]		
		Crossover Pipelines					ic			
	one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp count_enc, mean_imp, no_samp, no_sel, norm_scale						3	3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_sam 4 count_enc, mean_imp, over_samp, no_sel, norm_scale		
	with		ch gene <i>may</i> n ite) – <i>m</i> [Order		7]			(e) Append a non-elite pipeline with Psurvive [id 1]		
I	d Mutated Pipelines					id	Mutable Pipelines			
	6 count_enc, me	one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp count_enc, mean_imp, no_samp, no_sel, norm_scale one-hot_enc, mean_imp, k-best_sel, under_samp, norm_scale					6			
	(g) Append the non-mutated elite [id 3]									
					d First Generati	on Pipelines		Objective		
					5 one-hot enc.	median imp, k-best sel norm scale.		0.458		

⁶Vladimiro González-Zelaya, Julián Salas, Dennis Prangle, and Paolo Missier (2023). "Preprocessing Matters: Automated Pipeline Selection for Fair Classification". In: MDAI 2023.

Evolution Toward Optimal Solutions

- ► There are multiple incompatible fairness definitions
- ► Definitions should align with world-views
- Possible to correct fairness through data pre-processing
- ► Can use fairness-specific methods or optimise pipeline choices
- ► Fairness and privacy can be achieved simultaneously

- ► There are multiple incompatible fairness definitions
- Definitions should align with world-views
- Possible to correct fairness through data pre-processing
- ► Can use fairness-specific methods or optimise pipeline choices
- ► Fairness and privacy can be achieved simultaneously

- ► There are multiple incompatible fairness definitions
- Definitions should align with world-views
- ▶ Possible to correct fairness through data pre-processing
- ► Can use fairness-specific methods or optimise pipeline choices
- ► Fairness and privacy can be achieved simultaneously

- ► There are multiple incompatible fairness definitions
- Definitions should align with world-views
- Possible to correct fairness through data pre-processing
- ► Can use fairness-specific methods or optimise pipeline choices
- ► Fairness and privacy can be achieved simultaneously

- ► There are multiple incompatible fairness definitions
- Definitions should align with world-views
- Possible to correct fairness through data pre-processing
- ► Can use fairness-specific methods or optimise pipeline choices
- ► Fairness and privacy can be achieved simultaneously