Modeling tumor-immune dynamics with stochastic delay differential equations

- Adam L. MacLean University of Southern California
- 🥑 @adamlmaclean
 - ELLIIT Workshop Lund May 6th 2022

Overview

- Metastatic breast cancer is a leading cause of death worldwide
- Immunotherapies in combination with epigenetic modulators show great promise but...
- their effects shaping tumor-immune interactions are poorly understood
- We develop models of stochastic tumor-immune dynamics informed by scRNA-seq metastasis data
- Modeling & inference predict a key role for MDSC activation and offer new avenues for precision therapy

No cell is an island

The metastatic tumor microenvironment (TME)

Credit: MD Anderson Cancer Center

- for their own good

• Tumors do not metastasize or grow without co-opting systems (angiogenesis, immune response)

• The set of cell types and interactions that define the TME is large, complex, and dynamic

Myeloid-derived suppressor cells (MDSCs)

- Pathologically activated monocytes/neutrophils with potent immunosuppressive activity
- MDSCs have been implicated in the regulation of immune responses in many biological contexts: cancer, inflammation, wound healing, autoimmune disorders, ...
- Two subtypes of MDSC are typically defined: monocytic (M-MDSC) and granulocytic (G-MDSC), also known as poly-mononuclear (NB labels somewhat controversial - I don't want to get into a neutrophil fight)

Bergenfelz & Leandersson (2020) Front Oncol; Veglia et al. (2021) Nat Rev Immun

Why MDSCs in breast cancer?

Volume 10, Issue 5

1 May 2022

RESEARCH ARTICLES | MAY 03 2022

Entinostat Decreases Immune Suppression to Promote Antitumor Responses in a HER2⁺ Breast Tumor Microenvironment 🕁

Dimitrios N. Sidiropoulos; Christine I. Rafie 💿 ; Julie K. Jang; Sofi Castanon; Aaron G. Baugh 💿 ; Edgar Gonzalez 💿 ; Brian J. Christmas; Valerie H. Narumi; Emily F. Davis-Marcisak 💿 ; Gaurav Sharma; Emma Bigelow; Ajay Vaghasia; Anuj Gupta; Alyza Skaist; Michael Considine; Sarah J. Wheelan 💿 ; Sathish Kumar Ganesan 💿 ; Min Yu; Srinivasan Yegnasubramanian; Vered Stearns 💿 ; Roisin M. Connolly 💿 ; Daria A. Gaykalova ; Luciane T. Kagohara 💿 ; Elizabeth M. Jaffee 💿 ; Elana J. Fertig 🖾 ; Evanthia T. Roussos Torres 🔽 回

Check for updates

+ Author & Article Information

Cancer Immunol Res (2022) 10 (5): 656-669.

Sirodopolous et al. (2022) Cancer Immunol Res

- V: Vehicle E: Entinostat P: anti-PD-1
- C: anti-CTLA-4

(specifically breast-to-lung metastasis)?

What is the role of MDSC suppression in metastasis

The TME in breast-to-lung metastasis

Clustering scRNA-seq NT2.5LM mouse metastasis model (BALB/c)

UMAP1

MDSCs

- T cells (Treg, TH, TC)
- monocytes/macrophages
- Iung
- lipofibroblasts
- cancer
- NK cells
- B cells

Evanthia Roussos Torres lab, unpublished

of metastasis?

(What does the immune system do?)

What minimal model captures the dynamics between tumor cells and MDSCs at the site

Modeling tumor-immune dynamics

10

Modeling tumor-MDSC dynamics

11

Modeling tumor-MDSC dynamics

SDDE model:

$$\begin{aligned} \frac{dx_{\rm T}(t)}{dt} &= \alpha_7 x_{\rm T}(t) \log \left(\frac{\alpha_8}{x_{\rm T}(t)}\right) - \alpha_9 x_{\rm T}(t) x_{\rm NK}(t) - \alpha_{10} x_{\rm T}(t) x_{\rm CTL}(t) - \alpha_{11} x_{\rm T}(t) + \xi_{\rm T}(t), \\ \frac{dx_{\rm MDSC}(t)}{dt} &= \alpha_1 + \alpha_2 \frac{x_{\rm T}(t-\tau_1)}{\gamma_1 + x_{\rm T}(t-\tau_1)^n} - \alpha_3 x_{\rm MDSC}(t) + \xi_{\rm MDSC}(t), \\ \frac{dx_{\rm NK}(t)}{dt} &= \alpha_{12} + \alpha_{13} \frac{x_{\rm T}(t)^2}{\gamma_2 + x_{\rm T}(t)^2} - \alpha_{14} x_{\rm MDSC}(t) x_{\rm NK}(t) - \alpha_{16} x_{\rm NK}(t) + \xi_{\rm NK}(t), \\ \frac{dx_{\rm CTL}(t)}{dt} &= \alpha_{17} x_{\rm T}(t) x_{\rm NK}(t) + \alpha_{18} \frac{x_{\rm T}(t)^2}{\gamma_3 + x_{\rm T}(t)^2} - \alpha_{19} x_{\rm MDSC}(t) x_{\rm CTL}(t) - \alpha_{21} x_{\rm CTL}(t) + \xi_{\rm CTL}(t). \end{aligned}$$

Tumor-MDSC model parameters

Notation	Description	Value	Units	Reference	Range
τ_1	delay parameter for MDSCs	varies	days	-	-
$x_{\mathrm{T}}(t), t \leq 0$	initial condition for tumor cells	1 or 2	-	-	-
$x_{\mathrm{MDSC}}(0)$	initial condition for MDSCs	α_1/α_3	-	-	-
$x_{\rm NK}(0)$	initial condition for NK cells	$\frac{\alpha_3\alpha_{12}}{\alpha_1\alpha_{14}+\alpha_3\alpha_{16}}$	-	-	-
$x_{\rm CTL}(0)$	initial condition for CTL cells	0	-	-	-
n	delay exponent	1	-	set	-
α_1	MDSCs circulating rate	10^2 , varies	$days^{-1}$	estimated [6]	$[0, 10^3]$
α_2	MDSCs expansion coefficient	108	$days^{-1}$	[1, 10, 1, 55]	$[10^7, 10^9]$
α_3	MDSCs death rate	0.2	$days^{-1}$	[48, 59]	[0, 1]
α_7	tumor growth rate	10^{-1}	$days^{-1}$	[34, 17, 49]	$[10^{-2}, 5 \times 10^{-1}]$
α_8	tumor maximum size	107	-	estimated	$[10^6, 10^8]$
α_9	tumor cells inhibition rate by NK cells	$3.5 imes 10^{-6}$	$days^{-1}$	[34, 17, 49]	$[10^{-7}, 10^{-6}]$
α_{10}	tumor cells inhibition rate by CTL cells	1.1×10^{-7}	$days^{-1}$	[34]	$[10^{-7}, 10^{-6}]$
α_{11}	tumor cell death rate	0, varies	$days^{-1}$	[55]	[0, 0.01]
α_{12}	NK cells circulating rate	1.4×10^{4}	$days^{-1}$	[34]	$[10^3, 10^5]$
α_{13}	NK cells expansion coefficient	2.5×10^{-2}	$days^{-1}$	[34, 17, 49]	$[10^{-2}, 10^{-1}]$
α_{14}	NK cells inhibition rate by MDSCs	4×10^{-5} , varies	$days^{-1}$	[55]	$[10^{-5}, 10^{-4}]$
α_{16}	NK cells death rate	4.12×10^{-2}	$days^{-1}$	[34]	$[10^{-2}, 10^{-1}]$
α_{17}	CTL stimulation by tumor-NK cell interaction	1.1×10^{-7}	$days^{-1}$	5, 38	$[10^{-7}, 10^{-6}]$
α_{18}	CTL expansion coefficient	10^{-1}	$days^{-1}$	[29]	$\left 5 \times 10^{-2}, 5 \times 10^{-1} \right $
α_{19}	CTL inhibition rate by MDSCs	10^{-4} , varies	$days^{-1}$	[55]	$[5 \times 10^{-5}, 5 \times 10^{-4}]$
α_{21}	CTL death rate	2×10^{-2}	$days^{-1}$	[5, 49]	$[10^{-2}, 10^{-1}]$
γ_1	steepness of MDSC production	10 ¹⁰	-	[1, 55]	$[10^9, 10^{11}]$
γ_2	steepness of NK production	2.02×10^7	-	[34 , 49]	$[10^6, 10^8]$
γ_3	steepness of CTL production	2.02×10^{7}	-	[34, 17, 49]	$[10^6, 10^8]$

Modeling tumor-MDSC dynamics

Tumor-free steady state

tumor at its carrying capacity

$$egin{array}{rll} \hat{x}_{\mathrm{T}}&=&0,\ \hat{x}_{\mathrm{MDSC}}&=&rac{lpha_{1}}{lpha_{3}},\ \hat{x}_{\mathrm{NK}}&=&rac{lpha_{3}lpha_{12}}{lpha_{1}lpha_{14}+lpha_{3}lpha_{16}},\ \hat{x}_{\mathrm{CTL}}&=&0, \end{array}$$

 \hat{x}

$$\hat{x}_{\text{MDSC}} = \frac{\alpha_{1}(\hat{x}_{\text{T}} + \gamma_{1}) + \alpha_{2}\hat{x}_{\text{T}}}{\alpha_{3}(\hat{x}_{\text{T}} + \gamma_{1})}, \qquad (22)$$

$$\hat{x}_{\text{NK}} = \frac{\alpha_{3}(\hat{x}_{\text{T}} + \gamma_{1})\left(\alpha_{12}\left(\hat{x}_{\text{T}}^{2} + \gamma_{2}\right) + \alpha_{13}\hat{x}_{\text{T}}^{2}\right)}{\left(\hat{x}_{\text{T}}^{2} + \gamma_{2}\right)\left(\alpha_{1}\alpha_{14}(\hat{x}_{\text{T}} + \gamma_{1}) + \alpha_{2}\alpha_{14}\hat{x}_{\text{T}} + \alpha_{3}\alpha_{16}(\hat{x}_{\text{T}} + \gamma_{1})\right)}, \qquad (23)$$

$$\hat{x}_{\text{CTL}} = \frac{\alpha_{3}\hat{x}_{\text{T}}(\gamma_{1} + \hat{x}_{\text{T}})g_{1}}{\left(\gamma_{2} + \hat{x}_{\text{T}}^{2}\right)\left(\gamma_{3} + \hat{x}_{\text{T}}^{2}\right)g_{2}}, \qquad (24)$$

where

$$g_{1} = (\hat{x}_{T}(\alpha_{1}\alpha_{14}\alpha_{18}(\gamma_{1} + \hat{x}_{T})(\gamma_{2} + \hat{x}_{T}^{2}) + \alpha_{3}\alpha_{13}\alpha_{17}\hat{x}_{T}(\gamma_{1} + \hat{x}_{T})(\gamma_{3} + \hat{x}_{T}^{2}) + \alpha_{2}\alpha_{14}\alpha_{18}\hat{x}_{T}(\gamma_{2} + \hat{x}_{T}^{2})) + \alpha_{3}\alpha_{16}\alpha_{18}(\gamma_{1} + \hat{x}_{T})(\gamma_{2} + \hat{x}_{T}^{2})) + \alpha_{3}\alpha_{12}\alpha_{17}(\gamma_{1} + \hat{x}_{T})(\gamma_{2} + \hat{x}_{T}^{2})(\gamma_{3} + \hat{x}_{T}^{2})), g_{2} = (\alpha_{1}\alpha_{14}(\gamma_{1} + \hat{x}_{T}) + \alpha_{2}\alpha_{14}\hat{x}_{T} + \alpha_{3}\alpha_{16}(\gamma_{1} + \hat{x}_{T}))(\alpha_{1}\alpha_{19}(\gamma_{1} + \hat{x}_{T}) + \alpha_{2}\alpha_{19}\hat{x}_{T} + \alpha_{3}\alpha_{21}(\gamma_{1} + \hat{x}_{T})))$$

"R₀" of a new metastasis

 $\mathcal{G} = \alpha_7 \log \left(\alpha_8\right) - \frac{\alpha_3 \alpha_9 \alpha_{12}}{\alpha_1 \alpha_{14} + \alpha_3 \alpha_{16}} - \alpha_{11}.$

or

UMAP2

Deterministic delay tumor-MDSC dynamics

Delay = 0 days (i.e. ODE model)

Stochastic delay tumor-MDSC dynamics

In the presence of noise not all tumors persist

Delay = 50 days

MDSC delay controls the growth dynamics & probability of establishing a new metastasis

18

Where are we going next?

- in the presence of MDSCs
- single-cell data from mouse model)
- Use patient-specific tumor response models to:
 - 1. discover new biomarkers
 - 2. characterize the TMEs
 - 3. propose best course of treatment

Validate key mechanisms of MDSC action ex vivo: T/NK cell proliferation assays

Determine drug-combination specific effects on tumor-MDSC dynamics (fit using)

• Fit patient-specific tumor-MDSC dynamics using response data from NCI-9844

Acknowledgements

MacLean Lab @USC Megan Franke MeiLu McDermott Jesse Kreger Ivy Xiong Xiaojun Wu

<u>Collaborators</u> @USC Evanthia Roussos-Torres Edgar Gonzalez Aaron Baugh

Johns Hopkins Elana Fertig

macleanlab.usc.edu y adamlmaclean

R35GM143019-01

USCDornsife College of Letters, Arts and Sciences

