
Data-Efficient Model
Discovery with Scientific
Machine Learning

Chris Rackauckas
Director of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of
Technology, CSAIL

Director of Scientific Research,
Pumas-AI

How do we simultaneously use both sources of knowledge?

Scientific Machine Learning is model-based data-efficient machine learning

Good
Predictions

How do we simultaneously use both sources of knowledge?

Scientific Machine Learning is model-based data-efficient machine learning

Good
Predictions

Numerical Analysis?

Outline

Mixing equation discovery into epidemic modeling workflows will revolutionize the field

1. Scientific Machine Learning Applications
Domain knowledge with machine learning

2. Scientific Machine Learning Software
Fast and automated simulation and model discovery

Universal (Approximator) Differential Equations

Universal (Approximator) Differential Equations

UODEs show accurate extrapolation and generalization

Extrapolation is successful in Lotka-Volterra…

But was also demonstrated with
the LIGO Black Hole dynamics
from the gravitational wave data,
and many other examples!

SciML Shows how to build
Earthquake-Safe Buildings

Scientific machine learning for earthquake-
safe buildings

Structural identification with physics-
informed neural ordinary differential
equations
Lai, Zhilu, Mylonas, Charilaos,
Nagarajaiah, Satish, Chatzi, Eleni

SciML for Predicts Longer Lasting Battery Materials

Researches at CMU used
Universal Differential
Equations to improve models
of Battery Degradation to
Suggest Better Battery
Materials

Universal Battery Performance and Degradation Model
for Electric Aircraft
Alexander Bills, Shashank Sripad, William L. Fredericks,
Matthew Guttenberg, Devin Charles, Evan Frank,
Venkatasubramanian Viswanathan

SciML for Generates Predictive Combustion Models

Fast automated learning of combustion
models for accelerated engineering

Arrhenius.jl: A Differentiable Combustion Simulation Package
Weiqi Ji, Xingyu Su, Bin Pang, Sean Joseph Cassady, Alison M. Ferris, Yujuan Li,
Zhuyin Ren, Ronald Hanson, Sili Deng

SciML for Generates Predictive Models of New Propulsion Devices

SciML predicting the properties
of new propulsion devices

Data-Driven Surrogates of Rotating Detonation Engine
Physics with Neural ODEs and High-Speed Camera
Footage
James Koch

SciML for Controlling Qubit Preparation in Quantum Circuits

Future quantum computers will be made possible by SciML

Control of stochastic quantum dynamics by differentiable programming
Frank Schäfer, Pavel Sekatski, Martin Koppenhöfer, Christoph Bruder and Michal
Kloc

SciML for Builds Models of Biological Systems

Better models of gene expression to
understand biological systems

Neural network aided approximation and
parameter inference of stochastic models
of gene expression
Qingchao Jiang, Xiaoming Fu, Shifu Yan, Runlai Li,
Wenli Du, Zhixing Cao, Feng Qian, Ramon Grima

Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural
Ordinary Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021

Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Result: Probability
of Missing

Mechanisms

Demonstration of UDE Epidemic Models

Dandekar, Raj, Chris Rackauckas, and George
Barbastathis. "A machine learning aided global
diagnostic and comparative tool to assess effect
of quarantine control in Covid-19 spread." Cell
Patterns (2020).

QSIR Predicts Quarantine Measure Evolution

The QSIR Learns A Simplified SIR
With Quarantine, and Quarantine

Predictions are Within Days of
Reported Changes

QSIR is robust to having small amounts of sample data

QSIR is robust to having small
amounts of sample data

DeepNLME: Integrate neural networks into traditional NLME modeling
DeepNLME is SciML-enhanced modeling for clinical trials

• Automate the discovery of predictive
covariates and their relationship to
dynamics

• Automatically discover dynamical
models and assess the fit

• Incorporate big data sources, such as
genomics and images, as predictive
covariates

DeepNLME is SciML-enhanced modeling for clinical trials

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

Covariates

Structural Model (pre)

Dynamics

Math: Find (𝜃𝜃, 𝜂𝜂) such that E 𝜂𝜂 = 0

Intution: 𝜂𝜂 (the random effects) are a fudge factor

Find 𝜃𝜃 (the fixed effect, or average effect) such that you
can predict new patient dynamics as good as possible

Requires special fitting procedures (Pumas)

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.
Pumas software has surpassed our expectations on its accuracy and ease of use. We
are encouraged by its capability of supporting different types of pharmacometric
analyses within one software. Pumas has emerged as our "go-to" tool for most of our
analyses in recent months. We also work with Pumas-AI on drug development
consulting. We are impressed by the quality and breadth of the experience of Pumas-AI
scientists in collaborating with us on modeling and simulation projects across our
pipeline spanning investigational therapeutics and vaccines at various stages of clinical
development

Husain A. PhD (2020)
Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

The Impact of Pumas (PharmacUtical Modeling And Simulation)

“ Built on SciML

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

Covariates

Structural Model (pre)

Dynamics

Math: Find (𝜃𝜃, 𝜂𝜂) such that E 𝜂𝜂 = 0

Intution: 𝜂𝜂 (the random effects) are a fudge factor

Find 𝜃𝜃 (the fixed effect, or average effect) such that you
can predict new patient dynamics as good as possible

How can we find
these models?

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

Covariates

Structural Model (pre)

Dynamics

Math: Find (𝜃𝜃, 𝜂𝜂) such that E 𝜂𝜂 = 0

How can we find
these models?

Idea: Parameterize the model such that the models can
be neural networks, where the weights of the neural

networks are fixed effects!

Indirect learning of unknown functions!

DeepNLME in Practice: Data Mining for Predictive Covariates

Automate the discovery of covariate models

• Train convolutional neural networks to
incorporate images as covariates

• Train transformer models to utilize natural
language processing on electronic health
records

• Utilize automated model discovery to prune
genomics data to find the predictive subset

Utilize GPU acceleration for neural networks Currently being tested on clinical trial data

3D simulations are
high resolution but
too expensive.

Can we learn faster
models?

High fidelity surrogates of ocean columns for climate models

Derive a 1D approximation to
the 3D model

Incorporate the “convective
adjustment”

Only okay, but why?

Neural Networks Infused into Known Partial Differential Equations

Good Engineering Principles: Integral Control!

But how do you fit a neural
network inside of a simulator?

How do we do this effectively?

SciML is a software problem.

There are many different ways, all with engineering trade-offs

Method Stability Stiff Performance Scaling Memory Usage

BacksolveAdjoint Poor 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) Low. O(1)

InterpolatingAdjoint Good 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) High. Requires full continuous solution of forward

QuadratureAdjoint Good 𝑂𝑂(𝑠𝑠3 + 𝑝𝑝) Higher. Requires full continuous solution of forward and
Lagrange multiplier

BacksolveAdjoint
(Checkpointed) Okay 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

InterpolatingAdjoint
(Checkpointed) Good 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

ReverseDiffAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

TrackerAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

ForwardLSS/AdjointLSS/N
ILSS Chaos Not even comparable: expensive. Super duper high OMG.

Differentiating Ordinary Differential Equations: The Trick

Differentiating Ordinary Differential Equations: Integration By Parts

Differentiating Ordinary Differential Equations: The Final Form

Differentiating Ordinary Differential Equations: Summary

Summary: 1. Solve

2. Solve

3. Solve

Differentiating Ordinary Differential Equations: Step 2 Details

2. Solve

How do you get u(t) while solving backwards?
3 options!

1.

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

(𝑡𝑡)

(𝑡𝑡)(𝑡𝑡)
(𝑡𝑡)

Adjoint Differential Equation

This term is traditionally computed via differentiation and then multiplied to
lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized
backpropagation! Six choices for this computation:

• Numerical
• Forward-mode
• Reverse-mode traced compiled graph

(ReverseDiffVJP(true))
• Fast method for scalarized

nonlinear equations
• Requires CPU and no branching

(generally used in SciML)
• Reverse-mode static

• Fastest method when applicable
• Reverse-mode traced

• Fast but not GPU compatible
• Reverse-mode vector source-to-source

• Best for embedded neural
networks

How the gradient (adjoint) is calculated also matters!

Differentiating Ordinary Differential Equations: Step 3 Details

3. Solve

How do you calculate the integral?

1. Store 𝜆𝜆(𝑡𝑡) while solving backwards (dense output)

2. 𝜇𝜇′ = −𝜆𝜆∗𝑓𝑓𝑝𝑝 + 𝑔𝑔𝑝𝑝 where 𝜇𝜇 𝑇𝑇 = 0

What’s the trade-off between these ideas?

(𝑡𝑡)

Some methods are “mathematically
correct”, but “numerically incorrect”

SciML is a software problem.

The adjoint equation is an ODE!

How do you get z(t)? One suggestion:
Reverse the ODE

Timeseries is not
stored, therefore
O(1) in memory!

Machine Learning Neural Ordinary Differential Equations

Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information
processing systems. 2018.

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation
APIs for accelerated algorithm development and benchmarking." Advances in
Engineering Software 132 (2019): 1-6.

“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

Approximating the derivative in x has two choices: forwards or
backwards

If you discretize in the wrong direction you get unconditional
instability

You need to understand the engineering principles and the numerical
simulation properties of domain to make ML stable on it.

Differentiation of Chaotic Systems: Shadow Adjoints

chaotic systems: trajectories diverge to o(1) error … but
shadowing lemma guarantees that the solution lies on
the attractor

• Shadowing methods in DiffEqSensitivity.jl• AD and finite differencing fails!

https://frankschae.github.io/post/shadowing/

Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

𝑢𝑢′ 𝑡𝑡 = 𝜆𝜆𝑢𝑢(𝑡𝑡), plot the error in the reverse solve:

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

How do you get u(t) while solving backwards?
3 options!

1.

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

Unstable

High memory

More Compute

Each choices has an engineering trade-off!

Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

𝑢𝑢′ 𝑡𝑡 = 𝜆𝜆𝑢𝑢(𝑡𝑡), plot the error in the reverse solve: Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:

2𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠

Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

𝑂𝑂 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠 3

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

Problems With Naïve Adjoint Approaches On Stiff Equations

Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:

2𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠

Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

𝑂𝑂 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠 3

Thus, adjoint cost without extra memory:

𝑂𝑂(𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠3 + parameters)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

How do you calculate the integral?

1. Store 𝜆𝜆(𝑡𝑡) while solving backwards (dense output)

2. 𝜇𝜇′ = −𝜆𝜆∗𝑓𝑓𝑝𝑝 + 𝑔𝑔𝑝𝑝 where 𝜇𝜇 𝑇𝑇 = 0

3. Use an IMEX integrator and solve 𝜇𝜇′ = −𝜆𝜆∗𝑓𝑓𝑝𝑝 + 𝑔𝑔𝑝𝑝 explicitly

4. Our paper describes a 4th way!

Size = Number of
Parameters

High memory

The math has >20 ways to implement.

Every choice makes engineering trade-
offs.

SciML is a software problem.

DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

When optimally JIT compiling Py/Mat/R

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network

DifferentialEquations.jl is:

• Faster than C codes like CVODE and
Fortran codes like LSODE/LSODA on
stiff equations

• Has symbolic compilers to
automatically improve numerical
stability and performance of user
code

This excludes the extra 2x from
symbolics and 2x from sparse parallel
compilation!

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and feature-rich
ecosystem for solving differential equations in julia." Journal of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Gowda, Shashi, Yingbo Ma, Alessandro Cheli, Maja Gwozdz, Viral B. Shah, Alan
Edelman, and Christopher Rackauckas. "High-performance symbolic-numerics via
multiple dispatch." To appear in ACM Communications in Computer Algebra
(2021).

Ma, Yingbo, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah,
and Chris Rackauckas. "ModelingToolkit: A Composable Graph Transformation
System For Equation-Based Modeling." Submitted (2021).

1122 Stiff ODEs: BCR Chemical Reaction Network

DiffEqSensitivity.jl: Every adjoint is optimized for a different case

Method Stability Stiff Performance Scaling Memory Usage

BacksolveAdjoint Poor 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) Low. O(1)

InterpolatingAdjoint Good 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) High. Requires full continuous solution of forward

QuadratureAdjoint Good 𝑂𝑂(𝑠𝑠3 + 𝑝𝑝) Higher. Requires full continuous solution of forward and
Lagrange multiplier

BacksolveAdjoint
(Checkpointed) Okay 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

InterpolatingAdjoint
(Checkpointed) Good 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

ReverseDiffAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

TrackerAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

ForwardLSS/AdjointLSS/N
ILSS Chaos Not even comparable: expensive. Super duper high OMG.

How the adjoint is calculated also matters!

Gradient
calculations on
a stiff PDE,
varying dt Methods with Reverse-

mode vjp seeding + new
adjoints give 3 orders of

magntitude improvement!

Rackauckas, Christopher, et al. "A comparison of
automatic differentiation and continuous sensitivity
analysis for derivatives of differential equation
solutions." 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 1-8.

The SciML ecosystem is the only one with fully-featured
Universal Differential Equations

Feature SciML (Julia) Sundials (C++) PETSc TS (C++) torchdiffeq Jax

Stiff ODEs and DAEs Hundreds of methods tested and
tuned on hundreds of problems Yes (CVODE_BDF and IDA) Yes (Rosenbrock-W

methods, BDFs, etc.) None

None (one in progress,
~200 times slower than
SciPy according to the
author!)

Adjoint Methods

11 choices tuned for different
scenarios, including stabilized
checkpointing, differentiate the
solver, reversing adjoint

Stabilized checkpointing,
no AD integration, no chaos
compatibility

Discrete sensitivity
analysis,
no AD integration, no chaos
compatibility

Requires reversing the
ODE or differentiate the
solver (tracing)

Requires reversing the ODE

Parallelism GPU, MPI, multithreading GPU, MPI, multithreading GPU, MPI, and
multithreading GPU GPU

Event handling Yes Yes Yes None None

SDEs

Lots of methods, including
stabilized, methods for stiff
equations, high strong order,
high weak order

None None

torchsde, only diagonal
noise (or order 0.5),
requires reversing the
SDE

None

Delays All ODE methods None None None None

Relative time to solve
These ODEs are non-stiff ODEs from astrodynamics, chemical kinetics,
numerical weather prediction, etc. and include scalarized operations

Spiral Neural ODE (from original Neural ODE paper)
Geometric Brownian Motion of size 4

Note: performance is not necessarily indicative of
large “pure” neural equations

The performance difference in UDEs is not small
when the right solvers and adjoints are chosen

Keeping Neural Networks Small Keeps Speed For Inverse Problems

DiffEqFlux.jl (Julia UDEs)

DeepXDE (TensorFlow Physics-Informed NN)
Problem: parameter estimation
of Lorenz equation from data
On t in (0,3)

Note on Neural Networks “Outperforming” Classical Solvers

Note on Neural Networks “Outperforming” Classical Solvers

Oh no, we’re doomed!

Wait a second?

Julia’s numerical
solver is faster by

7,000x

Julia: Laptop CPU
DeepONet: Tesla V100 GPU

Wait a second?

Julia’s numerical
solver is faster by

7,000x

Similar story on Fourier
Neural Operator results!

How come so far off?

Code Optimization in Machine Learning vs Scientific Computing

Big O(n^3) operations?
Just use a GPU

Don’t worry about overhead
You’re fine!

Simplest code is ~3x from optimized

Scientific codes
O(n) and O(n^2)

operations

Mutation and
Memory management: 10x

Manual SIMD: 5x

…

What happens when you specialize computations?

Scientific codes
O(n) and O(n^2)

operations

Mutation and
Memory management: 10x

Manual SIMD: 5x

…

SimpleChains.jl

Doing small network scientific
machine learning in Julia on CPU

5x faster than PyTorch on GPU

(10x Jax on CPU)

Details in the release blog post

Only for size ~100 layers and
below!

What happens when you specialize computations?

SimpleChains.jl

Doing small network scientific
machine learning in Julia on CPU

5x faster than PyTorch on GPU

(10x Jax on CPU)

Details in the release blog post

Only for size ~100 layers and
below!

Moral of the Story

General computations are generally
less optimized

Physics-informed neural networks
are an extremely general solver…

QED

Differentiable simulation scales
extremely well, if and only if you

work on the implementation issues
which arise in every equation type.

SciML Open Source Software
Organization
sciml.ai

● DifferentialEquations.jl: 2x-10x Sundials, Hairer, …
● DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
● ModelingToolkit.jl: 15,000x Simulink
● Catalyst.jl: >100x SimBiology, gillespy, Copasi
● DataDrivenDiffEq.jl: >10x pySindy
● NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
● NeuralOperators.jl: ~3x original papers (more optimizations

required)
● ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
● SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
● DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention…

If you work in SciML and think optimized and maintained implementations
of your method would be valuable, please let us know and we can add it to
the queue.
Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

SciML OSS Org is Impacting Many Modeling and Simulation Applications

Modeling Spacecraft Separation Dynamics in Julia – SIAM CSE 2021
Jonathan Diegelman, NASA Launch Services Program and A.I. Solutions

15,000x acceleration over Simulink using Julia’s ModelingToolkit.jl

175x acceleration for Pfizer’s quantitative
systems pharmacology team via automated GPU
acceleration

2020: American Conference on Pharmacometrics
(ACoP) Quality Award

https://juliacomputing.com/case-studies/pfizer/

Bridging computational science and machine learning helps improve all aspects of discovery

Conclusion

Faster Drug Development More efficient batteries

Energy Efficient Buildings Climate modeling for improved agriculture

Machine Learning Surrogates as Approximate Transformations

Describe how the subsystems relate

If you build a machine learning method that outputs
differential-algebraic equations, then it qualifies as an
“approximate” stable transformation

● Take in a differential equation and the outputs to surrogatize over
● Create a new differential equation system that is approximately the

same input/output mapping (dimensionality reduction)
● Represent that system as an MTK model

Because it’s approximate, it needs user-intervention.

We developed the continuous-time echo state network as a surrogate
method which is robust to stiffness and has these properties.

One way to visualize: reservoir computing
Fix a random dynamical process and find a
projection to fit the system

Another interpretation: Semi-Neural ODE
Fix the parameters of the first layer and only
train the last layer. By doing so, you can
transform the training problem into a linear
solve via SVD.

Continuous-Time Echo State Networks: Avoid Gradients and Use an Implicit Fit

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

The Julia implementation is 6x faster than Dymola for the full
cycle simulation.

● Dymola reference model: 35.3 s
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times
between 10x-95x over the Julia baseline. Acceleration
depends on the size of the reservoir in the CTESN. The
surrogate approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff
vapor-compression
cycle model

Total speedup over Dymola: 60-570x

Training set
size

Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E: Accelerated Simulation of Building Energy Efficiency

● COPASI simulation: crashed upon reading (“not responding”)
● MATLAB SBMLToolbox: 870s to read, 1.13s to simulate
● Julia vanilla: 60s to read, 0.6s to simulate
● Julia surrogatized simulation: ~instant to read, 0.062s to simulate

Julia vanilla outperforms MATLAB’s SBMLToolbox

CTESN predictions at new parameters have < 5% error, are
almost instant to read and 100x faster to simulate

(Julia SBML reader is incomplete: full Jacobians right now
and no e-graph simplification. Probably ~10x performance
left on the table)

1265 ODE model of
spatial cell signaling in
Arabidopsis

Total speedup: 100x vs MATLAB SBMLToolbox

Take Arbitrary Large Models and Automatically Accelerate with CTESNs

The Transformed Models are Just Components: Compose As Normal

Embed Surrogates

Accelerate large (100,000 ODE) simulations
without retraining by using an accelerated HVAC

component inside of different building models

Large Building Models 100K Equations, 80x Acceleration

Rooms
Disturbe
d

Training
set size

Reservoir
size

Prediction
time

Speedup
over
baseline

1 100 200 0.2597 s 77x

3 100 200 0.413s 80x

Scalable building model with equipment Total speedup over original : 80x

The training data source for a CTESN surrogate does not need
to come from ModelingToolkit, it can come from any
timeseries data source.

Training CTESNs on timeseries data sources gives a process
that merges translation to ModelingToolkit with acceleration!

Sources that we have been experimenting with:

• Functional Markup Units (FMUs) (Dymola, Simulink)
• SPICE models for electrical circuits (NgSpice, Xyce)
• Various PDE tools (COMSOL, Abaqus, etc.)

Surrogatization as Machine Learned Approximate Transformations

340x Acceleration of a Global Optimization by Surrogatizing an FMU

Use Cloud Resources to Smartly Burst Compute and Amortize Time

Burst the compute to fully parallelize the simulations of the
surrogatization, making that step of the process
approximately the cost of a single simulation

Using this kind of setup, the true time cost to the user to run
the acceleration is roughly ~5x-10x* the simulation time

This Process Can Be Bundled Up As an FMU->FMU Accelerator

By moving the model
transformation process to
the runtime itself,
ModelingToolkit can be
used as a transformation
and compilation system by
other front ends.

Other talks at the Modelica
conference also exploit this
feature.

One Part of Performance: Improved Linear Solvers

Size: (17, 17)
RecursiveFactorization: MedianGFLOPS = 3.053
MKL: MedianGFLOPS = 2.047
OpenBLAS: MedianGFLOPS = 2.509

Size: (486, 486)
RecursiveFactorization: MedianGFLOPS = 61.48
MKL: MedianGFLOPS = 44.45
OpenBLAS: MedianGFLOPS = 30.56

https://github.com/YingboMa/RecursiveFactorization.jl/pull/28

New numerical linear algebra stack,
designed for ML, outperforms MKL on
modern high-end AMD CPUs

Roadmap to Julia BLAS and
LinearAlgebra | Chris Elrod |
JuliaCon2021

The Limitations of Tracing Representations:
Quasi-Static Models

Useful Algorithms That Are Not Optimized By Jax, PyTorch, or
Tensorflow
StochasticLifestyle com

Not representable, not quasi-staticRepresentable, 8x

Not Representable

Representable

Quasi-Static:

Is the computation input
value independent?

ML model representations in Jax,
Tensorflow, etc. use quasi-static
representations for model optimizations.

https://www.stochasticlifestyle.com/useful-algorithms-that-are-not-optimized-by-jax-pytorch-or-tensorflow/

Final Note: Using Compilers and Transformations Beyond Differentiation

Generalizing Automatic Differentiation to Automatic Sparsity, Uncertainty,
Stability, and Parallelism, StochasticLifestyle.comAutomatic Sparsity Detection

Compiler-Based Intrusive Uncertainty Quantification

https://www.stochasticlifestyle.com/generalizing-automatic-differentiation-to-automatic-sparsity-uncertainty-stability-and-parallelism/

Julia’s Modeling and Simulation Advantage Extends to the Symbolic Realm

2370x speedup over SymPy on real-world robotics application
https://github.com/JuliaSymbolics/SymbolicUtils.jl/pull/254

ModelingToolkit, Modelica, and Modia: The Composable Modeling Future in Julia

Chris Rackauckas

modular differential equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

Reason for Julia’s Advantage?
Engineering a Community

Every improvement by every package
developer feeds into one pipeline

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

Youtube: Differential Equations in 2021

SciML’s Common Interface:

• One consistent interface for all numerics

• Symbolic modeling for all forms

• Automated inverse problems and adjoints

• Composes across the whole package
ecosystem

• Fully embraces generic programming

• Uses and embraces the work of other
developers

	Bildnummer 1
	Bildnummer 2
	Bildnummer 3
	Bildnummer 4
	Bildnummer 5
	Bildnummer 6
	Bildnummer 7
	Bildnummer 8
	Bildnummer 9
	Bildnummer 10
	Bildnummer 11
	Bildnummer 12
	Bildnummer 13
	Bildnummer 14
	Bildnummer 15
	Bildnummer 16
	Bildnummer 17
	Bildnummer 18
	Bildnummer 19
	Bildnummer 20
	Bildnummer 21
	Bildnummer 22
	Bildnummer 23
	Bildnummer 24
	Bildnummer 25
	Bildnummer 26
	Bildnummer 27
	Bildnummer 28
	Bildnummer 29
	Bildnummer 30
	Bildnummer 31
	Bildnummer 32
	Bildnummer 33
	Bildnummer 34
	Bildnummer 35
	Bildnummer 36
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	Bildnummer 40
	Bildnummer 41
	Bildnummer 42
	Bildnummer 43
	Bildnummer 44
	Bildnummer 45
	Bildnummer 46
	Bildnummer 47
	Bildnummer 48
	Bildnummer 49
	Bildnummer 50
	Bildnummer 51
	Bildnummer 52
	Bildnummer 53
	Bildnummer 54
	Bildnummer 55
	Bildnummer 56
	Bildnummer 57
	Bildnummer 58
	Bildnummer 59
	Bildnummer 60
	Bildnummer 61
	Bildnummer 62
	Bildnummer 63
	Bildnummer 64
	Bildnummer 65
	Bildnummer 66
	Bildnummer 67
	Bildnummer 68
	Bildnummer 69
	Bildnummer 70
	Bildnummer 71
	Bildnummer 72
	Bildnummer 73
	Bildnummer 74
	Bildnummer 75
	Bildnummer 76

