What is a Good Projection And Why We Should Care About It

prof. dr. Alexandru (Alex) Telea

Department of Information and Computing Science Utrecht University, the Netherlands

Projections

Why is this useful?

- no matter how large *n* is, we obtain a 2D scatterplot-like image (so it's visually scalable)
- point-to-point distance (in 2D) shows similarity of observations (in nD)
- coloring points by one attribute can show additional information on the observations

Projections are clearly useful tools for ML engineering But which projection is the *best*?

We can rephrase this question as: Which projection is correct?

Which projection is **bowled**?

An absolute judgement of correctness may not be possible (or even desirable)

Rephrase: Which projection is more faithful to the data?

Enter Projection Quality Metrics (PQMs)!

Projection Quality Metrics

Functions $\mathcal{M}(X, Y, C)$ taking a dataset X, its projection Y, and possibly class info C

- Are pairwise distances **distorted** in Y? \rightarrow Stress
- Are pairwise distances in *Y* correlated to those in X? \rightarrow Shepard goodness
- Are **neighborhoods** in *Y* different than those in X? \rightarrow Trustworthiness/Continuity
- ..

Dozens such metrics exist!

Metric	Definition	Туре	Range
Trustworthiness (M_t)	$1 - \frac{2}{NK(2n-3K-1)} \sum_{i=1}^{N} \sum_{j \in U_i^{(K)}} (r(i,j) - K)$	scalar	[0, 1]
Continuity (M_c)	$1 - \frac{2}{NK(2n-3K-1)} \sum_{i=1}^{N} \sum_{j \in V_i}^{N} (\hat{r}(i,j) - K)$	scalar	[0, 1]
Normalized stress (M_{σ})	$\frac{\sum_{ij} (\Delta^n(\mathbf{x}_i, \mathbf{x}_j) - \Delta^q(P(\mathbf{x}_i), P(\mathbf{x}_j)))^2}{\sum_{ij} \Delta^n(\mathbf{x}_i, \mathbf{x}_j)^2}$	scalar	[0 ,1]
Neighborhood hit (M_{NH})	$\sum_{i=1}^{N} rac{ j \in N_i^{(K)}: l_j = l_i }{KN}$	scalar	[0, 1]
Shepard diagram (S)	Scatterplot $(\mathbf{x}_i - \mathbf{x}_j , P(\mathbf{x}_i) - P(\mathbf{x}_j)), 1 \le i \le N, i \ne j$	point-pair	-
Shepard goodness (M_S)	Spearman rank correlation of Shepard diagram	scalar	[0, 1]
Average local error $(M_a(i))$	$\frac{1}{N-1}\sum_{j\neq i}\left \frac{\Delta^n(\mathbf{x}_i,\mathbf{x}_j)}{\max_{i,j}\Delta^n(\mathbf{x}_i,\mathbf{x}_j)} - \frac{\Delta^q(P(\mathbf{x}_i),\tilde{P}(\mathbf{x}_j))}{\max_{i,j}\Delta^q(P(\mathbf{x}_i),P(\mathbf{x}_j))}\right $	local (per-point)	[0 ,1]

Which projections are *faithful to data*?

surveys

Projection Acronym	Projection Full Name	Fodor et al. [18]	Hoffman et al. [1]	Yin et al. [19]	Maaten et al. [13]	Bunte et al. [15]	Engel et al. [27]	Sorzano et al. [12]	Cunningham et al. [23]	Gisbrecht et al. [21]	Liu et al. [2]	Xie et al. [24]	Nonato et al. [10]	Ours	
AE	Autoencoder				•						- 17			•	
CHL	Chalmers								•				•		
CLM	ClassiMap												•		
DM	Diffusion Maps				•								•	•	techniques
DML	Distance Metric Learning								•		-				
FA	Factor Analysis	•						•	•					•	
FD	Force-Directed												•		
FS	Feature Selection											•	•		
GDA GPLVM	Generalized Discriminant Analysis Gaussian Process Latent Variable Model													•••	
GTM	Generative Topographic Mapping							•					•		
ICA F-ICA	Independent Component Analysis FastICA	•						•	•						Big and unclear 'choice space'
NL-ICA	Nonlinear ICA	•													Eig and anoioar onoioo opaco
ISO	Isomap		•	•	•	•	•			•			•		
L-ISO	Landmark Isomap													•	
KLP	Kelp							•					•		
LAMP	LAMP Linear Discriminant Analysis										-	-	•	•	 50+ techniques
LE	Laplacian Eigenmaps				•	•			-	•	•		•	•	
LLC	Locally Linear Coordination			-	•								-	•	 12 main surveys
H-LLE	Hessian LLE			-	•					-	-			•	12 main ourveys
M-LLE LMNN	Modified LLE Large-Margin Nearest Neighbor Metric														 mainly theoretical discussion
LoCH	Local Convex Hull												•		
LPP	Locality Preserving Projection Linear Regression								•					•	
LSP	Least Square Projection												•	•	 many parameters
LISA L-LTSA	Local Tangent Space Alignment Linear Local Tangent Space Alignment				•								•		
MAF	Maximum Autocorrelation Factors								•						 very limited practical comparison
MCA	Manifold Charting Multiple Correspondence Analysis				•					•	-		•	•	vory minica practical companson
MCML	Maximally Collapsing Metric Learning													•	
L-MDS	Landmark MDS	•	•	•	•	•	•	•	•		•		•		
MG-MDS	Multi-Grid MDS Nonmetric MDS (Kruskal)		-				•						-		Due officier and the second second
ML	Manifold Learning		-				•						-		Practitioner duestions
MVU	Maximum Variance Unfolding				•	•				•			•		
L-MVU	Landmark MVU													•	
NeRV t-NeRV	Neighborhood Retrieval Visualizer					•								\parallel	
NMF	Nonnegative Matrix Factorization					-		•	•					•	• which projection is beet for my
NLM	Nonlinear Mapping Neural Networks	•											•		• which projection is best for my
PBC	Projection By Clustering													•	
PCA	Principal Curves Principal Component Analysis	•	•		•		•	•	•	•	•	•	•	•	context (requirements, data,)?
I-PCA	Incremental PCA							•						•	
K-PCA-P K-PCA-R	Kernel PCA (RBF)		•		•		•	•		•					 how to set its narameters?
K-PCA-S	Kernel PCA (Sigmoid)													•	
NL-PCA	Nonlinear PCA	•		•				•							how to moscure its auglity?
P-PCA R-PCA	Probabilistic PCA Robust PCA							-	•					•	• now to measure its quaity ?
S-PCA	Sparse PCA							•						•	
PLMP PLP	Part-Linear Multidimensional Projection Piecewise Laplacian-based Projection										-		•	$\parallel \neg$	
PLSP	Piecewise Least Square Projection						-							•	
PM PP	Principal Manifolds Projection Pursuit	•		•										\parallel	
RBF-MP	RBF Multidimensional Projection												•		
G-RP	Kandom Projections Gaussian Random Projection	•									+	•		╫. ┤	
S-RP	Sparse Random Projection													•	
R-SAM	Sammon Mapping Rapid Sammon (Pekalska)				•						+		•	╫. ┤	
SDR	Sufficient Dimensionality Reduction								•						
SFA SMA	Smacof								•				•		NO NO
SNE T_SNE	Stochastic Neighborhood Embedding					•				-	-		•		
SOM	Self-Organizing Maps	•		•		-		•		-	•		•		
ViSOM	ViSOM (Visualization-induced SOM) Stochastic Provimity Embedding			•											- Martin El
G-SVD	Generalized SVD							•						Ľ	
T-SVD TF	Truncated SVD Tensor Factorization							•						+ •]	Nor Allen and the state
UMAP	Uniform Manifold Approximation and Proj.													•	
Total	vector Quantization	•	6	7	14	9	9	19	14	8	6	4	28		

Let's measure projection quality metrics big-scale!

M. Espadoto et al (2019) Towards a Quantitative Survey of Dimension Reduction Techniques (IEEE TVCG)

Insights (1)

How good are projections, for which data?

for each projection P_i for each dataset D_j compute *optimal* quality μ_{ij} (param. grid search)

How easy is to get optimal quality?

for each projection P_i compute *variance* of params π_i yielding optimal quality over all datasets D_j

What we see

- no projection best for all dataset types
- some are quite **poor** in general (N-MDS, GDA)
- dataset type strongly influences quality (*imdb*: hard; *orl*: easy)
- hard to **tune** parameters to get optimal quality (large variance of π_i)

Insights (2)

How good are parameter-preset projections?

for each projection P_i π_i^{pre} = param values yielding most times optimal quality over all datasets D_j

for each projection P_i for each dataset D_j compute quality μ_{ij} using $\pi_i{}^{pre}$

What we see

- very similar image to earlier one (optimal techniques stay good when using presets)
- again, quality strongly depends on dataset type
- t-SNE, UMAP, IDMAP, PBC score best on average

Insights (3): Which projections perform similarly?

'Projection of projections' map

- one point = one technique
- 5 attributes (trustworthiness, continuity, norm. stress, neighborhood hit, Shepard goodness; averaged over all tested datasets)
- we see a clear quality trend
- helps choosing projections that behave similarly to a user-chosen one

Benchmark

Towards A Quantitative Survey of Dimension Reduction Techniques

MATEUS ESPADOTO, RAFAEL M. MARTINS, ANDREAS KERREN, NINA S. T. HIRATA AND ALEXANDRU C. TELEA

DATASETS EXPERIMENT MEASUREMENTS PROJECTIONS

Projections for all datasets (best parameter set for each projection)

All projections, in csv format

All open source

- projection implementations
- datasets
- metric engines
- visualization engines
- optimization engines
- test harness
- all Python code

Please share, use, and extend!

https://mespadoto.github.io/proj-quant-eval

Let's recap our results

Let's recap our results

Let's recap our results

Fooling Projection Quality Metrics

A crazy experiment follows...

Fooling Projection Quality Metrics

We have:

- dataset X
- projection Y
- a metric ${\mathcal M}$ having high values

We want:

- a new projection Y' of the same X
- with the same high values for ${\mathcal M}$
- poor data pattern preservation

 $\Rightarrow \mathcal{M}$ is not *sufficient* to identify a "good" projection

We start with

- some dataset X
- its projection **Y**
- a computed quality metric μ

Train a network Q_{θ} to mimic the metric μ

We'll need that in **the next step**

Train another network P_{ϕ} to mimic **Y** while **maximizing** μ for 10 epochs

Then, train P_{ϕ} to **only** maximize μ (given by Q_{θ}) This allows P_{ϕ} to **mess up** the projection

Create our fooled projection $P_{\phi}(\mathbf{X})$

Testing our Fooling

- 6 datasets (FashionMNIST, MNIST, HAR, Reuters, Spambase, USPS)
- 4 projection methods (t-SNE, UMAP, MDS, Isomap)
- 4 target metrics (+ all together)
- 4 parameter settings for each metric
- 17 metrics computed for each output

Metric	Parameters
Average Local Error	
Continuity and Trustworthiness	k
Class-Aware Continuity and Trustworthiness	k
Distance Consistency (DSC)	
Proportion of False (resp. True) Neighbors	k
Jaccard Similarity of Neighbor Sets	k
Mean Relative Ranking Errors	k
Neighborhood Hit	k
Normalized Stress	
Pearson Correlation of Distances	_
Procrustes Statistic	k
Scale-Normalized Stress	—
Shepard Goodness	

Results

We lose some quality but we get completely *meaningless* projections!

Messing it up even further (in a subtle way)

One will say: Sure, the quality of the right image is high but I am not fooled by that. It looks too unnatural!

Messing it up even further (in a subtle way)

More results

Learning to fool a metric messes up other metrics too!

M	NIST	ANG LO	Class P	and Continuit	anate Trustmoth	iness Distance	Consistency Fase M	Jaccard	MARE	Jata MAREP	Neighton Neighton	shood Hit Normali	Pearson Pearson	P Procrus	ies scale N	ornalized Stree	Goodress True Ne	othors Trustwe	thiness
	Isomap	+0.024 (0.281)	-0.017 (0.955)	+0.155 (0.801)	-0.048 (0.919)	+0.024 (0.494)	-0.192 (0.849)	+0.133 (0.086)	-0.190 (0.240)	+0.046 (0.056)	+0.238 (0.419)	-0.010 (0.929)	-0.441 (0.537)	-0.003 (0.990)	+0.193 (0.174)	-0.443 (0.528)	+0.192 (0.151)	+0.170 (0.763)	
JUITY	MDS	-0.055 (0.270)	+0.032 (0.888)	+0.120 (0.796)	+0.020 (0.850)	+0.053 (0.312)	-0.127 (0.853)	+0.084 (0.085)	-0.147 (0.226)	-0.032 (0.140)	+0.234 (0.331)	+0.726 (0.132)	-0.287 (0.629)	+0.024 (0.932)	+0.068 (0.132)	-0.277 (0.621)	+0.127 (0.147)	+0.113 (0.775)	
CONTIN	t-SNE	+0.032 (0.244)	-0.040 (0.985)	-0.047 (0.984)	-0.048 (0.934)	-0.348 (0.804)	+0.146 (0.556)	-0.116 (0.301)	+0.032 (0.027)	+0.049 (0.040)	-0.245 (0.855)	+0.001 (0.915)	-0.150 (0.422)	-0.014 (0.988)	+0.151 (0.158)	-0.105 (0.393)	-0.146 (0.444)	-0.042 (0.951)	
	UMAP	+0.014 (0.244)	-0.036 (0.988)	-0.028 (0.983)	-0.031 (0.931)	-0.302 (0.845)	+0.072 (0.586)	-0.056 (0.274)	+0.000 (0.051)	+0.039 (0.041)	-0.185 (0.854)	-0.012 (0.907)	-0.081 (0.400)	-0.006 (0.988)	+0.096 (0.172)	-0.066 (0.367)	-0.072 (0.414)	-0.011 (0.940)	
0.919				-0.048				-0.033				-0.006				0.035			
	Re	ferenc	e		Foole	d (raw)			F	ooled	(3 post	proces	sing va	ariants)			

Check it up yourself: https://amreis.github.io/fool-proj-metrics/

How well can we fool *all* metrics?

quality

quality

Red: metric we aim to fool

How does fooling a metric affect other metrics?

1.00 Correlation of variations ΔM Jaccard **True Neighbors** 0.75 False Neighbors Trustworthiness - 0.50 Class-Aware Trustw. MRRE Data - 0.25 Continuity -Class-Aware Cont. MRRE Projection -- 0.00 Neighborhood Hit Dist. Consistency -- -0.25 Procrustes -Avg. Local Error -- -0.50 Scale-Norm. Stress -Normalized Stress --0.75Pearson R -Shepard Goodness Shepard Goodness -1.00Tusworthiness Class Aware Trustin. scale Norm. Stress Normalized Stress Neighborhood Hit ANO. LOCALETON True Neighbors Fase Neighbors MRREData Dist. Consistency Class Anale Cont. Materolection

Blue cells: Metrics that can be fooled 'together' (train to fool one metric fools also the others)

⇒ **uncorrelated** metrics are most interesting to study

Which metrics to use?

Cluster all 17 metrics on **correlation** \Rightarrow correlated metrics get in same cluster

Pick one metric in each cluster (plus the unclustered ones)

- % False Neighbors
- 🛛 % True Neighbors 😭

- Avg. Local Error
- Pearson Corr. of Distances
- Shepard Goodness
- Scale-Normalized Stress

3

- Class-Aware Continuity
- Continuity

2

- MRRE Proj.

- Class-Aware Trustworthiness

4

- Trustworthiness

1

- MRRE Data
- Distance Consistency 🔀
- Neighborhood Hit 🔀
- Normalized Stress
- Procrustes Statistic

The Main Takeaway

HAR (t-SNE projection)

Our fooled projection

T: 0.99 C: 0.99 NH: 0.94 Jac: 0.37 T: 0.98 C: 0.97 NH: 0.87 Jac: 0.13

Thanks go to my team

webspace.science.uu.nl/~telea001

a.c.telea@uu.nl

vig.science.uu.nl