Lingfei Wang

DIVISION OF DECISION AND CONTROL SYSTEMS KTH ROYAL INSTITUTE OF TECHNOLOGY STOCKHOLM, SWEDEN

Oct. 5, 2023, Linköping University

1 Background

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

A social power game for the concatenated opinion dynamics with stubborn agents

- Background

Overview of opinion dynamics

Contents

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

A social power game for the concatenated opinion dynamics with stubborn agents

- Background

- Overview of opinion dynamics

Social opinion dynamics

Individuals' opinions are influenced by their neighbors over social networks, and evolve following some cognitive patterns.

Opinion dynamics: to investigate opinion evolution by system theory

opinions - scalars, vectors... social networks - matrices cognitive pattern - dynamics collective behaviors:

⇒ consensus, polarization, oscillation...

A social power game for the concatenated opinion dynamics with stubborn agents

- Background

An example: Paris Agreement

Contents

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

A social power game for the concatenated opinion dynamics with stubborn agents

Background

└─ An example: Paris Agreement

UNFCCC

- UNFCCC: an international environmental framework to combat ``dangerous human interference with the climate system''
- Parties in the UNFCCC: 195 countries + EU
- ``Supreme'' governing body: Conference of the parties (COP)

A social power game for the concatenated opinion dynamics with stubborn agents

Background

└─ An example: Paris Agreement

Negotiation process of the UNFCCC

- COP meets annually and decides on climate actions
- Many constituted bodies help the COP
- COP is plenary
- Constituted bodies have restricted participation (not plenary)
- Each constituted body meets once/twice a year

A social power game for the concatenated opinion dynamics with stubborn agents

-Background

An example: Paris Agreement

What is the Paris Agreement?

- Comprehensive accord for coordinating the international effort to keep the effects of global warming to below 2 °C relative to the pre-industrial level
- Many aspects: carbon emission mitigation, adaptation to the effects of climate change, climate finance, green technology transfer, climate agreement implementation, legal and procedural matters linked to climate agreements, etc.
- Agreement: all parties (195 countries + EU) agree on common measures ⇒ consensus is needed

Issues at stake:

- Future of our planet
- Many trillions of US \$...

 \implies long (15 years), complex negotiation process

- Background

An example: Paris Agreement

Mathematical model for the Paris Agreement

Task

Develop a dynamical opinion model that describes the process of

"achieving an agreement" like the Paris agreement

Ingredients:

- Agents: 196 parties
- 2 State variables: opinions on the agreement
- 3 Interaction graph: time-varying

Dynamics

- agents are stubborn (defend their opinions)
- 2 negotiation leads to compromise

 \Longrightarrow at each meeting final opinions must be closer than initial opinions

 \Longrightarrow at each meeting: convergence inside the convex hull of the initial conditions

over the long time horizon consensus must be achieved

-Background

An example: Paris Agreement

Mathematical model for the Paris Agreement

Task

Develop a dynamical opinion model that describes the process of ``achieving an agreement'' like the Paris agreement

- Candidate model for each meeting: Friedkin-Johnsen (FJ) model
- Model for multiple meetings in a sequence:

 \implies concatenated FJ model

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Contents

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

The Friedkin-Johnsen (FJ) model

- Motivation: people's stubbornness will influence their opinions
- FJ model:

$$\mathbf{y}(t+1) = (I - \Theta)W\mathbf{y}(t) + \Theta\mathbf{y}(0)$$

- Opinions: $\mathbf{y}(t) \in \mathbb{R}^m$; weight matrix: W
- Stubbornness (``memory'' of initial opinions):

 $\Theta = \operatorname{diag}\{\theta_1, \ldots, \theta_m\}, \theta_i \in [0, 1)$

Possible agents:

$$\begin{cases} \theta_i > 0 & \text{stubborn ``•''} \\ \theta_i = 0 & \text{non-stubborn ``•''} \end{cases}$$

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Aymptotic behavior for a single FJ model

Solution:

$$\mathbf{y}(\infty) = \lim_{t \to +\infty} \mathbf{y}(t) = \underbrace{(I - (I - \Theta)W)^{-1}\Theta}_{V} \mathbf{y}(0)$$

V is a stochastic matrix

■ If $\theta_i > 0, i = 1, ..., u$, and $\theta_i = 0, i = u + 1, ..., m$,

$$V = \left[\begin{array}{c|c} R & 0 \\ \vdots & \ddots \\ u & m-u \end{array} \right], \quad R \in \mathbb{R}_{>0}^{m \times u}$$

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Concatenated FJ model

- Agent set $\mathcal{V} = \{1, \dots, n\}$
- Opinion states $\mathbf{y}(s,t) \in \mathbb{R}^n$ (two time scales)
- Partial participation
 - stubborn participants $\mathcal{U}(s)$ $\mathcal{M}(s)$
 - non-stubborn participants
 - absent agents

For a single discussion s, a FJ model is applied to $\mathcal{M}(s)$

$$|\mathbf{y}(s,t+1)|_{\mathcal{M}(s)} = \mathsf{FJ}(\mathbf{y}(s,t)|_{\mathcal{M}(s)})$$

Opinions are concatenated:

$$\mathbf{y}(s,\infty)=\mathbf{y}(s+1,0)$$

A social power game for the concatenated opinion dynamics with stubborn agents

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Concatenated FJ model (compact form)

• Let
$$\mathbf{x}(s) = \mathbf{y}(s,\infty)$$

• Update rule:
$$\mathbf{x}(s) = P(s)\mathbf{x}(s-1)$$

$$P(s) = \Pi(s)^{\top} \begin{bmatrix} R(s) & 0 & 0 \\ 0 & 0 & I_{n-m(s)} \end{bmatrix} \Pi(s)$$

- P(s) is stochastic
- $R(s) \in \mathbb{R}^{m(s) imes u(s)}$ is positive
- Concatenated FJ model:

$$\mathbf{x}(s) = P(s)P(s-1)\dots P(1)\mathbf{x}(0)$$

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Convergence of the CFJ model

Consensus:
$$\lim_{s \to \infty} \mathbf{x}(s) = c\mathbf{1} \Leftrightarrow \lim_{s \to \infty} P(s) \dots P(1) = \mathbf{1} \mathbf{c}^{\top}$$

Consensus condition (existing result) Given stochastic matrices $Q(s), s \ge 1$ 1. $\exists \epsilon > 0$ s.t. $[Q(s)]_{ij} > \epsilon$ if $[Q(s)]_{ij} > 0, \forall i, j, s$ 2. $\exists s_1 < s_2 < \dots$ s.t. $Q(s_k)$ has a positive column $\implies \lim_{s \to \infty} Q(s)Q(s-1)\dots Q(1) = \mathbf{1c}^{\top}$

By exploiting the existing result, conditions for the CFJ model to achieve consensus can be given¹

¹L. Wang, et., al. IEEE Trans. on Automatic Control (2022)

Concatenated Friedkin-Johnsen (FJ) model

From model to the climate talks

Contents

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

Concatenated Friedkin-Johnsen (FJ) model

From model to the climate talks

Back to the UNFCCC

Body	meetings
COP	15
AC	8
AFB	26
CTCN	6
CC-E	27
CC-F	17
CGE	24
CDM EB	86
JISC	37
LEG	28
SCF	11
TEC	10
total	295

Data collected for 295 meetings (2001-2015)

- 1 Meeting participants $\Longrightarrow \mathcal{M}(s)$
- 2 Speakers (\iff stubborn agents) $\Longrightarrow \mathcal{U}(s)$

3 N. of speeches (\iff stubbornness level) $\implies \theta_i(s)$

Concatenated Friedkin-Johnsen (FJ) model

- From model to the climate talks

From the CFJ model to the Paris Agreement

- Each year of UNFCCC:
 - COP (plenary)
 many meetings of 11 constituted bodies

■ Split the overall 2001 – 2015 product of stochastic matrices into yearly intervals with yearly matrices Q(k)

$$Q(k) = \underbrace{P^{\text{COP}}(k)}_{\text{COP}} \underbrace{P^{11}(k)P^{10}(k)\dots P^{1}(k)}_{\text{constituted bodies}}, \quad k = 1, \dots, 15$$

Yearly' opinion dynamics:

$$x(k) = Q(k)x(k-1), \quad k = 1, ..., 15$$

• COP is plenary \implies Q(k) has positive columns

 \Rightarrow "practical convergence" is predicted

 \implies Paris Agreement

-Social power game

-Strategic formulation

Contents

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

-Social power game

- Strategic formulation

Strategic interactions in the UNFCCC

- The participating parties are rational, with many issues bargaining on table
- In the CFJ model, agents' opinions are only passively evolving

Task Develop the concatenated FJ model to reflect the rationality of the parties for the UNFCCC

A social power game for the concatenated opinion dynamics with stubborn agents

-Social power game

-Strategic formulation

Revisit of the concatenated FJ model

- Observation 1: parties can choose to speak or not
 - \Rightarrow "speaking" is linked with stubbornness of the model
 - \Rightarrow stubbornness can be decided as an action!
- Observation 2: $\mathbf{x}(s) = P(s)\mathbf{x}(s-1) = \underbrace{P(s)\dots P(1)}_{\Theta(s)} \mathbf{x}(0)$

$$\Rightarrow \qquad \lim_{s \to \infty} \mathbf{Q}(s) = \underbrace{\mathbf{lc}^{\top}}_{\text{ronk-1}}, \quad \lim_{s \to \infty} \mathbf{x}(s) = \underbrace{\mathbf{cl}}_{\text{consensus}}$$

 \Rightarrow Q(s) encodes the eigenvector centrality of each agent!

meeting #M (COP)

A social power game for the concatenated opinion dynamics with stubborn agents

- Social power game

-Strategic formulation

Social power for the concatenated FJ model

(Cumulated) social power = overall influence accumulated by agent i over all agents in the sequence of discussions 1, ..., M

$$\mathbf{x}(M) = \mathbf{Q}(M)\mathbf{x}(0) = P(M)\dots P(1)\mathbf{x}(0)$$
$$\mathbf{sp}(M)^{\top} = \frac{1}{n}\mathbf{1}^{\top}\mathbf{Q}(M) = \frac{1}{n}\mathbf{1}^{\top}\begin{bmatrix} \cdots & \mathbf{Q}_{1i}(M) & \cdots \\ \vdots & \vdots \\ \cdots & \mathbf{Q}_{ni}(M) & \cdots \end{bmatrix}$$
i-th agent

- **sp**(M) ~ eigenvector centrality: $\lim_{M\to\infty} \mathbf{sp}(M) = \mathbf{c}$
- $\mathbf{sp}(M) = \text{nonlinear function of the stubbornness parameters} \Theta(1), \dots, \Theta(M)$

$$P(s) = (I - (I - \Theta(s))W(s))^{-1}\Theta(s)$$

A social power game for the concatenated opinion dynamics with stubborn agents

Social power game

-Strategic formulation

Maximizing social power

■ **sp**(*M*) is determined by the speaking occasions **a**(1),..., **a**(*M*) through the concatenated FJ model

Question

How should an agent take speaking opportunities to maximize its social power?

A social power game for the concatenated opinion dynamics with stubborn agents

Social power game

-Strategic formulation

Social power game

Social power game

- Players: agents $\mathcal{V} = \{1, \ldots, n\}$
- Actions: allocation of speaking occasions

$$\mathbf{a}_i = (a_i(1), \dots, a_i(M)) \quad \Leftrightarrow \quad \boldsymbol{\theta}_i = (\theta_i(1), \dots, \theta_i(M))$$

Pay-off function: social power

$$u_i(\mathbf{a}_i,\mathbf{a}_{-i})=\mathrm{sp}_i(M)$$

A social power game for the concatenated opinion dynamics with stubborn agents

-Social power game

Strategic formulation

Social power game: constraints

$$\begin{array}{c} a_i(s) \\ \hline \\ \theta_i(s) \\ \hline \\ \end{array} \end{array} \end{array} \xrightarrow{P(s)} \begin{array}{c} \operatorname{Sp}_i(M) \\ \operatorname{CFJ model} \end{array} \xrightarrow{\operatorname{Sp}_i(M)} \end{array}$$

More speaking, more stubborn

$$\theta_i(s) = \frac{\theta}{\theta}a_i(s)$$

2 Limited budget of overall speaking opportunities: γ, K

$$a_i(s) \leq \gamma, \quad a_i(1) + \cdots + a_i(M) \leq K$$

3 Limited capacity of speaking occasions per meeting: C

$$\sum_{i\in\mathcal{V}} a_i(s) \leq C$$

A social power game for the concatenated opinion dynamics with stubborn agents

-Social power game

-Strategic formulation

Social power game: network topology

$$a_i(s)$$
 $\theta_i(s)$ $P(s)$ CFJ model $\operatorname{sp}_i(M)$

 The network is a complete graph

$$W(s) = W = \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}, \quad s = 1, \dots, M$$

 Meaning: meetings are all plenary

Social power game

└─ Strategic formulation

Problems of interest

- P1: given the actions of two agents, who will obtain a higher social power (social power comparison)?
- P2: what is the (generalized) NE of the social power game (Nash equilibrium)?
- P3: for a given agent, if the actions of the other agents are fixed, what is the best strategy for her (best strategy)?

-Social power game

Model analysis

Contents

- Overview of opinion dynamics
- An example: Paris Agreement
- 2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks
- 3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary

A social power game for the concatenated opinion dynamics with stubborn agents

-Social power game

Model analysis

Problem P1: social power comparison

$$\begin{array}{c} a_i(s) \\ \hline \\ \theta_i(s) = \theta a_i(s) \\ \hline \\ P(s) \\ \hline \\ CFJ \text{ model} \\ \hline \\ sp_i(M) \\ \hline \\ \end{array}$$

strategies of agents i and j

$$\mathbf{a}_i = (a_i(1), \dots, a_i(M)) \quad \mathbf{a}_j = (a_j(1), \dots, a_j(M))$$

Theorem (Comparison of social powers)

For small enough θ , $\begin{array}{c} a_i(s) = a_j(s), \ \forall s < s' \\ a_i(s') < a_j(s') \end{array} \right\} \implies \mathbf{sp}_i(M) < \mathbf{sp}_j(M).$

 Meaning: speaking more at early meetings gives higher social power

 \implies early mover earns more

A social power game for the concatenated opinion dynamics with stubborn agents

-Social power game

Model analysis

Problem P1: binary stubbornness

Assume $\gamma =$ 1, i.e., agents can choose to speak or be silent

Theorem (Comparison of social powers)

Let
$$\tau_i = \arg\min_s \{a_i(s) = 0\}$$

$$\tau_i < \tau_j \implies u_i < u_j$$

No constraint is made on heta

Example

Social power game

Model analysis

Problem P2: (generalized) Nash Equilibrium

Nash equilibrium: $\mathbf{a}_i^* = \arg \max_{\mathbf{a}_i} u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*)$

Theorem (Generalized Nash equilibrium)

For θ small enough, if $\gamma|C$, any \mathbf{a}^* taking the following form is a GNE

For
$$i = 1, ..., \frac{C}{\gamma}$$
: $\mathbf{a}_{i}^{*} = (\underbrace{\gamma, ..., \gamma}_{\lceil \frac{K}{\gamma} \rceil \text{ meetings}}, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, ..., 0)$

For $i > \frac{C}{\gamma}$, \mathbf{a}_i^* can be arbitrarily chosen such that

$$a_i^*(1) = \dots = a_i^*(\lceil rac{\kappa}{\gamma} \rceil) = 0, \quad \sum_{j \in \mathcal{V}} a_j^*(\lceil rac{\kappa}{\gamma} \rceil + 1) = C$$

-Social power game

Model analysis

Problem P2: Nash equilibrium (cont'd)

- Multiple GNEs
- On the equilibrium agents tend to speak more in early meetings
- $\blacksquare \implies$ early mover strategies consist the GNE

Theorem (Nash equilibrium: binary stubbornness)

Assume $\gamma=1$ and $\mathcal{C}=|\mathcal{V}|.$ For small enough heta, the unique NE is

$$\mathbf{a}_{i}^{*} = (\underbrace{1, \ldots, 1}_{K \text{ meetings}}, 0, \ldots, 0)$$

 \implies everyone takes the early mover strategy!

-Social power game

Model analysis

Problem 3: best strategy

Early mover strategy

$$\tilde{\mathbf{a}}_{i} = \left(\underbrace{\gamma, \dots, \gamma}_{\lceil \frac{K}{\gamma} \rceil \text{ meetings}}, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, \dots, 0\right)$$

Theorem (Best strategy)

For θ small enough, it holds

$$\tilde{\mathbf{a}}_i = rg\max_{\mathbf{a}_i} u_i(\mathbf{a}_i, \mathbf{a}_{-i}), \quad \forall \mathbf{a}_{-i}.$$

Meaning: the early mover strategy is a dominant strategy

 \implies early mover advantage

-Social power game

Model analysis

Problem 3: best strategy (cont'd)

Early mover strategy

$$\tilde{\mathbf{a}}_i = \left(\underbrace{\gamma, \dots, \gamma}_{\lceil \frac{K}{\gamma} \rceil \text{ meetings}}, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, \dots, 0\right)$$

The early mover strategy might not be optimal for larger θ Example. $\gamma = 1, K = 6$ and $\theta = 0.6$

$$\begin{aligned} \mathbf{a}_1' &= (1, 1, 1, 1, 1, 0, 1, 0, 0, 0) \\ \mathbf{a}_2 &= (0, 1, 1, 1, 0, 1, 0, 1, 1, 0) \\ \mathbf{a}_3 &= (1, 1, 1, 1, 0, 1, 0, 0, 1, 0) \\ \mathbf{a}_4 &= (1, 1, 0, 1, 1, 1, 1, 0, 0, 0) \end{aligned}$$

$$\implies u_1(\tilde{\mathbf{a}}_1, \mathbf{a}_{-1}) < u_1(\mathbf{a}'_1, \mathbf{a}_{-1})$$

-Social power game

Model analysis

Early mover advantage for general stubbornness

Early mover strategy

$$\tilde{\mathbf{a}}_{i} = (\underbrace{\gamma, \dots, \gamma}_{\lceil \frac{K}{\gamma} \rceil \text{ meetings}}, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, \dots, 0)$$

Theorem (General stubbornness)

For any \mathbf{a}_{-i} it must be

$$u_i(\tilde{\mathbf{a}}_i, \mathbf{a}_{-i}) \geq \max_{\mathbf{a}_i \in \mathcal{A}_i(\mathbf{a}_{-i})} u_i(\mathbf{a}_i, \mathbf{a}_{-i}) - 2(1 - \frac{1}{n}) \sum_{s = \lfloor \frac{K}{\gamma} \rfloor}^{M-1} (\underbrace{\gamma \theta}_{less than})^s.$$

early mover advantage holds for general stubbornness

Meaning: the early mover strategy is at least suboptimal

-Social power game

Model analysis

Beyond complete graph: simulation results

Parameters: $M = 10, K = 6, C = 24, \theta = 0.05$

Social power of agent 1 w.r.t \mathbf{a}_1 : ind = lexicographical order

Social power roughly increases along the lexicographical order

 $\blacksquare \Longrightarrow$ early mover advantage still holds!

-Social power game

Model analysis

Why early mover advantage?

- Concatenated FJ model has contracting dynamics
- Closer to consensus, harder to impact the final outcome
- lacksquare \Longrightarrow early discussions are more important
- $\blacksquare \Longrightarrow$ diminishing return law

Theorem (Diminishing returns)

Let $\Theta = (\theta_1, \dots, \theta_n)$ be the strategy profile. It holds for $\forall i$

$$\max_{\Theta} \left\{ \operatorname{sp}_i(s_1+1) - \operatorname{sp}_i(s_1) \right\} = \left(1 - \frac{1}{n}\right) \prod_{s=1}^{s_1} \max_{j \in V} \theta_j(s)$$

The diminishing return law does not depend on how \mathbf{a}_i is associated with θ_i

-Social power game

Model analysis

Back to UNFCCC: social power

The EU has the highest social power for most of the yearsIs the EU using an early mover strategy?

-Social power game

Model analysis

UNFCCC Negotiations: a few years

-Social power game

Model analysis

UNFCCC Negotiations: early mover strategy

Is EU taking early mover advantage?

■ null model: reshuffle order in the action a_{EU} → perm(a_{EU}) recompute the social powers

 $\text{mean}(\textbf{sp}_{\text{EU, reshuffled}}) < \textbf{sp}_{\text{EU}} \Longrightarrow \text{the EU is taking an early mover}$ advantage!

-Social power game

Model analysis

Validation: UNFCCC leadership

- To assess leadership in climate negotiations: use survey data from International Negotiations Survey
- $\blacksquare \Longrightarrow$ perceived leadership
- data collected in years 2008-2022
- total of 5530 responses

Questionnaire

Dear Participant at the UN Climate Change Conference in Marrakech, this questionnaire is part of a scientific study initiated in Bali in 2007. We would be grateful if you could complete it and return it to the person handing it out.

www.internationalnegotiationssurvey.se Linköping University

What is your primary role at the conference? Please tick one.

 Negotiator in national delegation 	 Environmental NGO
 National government 	 Indigenous peoples
 Local government 	 Researcher/scientist
 UN or intergovernmental organisation 	 Other NGO, please specify:
 Business 	 Other, please specify:

2. What are your primary professional interests? You may tick several options

ance hnology relopment issues	Biodiversity and nature conservation Energy security Other, please specify:
ance hnology	 Biodiversity and nature conservation Energy security
ance	 Biodiversity and nature conservation
ptation	 LULUCF and REDD+
igation	 Emissions trading
t	tigation aptation

Which countries, party groupings and/or organisations have a leading role in the climate negotiations

For questions 4-11, indicate your level of disagreement or agreement with the statements below on a scale of 1-7.

-Social power game

Model analysis

Validation: UNFCCC leadership

- To assess leadership in climate negotiations: use survey data from International Negotiations Survey
- $\blacksquare \Longrightarrow$ perceived leadership
- data collected in years 2008-2022

total of 5530 responses

Questionnaire

Dear Participant at the UN Climate Change Conference in Marrakech, this questionnaire is part of a scientific study initiated in Bali in 2007. We would be grateful if you could complete it and return it to the person handing it out.

www.internationalnegotiationssurvey.se Linköping University

What is your primary role at the conference? Please tick one

 Negotiator in national delegation 	 Environmental NGO 	
 National government 	 Indigenous peoples 	
 Local government 	 Researcher/scientist 	
 UN or intergovernmental organisation 	 Other NGO, please specify: 	
 Business 	 Other, please specify: 	

2. What are your primary professional interests? You may tick several options

	Martin and the second s	
1	 Development issues 	 Other, please specify:
1	 Technology 	 Energy security
1	 Finance 	 Biodiversity and nature conservation
1	 Adaptation 	 LULUCF and REDD+
1	 Mitigation 	 Emissions trading

Which countries, party groupings and/or organisations have a leading role in the climate negotiations

For auestions 4-11. indicate your level of disaareement or aareement with the statements below on a scale of 1-7.

 \Rightarrow mean(corr(leadership, sp))=0.6

-Social power game

Model analysis

Validation: UNFCCC leadership

- Temporal trend for the EU is captured very well
- Less precise for other countries like China and US

Summary: the model-based social powers seem rather close to the perceived leadership!

Summary

Concatenated FJ model

- a two time scale model representing consecutive FJ discussion events
- opinions are contracting for each discussion
- Social power game
 - strategic game for the concatenated FJ model
 - allocate speaking opportunities to maximize social power

Results

- Early mover advantage: speaking more in early discussions makes an advantage
- Diminishing return law: later discussions have lower influence on the social power
- Application: UNFCCC, Paris Agreement

Summary

References

- L. Wang, C. Bernardo, Y. Hong, F. Vasca, G. Shi, C. Altafini, "Achieving consensus in spite of stubbornness: time-varying concatenated Friedkin-Johnsen models", CDC, 2021.
- (2) C. Bernardo, L. Wang, F. Vasca, Y. Hong, G. Shi, C. Altafini, "Achieving consensus in multilateral international negotiations: The case study of the 2015 Paris Agreement on climate change", Science Advances, 2021.
- (3) L. Wang, C. Bernardo, Y. Hong, F. Vasca, G. Shi, C. Altafini, 'Consensus in concatenated opinion dynamics with stubborn agents', TAC, 2022.
- (4) L. Wang, G. Chen, Y. Hong, G. Shi, C. Altafini, "A social power game for the concatenated Friedkin-Johnsen model", CDC, 2022.

L_Summary

Collaborators

Claudio Altafini

Guodong Shi

Carmela Bernado

Yiguang Hong

L_ Summary

Thank You!

