Data-Efficient Model Lo
DiSCOVG I'y With SCientifiC Dirgl;lt?)r o?:llo?l::i(l:gaaﬁd Simulation,
MaChine Learning Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of
Technology, CSAIL

Director of Scientific Research,
Pumas-Al

Scientific Machine Learning is model-based data-efficient machine learning

How do we simultaneously use both sources of knowledge?

Predictions

Scientific Machine Learning is model-based data-efficient machine learning

How do we simultaneously use both sources of knowledge?

Predictions

Outline

Mixing equation discovery into epidemic modeling workflows will revolutionize the field

QSIR prediction and forecasting: SIRHD data

0.5

0.4

0.3

0.2

0.1

0.0

4‘[) b‘l)
Days since 500 infections

(a)

QSIR prediction and forecasting: 9 compartment model dat:
==z

0.4

0.3

0.2

0.1

0.0

] 20 a0 60 80
Days since 500 infections

Neural ODE prediction and forecasting: SIRHD data

ol

o 20 40 60 80
Days since 500 infections

(b)

Neural ODE prediction, forecasting: 9 compartment

[} 20 40 60 80
Days since 500 infections

1. Scientific Machine Learning Applications

Domain knowledge with machine learning

'DD@DI@IGD+HGIDI

Data
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

0 1 2 3 4

2. Scientific Machine Learning Software

Fast and automated simulation and model discovery

Universal (Approximator) Differential Equations

Universal (Approximator) Differential Equations

— UDE Approximation
8 I | @ Measurements

U(x,y)

L2-Error

I |[— UDE Approximation
| |— True Interaction

Measurement Data

Known and Unknown Relations
T=ax+ U,(0,x,y)
y=—bhy+Us(0,2,y)

Train Model 0 = ming L (0)

Recover Unknowns

= = min ||{ (0, X) — OZ=|2 + Al|Z]

[4 *
Q1LY
S22y

©

[1]

Build fully symbolic Model

T=axr+ & xy

y = —by+ oxy

—
o 1 2 3 4 5 6
t
o 1 2 3 4 5 6

UODEs show accurate extrapolation and generalization

Trgi;tigg Extrapolated Fit From Incomplete Training Data Upon denoting x = (¢, x, p. €), we propose the follow-
- : ing family of UDEs to describe the two-body relativistic

@ «xdata Ivnamics:
O ydata AVnarmics:
Estimated x(t)

Estimated y(t)

rue x " 1 2 COSs 2
A Truey() b = (+ﬂsz;;gkn (1 + Fi(cos(x),p,e)), (5a)
40 50 1 > COS 2
t Y = (+;;;;gﬂj (1 + Fa(cos(x), p, r:')): (5b)
Extrapolation is successful in Lotka-Volterra... . ! .
b = Fa(p.e), (5c)
¢ = Fu(p,e), (5d)

0.1+

— True waveform
— — Learned waveform

s e

But was also demonstrated with
the LIGO Black Hole dynamics
from the gravitational wave data,
and many other examples!

Waveform
o

|
=
—

s f
Stee] slabs

° ° Gravity Frame (GF)
SciML Shows how to build
MIF-Easl
[] []
Earthquake-Safe Buildings e
Beam cohinm joanl
GF londeslls
20rp GiF colimnns (Blise)
measured data (Phase 1) MIF londoslis
1.5 -+ fany (initial model] M0 (hlack)
=== fohy + NN
1.OF i o 4 Shake fakl
1] [} " - : alnKe mnis
— (.5F 5 IIE\ :",: IHII EE ; E ![I' :". " ,"‘-) . " A i . S . . . ‘ » .
b VIR AR R N N N NI iYW, Figure 10: The structural system equipped with a negative stiffness device in between the first
S 0.0F -s-gf'. 2 P]i it | RER {1141 'g“-' IWAVA AV v \ i \) floor and the shake table.
i I RTRIRTAIR AR R R BRI A ARY
Nk lui L i] | il WE L \‘; lu' yow ¥ Yoo]
R AR A ' A
-L0 training extrapolation
12 14 oo] 20 2 24 Scientific machine learning for earthquake-
e SCC.
safe buildings
10F 5
I
Bk .H ’|I= :FII. "1'.] - gem n] n
Iy \ARAARA A & & Structural identification with physics-
— i E L - £l e (]] I
R EANAY & VLR ANANAVANANATAY . - - .
BRI HEREL ERTATATATAY \/ TATA informed neural ordinary differential
SRR vvr e e oo equations
-l”' L L]]
training extrapolation Lal, Zhllu, Mylonas, Charllaos,
L L 1 L 1 L

e 16 s % » Nagarajaiah, Satish, Chatzi, Eleni

Time ¢ [sec.]
Figure 12: Comparison of time history of the response for displacement x(t) and velocity ()
for the NSD experiment (Phase 1).

SciML for Predicts Longer Lasting Battery Materials

Researches at CMU used
Universal Differential
Equations to improve models
of Battery Degradation to
Suggest Better Battery
Materials

Universal Battery Performance and Degradation Model
for Electric Aircraft

Alexander Bills, Shashank Sripad, William L. Fredericks,
Matthew Guttenberg, Devin Charles, Evan Frank,
Venkatasubramanian Viswanathan

150

4.5
E 4 4 /
2. N
@ P
g 3 * Baseline mission, cycle #1
CellFit
2.5 T T
0 50 100
4.5 Time {min}
S 4- //
%"; 3.5
g35%
E 3 S Baseline mission, cycle #800
CellFit
2.5 T T
0 50 100

150

0
julia
— Neural
) Y (t)=A(t) K(t)° Ly(t) -v X Surrogate
L K(t)=sY(t)—dK (1) / X
dt
d
ai A(t)=2A(t) La(t)
Ly(t)+ La(t) = L V74
La(t) =1L SO Neural
DAEs . diff.eq.

Carnegie

Mellon T— FUELS
Q(—) 4 Yolio

CITRINE

\\\\\\\\\\ s

DFT A-CGCNN

R

roo's = &4 \
{ %{ %%f, Neural
o0 s surrogate
DAEs
Carnegie ‘ @

Mellon

SciML for Generates Predictive Combustion Models

CRNN
In[A] (Law of Mass Action) .
ni/ v v, [4]
Y | o dY
In[B] » v —use [B)
0 exp(x) . .
InfC] & ve® €] Mechanism
D] & ing Ik Yo% (D] interpreter
1/RT »E
T InT b {Arrhenius Law) dT
CO0~Cé6
differentiation solving
ODE solver

Figure 8: Schematic showing the structure of the CRNN-HyChem approach.

Fast automated learning of combustion
models for accelerated engineering

Arrhenius.jl: A Differentiable Combustion Simulation Package
Weiqi Ji, Xingyu Su, Bin Pang, Sean Joseph Cassady, Alison M. Ferris, Yujuan Li,
Zhuyin Ren, Ronald Hanson, Sili Deng

SciML for Generates Predictive Models of New Propulsion Devices

SciML predicting the properties
of new propulsion devices

Data-Driven Surrogates of Rotating Detonation Engine
Physics with Neural ODEs and High-Speed Camera
Footage

James Koch

=

(9) 1-D PDE on periodic domain

du du .
o T gz = al - DkeMM® —ey?
0A
a — (1 _ ﬂ)keNNl(“] _

(c) Steady wave profile

c=1250m/s
o
=
E=x—ct+a

-

(d) Transformed profile

!

Seek traveling waves
U) =ulx—ct+a)
A(§) =A(x —ct+a)

|

(f) Traveling wave Neural ODEs

v 1
¢ U-c

(q(1 = NkeNN: W) — ¢1y2)

dn 1
- __ _ NN (U)
= C((l Ake

SciML for Controlling Qubit Preparation in Quantum Circuits

(a) .| (c)
o J
— !
1 1
AN) 1#& =
I = op0k
[’ X
—1 =
ir ﬁj control -~
|
o)
' -5
{f_}] [etii} 005 LEI..IU 015 0.20
iy "
L |42} o - (d)
5 Ll - = —
controller filter =7 T —
b
= OF
Q \
J =7t —
controller C © o om0 s ox
ig) (8 = forward pass
'y ! . e revarse pass
: '
L] L]
L] i
¥ Y
L) {lwits1)}
- controller SDE solver toss function
2 |_|l._r — "_ "_ §
" -) .
. f (), J(E) I { _ ,_

seore-funclion estimator imodel-blind)

og |

06

0z | U e n
|LI U lc)
1
x] 50 100 150
10 i
M 7
1]} |
aa
5

a6

a4

a0

1My Y SO0 a 50 1M 150 L1} 50

epoch t T

Future quantum computers will be made possible by SciML

Control of stochastic quantum dynamics by differentiable programming

Frank Schafer, Pavel Sekatski, Martin Koppenhofer, Christoph Bruder and Michal
Kloc

SciML for Builds Models of Biological Systems

a F‘m': ﬂ:JI b 16 - , Praotein X
< L r 8- .' _;"-1 ,r' hl :_r'JE: _,"II'H # rr :1'.‘ :."L'
_ prmae : * . Ay L\ v _.: Vol) '.Ih:.'
g |g gm F'rmein‘*fl .
Better models of gene expression to o il D g T S Y PR N
understand biological systems e LYY ALY
S ! K : reoe ’ o .I‘.lﬂ' | 1l.l.|l.'.l 1%0 _._2|DD
= . - Time (s)
Neural network aided approximation and c d A . c
. . ! 245 I 40s ! 102s
parameter inference of stochastic models ? R o " F
of gene expression = N . = P . §
Qingchao Jiang, Xiaoming Fu, Shifu Yan, Runlai Li, § | E n 3 R %
Wenli Du, Zhixing Cao, Feng Qian, Ramon Grima g : g ’ kmk .
E —
7 | 80 100 150 200 0 15 0 15 0 15

Time () Protein #

Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Result: Probability

of Missing

100

15

Lotka Volterra Neural ODE Lotka Volterra Neural ODE

® Data: Varl ® Data
® Data: Var2 6 ——— Traning: Best fit prediction
Training: Best fit prediction Forecasting: Best fit prediction

Forecasting: Best fit prediction

Training Data End

50 I’E
Mechanisms S
25 F
0+
A Number of Dominant terms Error Mean % | i
Active terms AIC score sampled 1 2 3 a ; : Varl : "
0.01 9 u?, u3, uus 0.765 404 100
udu2, udug, udu,
1 Uso, const function lotka_volterra!(du, u, p, t)
0.1 9 u%, u%, U U 0.764 35 100 X, ¥y = U
uu3, uits, ujuy a, B,
U1 Ug, CcONst
duf[l
15 W2, u2, s 0.764 21.6 100 “[ﬁ]
uug, U1 Uz du[2]
2 2 U3 g, U U 0.634 7.2 100
3 1 U U 0.7 4.1 100
1 u%ug 249 1 100 Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural

Ordinary Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021

Demonstration of UDE Epidemic Models

Diarta: Infected i Data: Infected Hidden
1.7%10%) = Prediction f 107 s Prodiction
1. i
. Data: Recovered ~ e Datas Recovernad Bty l.'I.1|!_:II'.I

el = Predicticn Ew 1o Predicticn - ’
4= 108
EX ST D1 . + g] E
° 0
. = 2 g S 5§ ® & & g
Days post 500 Infected Days post 500 infected
India China
15x10°f mmm Dats: intectsd Meural netwark SR Modal
= Prediction
. Cata: Recoversd
Loetpe) T icHen [m—In - 4 =
Global Covid-19 QEIR Model
Do 10 - l 2
) e ———— |
% & 5 s 5 i |—* Govt. M RsUes
Days post 300 infecked . I.l'l'i“m-ﬁ-E'ﬂ.
South Korea J - .
i
Dandekar, Raj, Chris Rackauckas, and George l
%, :} Weak 1
1

Barbastathis. "A machine learning aided global
diagnostic and comparative tool to assess effect
of quarantine control in Covid-19 spread." Cell
Patterns (2020).

Track Cowld=19 data Quarantine strength with time

2.5x10%F

2.0x10%F

1.5x10%}

1.0x10%}

5.0x104f

] -

QSIR Predicts Quarantine Measure Evolution

Q(t)
P
\ T(t) g 06t o ol

- — — — 1.0
® Quarantine strength

® Quarantine strength
R(t) ‘ = = Government Lockdown imposed = = Government Lockdown imposed
0.8} wm = Inflection point in learnt Q(t) 0.8 = = Inflection point in learnt Q(t)

Data: Infected
=== Prediction
B Data: Recovered
== Prediction

= = i
' | ’ 11
s 11
[14 | |
0.2 (R 0.2 |
[] (I |
I Ll
0.05 20 20 60 80 009 20 20 60 80
Days post 500 infected Days post 500 infected
Spain Italy

The QSIR Learns A Simplified SIR

Days post 500 infected

[taly

With Quarantine, and Quarantine

Predictions are Within Days of
Reported Changes

QSIR is robust to having small amounts of sample data

QSIR prediction and forecasting: SIRHD data Neural ODE prediction and forecasting: SIRHD data
0.5
[Data: Infected o "
e Data: Recovered i" ii'ill [pata: Infected o o
= e 4 oo B B is robust to having sma
0.4 H — Training: Recovered ’ 'I. Training: Infected
y : : Training: Recovered
—— Forecast " Forecast
f amounts of sample data
0.75
03} !’
0.50 -
0.2 F
0.25 QSIR prediction and forecasting: SIRHD data QSIR prediction and forecasting: SIRHD data
o1t e
041 | I Data: Infectsd 04| | [Data: Infected
AT ggmz‘km) gfﬁgifmuw
0.00 03 gt 03 i
0.0 | R " . L .
o 20 40 &0 8o o 20 40 &0 80 ol sl
Days since 500 infections Days since 500 infections)
oil- 0il
: b
() (b)

Days since 500 infections Days since 500 infections
. ‘ - . a) train = 30 days b) train = 34 days
QSIR prediction and forecasting: 9 compartment model dat: Neural ODE prediction, forecasting: 9 compartment (a) y (b) y
0 Data: Infected > T QSIR prediction and forecasting: SIRHD data QSIR prediction and forecasting: SIRHD data
0.4 H B9 Data: Recovered ‘l' = [Data: Infected
—— Training: Infected |’ I L S | Data: Recovered 04| [2 Date imeciea o4} [oat mrecea
— training: Recovered / - Training: Infected St e St et
aining: Recovere 4 Training: Recovered = s e
— Forecast Foracast 03 03f
oat 06
0.2 - 0.4 -
Days since 500 infections Days since 500 infections
o1r 02 (¢) train = 38 days (d) train = 40 days
ool 00 b Figure 5: EpiSciML QSIR model - 9 compartment: Effect of training size on

0 20 s ;'?m_ . & & 0 0 e since e rections. 5o forecasting performance Figure shows the prediction and forecasting performance of
ays since infections
g ays sinee ST fniections the QSIR model for training data size of (a) 30, (b) 34, (c) 38, (d) 40 data points.

Plasmatic
concentration

DeepNLME: Integrate neural networks into traditional NLME modeling

DeepNLME is SciML-enhanced modeling for clinical trials

DeepNLME is SciML-enhanced modeling for clinical trials

Mixed-effects modeling

Response

Response

Time Concentration
k | PI(/PD‘)
I

Time

Response

Ly e Fixed effects
——
PK PD Random effects

Residual variability
e Observations

1

5% Meanftypical prediction

Interindividual variability

Time

Trends in Pharmacological Sciences

- Automate the discovery of predictive
covariates and their relationship to
dynamics

« Automatically discover dynamical
models and assess the fit

- Incorporate big data sources, such as
genomics and images, as predictive
covariates

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

g wt,, Math: Find (6,1) such that E[n] = 0
t Sex,, \ | Requires special fitting procedures (Pumas)
Covariates Ka - Qlené,lﬁi,k,lj 7

t. sex; .
gi — OL — 92(117)_01)07594 enz,Q’
v i 93 6”11,3 , _
Structural Model (pre) \
% = —Ka[Depot],
Intution: (the random effects) are a fudge factor d[Centrall I
= Ka|Depot| — —[Central].
Find 0 (the fixed effect, or average effect) such that you dt 4

can predict new patient dynamics as good as possible Dynamics

The Impact of Pumas (PharmacUtical Modeling And Simulation)

i

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.

Pumas software has surpassed our expectations on its accuracy and ease of use. We
are encouraged by its capability of supporting different types of pharmacometric
analyses within one software. Pumas has emerged as our "go-to" tool for most of our
analyses in recent months. We also work with Pumas-Al on drug development
consulting. We are impressed by the quality and breadth of the experience of Pumas-Al
scientists in collaborating with us on modeling and simulation projects across our
pipeline spanning investigational therapeutics and vaccines at various stages of clinical
development

Husain A. PhD (2020)

Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

modernar

messenger therapeutics

Built on SciML

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

g [wt] Math: Find (0,1) such that E[n] =0
t | sex; \,
Covariates o Ka - 9167’)@' 1R k1 7
g, = CL| = 0 (=)0 7598633 '11,2’
v i 93 6771 3 , _
Structural Model (pre) “
m = —Ka[Depot],
Intution: (the random effects) are a fudge factor e E) I
el - Ka[Depot| — 7[Central].

Find 0 (the fixed effect, or average effect) such that you dt
can predict new patient dynamics as good as possible Dynamics

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

wt,, Math: Find (6,7) such thatE[n] =0
Z; = 7
Sex,, \,
Structural Model (pre) \
D
w = —Ka[Depot],
Idea: Parameterize the model such that the models can d[Central
be neural networks, where the weights of the neural = Ka|Depot| —
networks are fixed effects! dt
Dynamics

Indirect learning of unknown functions!

DeepNLME in Practice: Data Mining for Predictive Covariates

model = @model begin
@param begin
B e VECTDPDDﬂain{lOWEP=[@.1,@.@@@8)QL99%9;1],UDDEF=[5.@,@.5)@.9)5.B]}
0 € PSDDomain(3) D
o? add € RealDomain(lower=0.001, init=sqrt(©.388))
pl € NeuralDomain{FastChain(FastDense(2,50,tanh),FastDense(50,1), (x,p)->x."2))
p2 € NeuralDomain{FastChain(FastDense(2,5@,tanh),FastDense(50,1), (x,p)->x."2))
end

@random begin n ~ MvNormal(Q) end

@pre begin
Ka = SEX == @ ? 8[1] + n[1] : 8[4] + n[1]
= nn1([8[2],n[2]],p1)[1]
nn2([O[3]*WT,n[3]],p2)[1]
CL/K
CL/K/WT

CL

Vc

sC
end

@covariates SEX WT

@vars begin conc = Central / SC end

@dynamics DepotslCentrall

@derived begin dv ~ @. Normal(conc, sqrt(c? add)) end
end

@ Utilize GPU acceleration for neural networks

Automate the discovery of covariate models

 Train convolutional neural networks to
incorporate images as covariates

* Train transformer models to utilize natural
language processing on electronic health
records

« Utilize automated model discovery to prune
genomics data to find the predictive subset

Currently being tested on clinical trial data

QOutcome

DeepNLME: Automated Construction of Patient-
Specific Pharmacological Models for Individualized

Dosing

Predicted

o data — Truth —Pap average — DespMLME pred

ID: $5d3r ID: zgf3t
1.0
o AT T | AT
0.0 2

1D m2lzo I0: chackd
1.0 -
0.5 m
0.0 T T T

Time (weeks)

Pred values

Model

32272022

Trained

= Data — Truth —Pop average — DeepNLME pred

ID: B8kEI ID: Bmyus
1.0+ -
- .
> M&
o i
£ 0.0
=)
= ID: vaochl ID: i5hdl
a 1.0
NN | RS
0.0 | . | . . . | .
0 1 2 3 4 0 1 2 3 4
Time (weeks)
Pred values
1.5 =
=
210
=

1.0 1.5
Model

0.0 0.5

Won International Society of Pharmacology (ISoP) Mathematics
and Computing Special Interest Group Award at ACoP 2021 (Top

Pharmacology Conference)

Outcome

Predicted

data — Truth -—Pop average — DeepMLME pred

1D nizlf ID: 9588t

1.0 .

1 ;J ; m
0.0

ID: mhraor ID: h8mgx
w
1.0
o m—
-
0.0-44 . : . : . - . . .
] 1 2 3 4 0 1 2 3 4
Time (weeks)
Pred values

2
b
=
E1

D T

0 1 2
Medel

20

High fidelity surrogates of ocean columns for climate models

Free ocean convection, t = 0038970 s (0.45 days)

3D simulations are
high resolution but
too expensive.

Can we learn faster
models?

T(°C)

20.0

19.8

19.6

19.4

19.2

19.0

Neural Networks Infused into Known Partial Differential Equations

Derive a 1D approximation to

the 3D model

Incorporate the “convective
adjustment”

0 if 0,T >0
100 m?/s if ,T <0

Free convection: 0.00 days

0 0
—50 -50
m
| -
D 100 | ~100 |
()
£
N
c
-150 ¢ -150 |
o
Q
()]
=200 —200
Oceananigans Oceananigans
neural network NDE
=250 [, =250 |
50x10°% 0 50x109.0x101.5x10"2.0x10~° 19.65 19.70 19.75 19.80 19.85 19690 19.95
Heat flux wT (m/s °C) Temperature T (°C)

loss(T, wT) = [NN(T) — wT|?

Only okay, but why?

Good Engineering Principles: Integral Control!

Free convection (Q = 84 W/n?, train): O.O(PO_Qays

0
=50 =50 1072
—
~ S
E 100 100 E —3
J(T'.) o 10
£ g
M S
e o3
o -150 -150 | A
o c 10
3 g
LES =
Convective adjustment
-200 + =200 | — Neural DE 10_5
Embedded
—KPP
— TKE mass flux
250 |, : . . Joeso 156 . .
50x10° 0 50x10°1.0x107515x10°2.0x10°> 1965 1970 1975 1980 1985 1990 1995 0 2 4 6 8
Haat flirv wWT (/e o) Temperature T (°C) Time (davs)

KaT loss(Tyw, T) = | Tan(z, t) — T(z, t)lz
5%

—_—" - But how do you fit a neural
w' T network inside of a simulator?

How do we do this effectively?

SciML is a software problem.

There are many different ways, all with engineering trade-offs

Method Stability Stiff Performance Scaling Memory Usage
BacksolveAdjoint Poor 0 ((5 + p) 3) Low. O(1)
InterpolatingAdjoint Good 0 ((5 + p) 3) High. Requires full continuous solution of forward
- Higher. Requires full continuous solution of forward and
QuadratureAdjoint Good 0 (5 3 4+ p) Laggrange nc:ultiplier

BacksolveAdjoint 3 . . .
(Checkpointed) Okay 0 ((s +p)) +C Medium. O(c) where c is the number of checkpoints

. . . 3
Interpolat.l ngAdjoint Good 0 ((S + p)) +C Medium. O(c) where c is the number of checkpoints
(Checkpointed)
ReverseDiffAdjoint Best 0 (5‘ 3 + p) + C Highest. Requires full forward and reverse AD of solve
TrackerAdjoint Best 0 (s 3 + p) +C Highest. Requires full forward and reverse AD of solve
ForwardLSS/AdjointLSS/N Chaos Not even comparable: expensive. Super duper high OMG.

ILSS

Differentiating Ordinary Differential Equations: The Trick

We with to solve for some cost function G(u, p) evaluated throughout the differential equation, i.e.:

T

Glup) = Glulp)) = [glult.p))dt
Lo
To derive this adjoint, introduce the Lagrange multiplier A to form:
T
I6) =G~ [X - flu,p, 1)t
to

Since ' = f(u,p, t), this is the mathematician's trick of adding zero, so then we have that

o G dI " L
S = o i /to (gp + gus)dt /tg N (8" — fus — fp)dt

Differentiating Ordinary Differential Equations: Integration By Parts

for s being the sensitivity, s = j_; . After applying integration by parts to A*s’, we get that:

/tT)* (s’fusfp)dt/tT)*s’dt/tT)* (fus — fp) dt

T T
— \)*(t)s(t)\z; /t A sdt /t N (fus — fp)dt

To see where we ended up, let's re-arrange the full expression now:

G [T . r [T, t
d—p — (gp + gus)dt T |)\ (t)s(t)|t0 - A" sdt — A (qu o fp) at
to to to

T T
_/ (gp+/*fp)dt+|)*(t)s(t)|f;f (O + X £ — gu) sdt

Differentiating Ordinary Differential Equations: The Final Form

T - T
— /t (gp + X fp)dt + [A*(t)s(t)];, —ft (A + X fy, — gu) sdt

That was just a re-arrangement. Now, let's require that

df” dg\~
’—__ — [
A= du A (du)

A(T) =0

This means that the boundary term of the integration by parts is zero, and also one of those integral terms are
perfectly zero. Thus, if A satisfies that equation, then we get:

dG ., . . dG ! .
b A (tU)E(tO)+/t; (gp + A" fp) dt

Differentiating Ordinary Differential Equations: Summary

1. Solve ' = f(u,p,1)

2. Solve)\ = —ﬁ*). — (—)

dG dG s
3. Solve e)*(tg)%(tg)+/tﬂ (g, + A* f,) dt

Differentiating Ordinary Differential Equations: Step 2 Details

af*y, (dg\’

duw® du)

2. Solve \o— —

A (1:)0\ How do you get u(t) while solving backwards?

3 options!

1.

u' = f(z,t) forwards, then
u' = —f(z,—t) backwards!

2. Store u(t) while solving forwards (dense output)

3. Check_
Forward pass

k()

kj

k, k

3

& \-_____/7

e

\—‘_\‘__—______,——7

N

How the gradient (adjoint) is calculated also matters!

This term is traditionally computed via differentiation and then multiplied to
lambda

Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized

backpropagation! Six choices for this computation:
Numerical

< + Forward-mode
dg - Reverse-mode traced compiled graph

(ReverseDiffVJP(true))

df ™
 \ /
é \4 A A — Fast method for scalarized
d d nonlinear equations
u u « Requires CPU and no branching
(generally used in SciML)
- Reverse-mode static
0 Fastest method when applicable
Y,
Reverse-mode traced
Fast but not GPU compatible
Reverse-mode vector source-to-source

Adjoint Differential Equation """ Best for embedded neural

networks

A(T)

Differentiating Ordinary Differential Equations: Step 3 Details

T
3.Solve — = X\ (ty))—(t) +/ (g, + A\f,) dt
to

How do you calculate the integral?
1. Store A(t) while solving backwards (dense output)

2.4 =-Xf, + g, where u(T) =0

What's the trade-off between these ideas?

Some methods are “mathematically
correct”, but “numerically incorrect”

SciML is a software problem.

Machine Learning Neural Ordinary Differential Equations

W' = f(z,t) forwards, then Timeseries is not The adjoint equation is an ODE!
u' = —f(z,—t) backwards! _ L= _ stored, therefore
,,1'4\ s~ O(1)in memory! da(t) — a()T df(z(t),t,0)
' dt 0z
. :(:,) How do you get z(t)? One suggestion:
(t) (tir) ' Reverse the ODE
Z\tp Z\Li+1

State

= Adjoint State dagug(t) B O faug
{};{1&\]/1/\ —dt = [-‘:’l(t) HH(t) at(t)] —3[2,9,t] ()

“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

ou aldu)
— + =0
d i dx

Approximating the derivative in x has two choices: forwards or
backwards

If you discretize in the wrong direction you get unconditional

instability Piecewise constant
I_[l'l'_ W By
You need to understand the engineering principles and the numerical l initial data
simulation properties of domain to make ML stable on it.
U;

n
L

Differentiation of Chaotic Systems: Shadow Adjoints

a0 “ chaotic systems: trajectories diverge to o(1) error but
a0 shadowing lemma guarantees that the solution lies on
the attractor

u "v — 20
Float64
“ Float32

E Il W

30 35 A-ltO 45 50 0 10 20 p 30 40 50 .
d a 20
el lim —
dp <Z>OO 7é TE)IlOO ap <Z>T 10 —% 20
-10 ;} 0 o 50 y
* AD and finite differencing fails! * Shadowing methods in DiffEqSensitivity.jl
d(2) oo . .
dp P |
p=28 p=28
d(2) o
d<§>°° ~ 472 (Calculus) <d/>) ~ 0.997 (NILSS) . . .
P —as =28 https://frankschae.github.io/post/shadowing/

Problems With Naive Adjoint Approaches On Stiff Equations

How do you get u(t) while solving backwards?
Error grows exponentially... 3 options!

u' = f(z,t) forwards, then

u'(t) = Au(t), plot the error in the reverse solve: .
® (), 1 u' = —f(z,—t) backwards!

Unstable

2. Store u(t) while solving forwards (dense output) High memory

3. Checkpointing - More Compute
20 Forward pass

il G ko ky ks ks

e —— — — - - ——]

t;

Error

1007 = T =

v\/\ Backward pass
0 -

107 [

Each choices has an engineering trade-off!

10710 ’

—1I00 —l50 (3 5I0 1(130
A
Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural

ordinary differential equations." Chaos (2021).

Problems With Naive Adjoint Approaches On Stiff Equations

Error grows exponentially...

u'(t) = Au(t), plot the error in the reverse solve: Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:
2states + parameters
10 F Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

Error

0 ((states + parameters)3)

107 [

10710 ’

—1I00 —l50 (3 5I0 1(130
A
Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural

ordinary differential equations." Chaos (2021).

Problems With Naive Adjoint Approaches On Stiff Equations

dG dG g
e A* (to)—du (to) + (gp + A" f,) dt
t
° Compute cost is cubic with parameter size when stiff
Size of reverse ODE system is:
How do you calculate the integral? 2states + parameters
High memory
1. Store A(t) while solving backwards (dense output) Linear solves inside of stiff ODE solvers, ~cubic
2.4' = —1'f, + g, where u(T) = 0 Size = Number of Thus, adjoint cost:
Parameters
0((states + parameters)3)

3. Use an IMEX integrator and solve ‘Ll’ = —/l*fp + 9p explicitly Thus, adjoint cost without extra memory:
4. Our paper describes a 4t way! N O(states® + parameters)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

The math has >20 ways to implement.

Every choice makes engineering trade-
offs.

SciML is a software problem.

Non-Stiff ODE: Rigid Body System

Cross-Language ODE Solver Benchmark

Foundation: Fast Differential \N"\‘\\\

(]
E q u at I o n S O I Ve rs —@— DifferentialEquations ji: Vern7
i Fortran: dopri5
Sundials: CVODE
—@— MATLAB: ode45

—@— deSolve: Isoda

Speed

1.

2. Stability | \\
3. Stochasticity L | | .
4.

o o 107 108 10°° ~ 1072
Adjoints and Inference Error
5. Parallelism 8 Stiff ODEs: HIRES Chemical Reaction Network
Stiff 2: Hires
DifferentialEquations.jl is generally: |
. =@= Julia: Rosenbroc w
« 50x faster than SCIPy 107" _El_ ju:ia: ?RBDISZ e
Julia: radau
Q Hairer: rodas o o
« 50x faster than MATLAB 10729 | | —@- Hairer. radau
—=f= MATLAB: ode23s <A
’ - &= MATLAB: ode15s
* 100x faster than R’s deSolve L 25 | |—A- sciy:Lsopa >
g _!- zg:g S(E)e'?nt
When optimally JIT compiling Py/Mat/R = g0 | desoverisous
@~ Sundials: CVODE
g o
https://github.com/SciML/SciMLBenchmarks.jl 1035 | kv\'ﬁp\%o ol
Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl—-a performant and o E—o
feature-rich ecosystem for solving differential equations in julia." Journal of Open 10740 |k
Research Software 5.1 (2017). .
107° 1078 1077 10°° 107° 107" 1073

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential Error
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

. . . 1122 Stiff ODEs: BCR Chemical Reaction Network
Foundation: Fast Differential

Equation Solvers
—@— TRBDF2
- oQNDF
—3%— CVODE_BDF

2.25

\ <— CVODE_BDF
. . . —— @ KenCarp4
DifferentialEquations.jl is: . — T KenCarp47

2.00

* Faster than C codes like CVODE and
Fortran codes like LSODE/LSODA on
stiff equations

Time (s)

O
Has symbolic compilers to 107 -

automatically improve numerical ®
stability and performance of user °

code 10070 m

This excludes the extra 2x from ®
symbolics and 2x from sparse parallel | . | . . _m .

compilation! 1073 107

https://github.com/SciML/SciMLBenchmarks.jl

Gowda, Shashi, Yingbo Ma, Alessandro Cheli, Maja Gwozdz, Viral B. Shah, Alan
Edelman, and Christopher Rackauckas. "High-performance symbolic-numerics via
multiple dispatch.” To appear in ACM Communications in Computer Algebra
(2021).

Ma, Yingbo, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah,
and Chris Rackauckas. "ModelingToolkit: A Composable Graph Transformation
System For Equation-Based Modeling." Submitted (2021).

DiffEqSensitivity.jl: Every adjoint is optimized for a different case

Method Stability Stiff Performance Scaling Memory Usage
BacksolveAdjoint Poor 0 ((5 + p) 3) Low. O(1)
InterpolatingAdjoint Good 0 ((5 + p) 3) High. Requires full continuous solution of forward
. . 3 Higher. Requires full continuous solution of forward and
QuadratureAdjoint Good 0 (5 +p) Lagrange multiplier

BacksolveAdjoint 3 . . .
(Checkpointed) Okay 0 ((s +p)) +C Medium. O(c) where c is the number of checkpoints

. . . 3
Interpolat.l ngAdjoint Good 0 ((S + p)) +C Medium. O(c) where c is the number of checkpoints
(Checkpointed)
ReverseDiffAdjoint Best 0 (5‘ 3 + p) + C Highest. Requires full forward and reverse AD of solve
TrackerAdjoint Best 0 (s 3 + p) +C Highest. Requires full forward and reverse AD of solve
ForwardLSS/AdjointLSS/N Chaos Not even comparable: expensive. Super duper high OMG.

ILSS

How the adjoint is calculated also matters!

—@— Forward-Mode DSAAD
Reverse-Mode DSAAD
------------- Interpolating CASA user-Jacobian
Interpolating CASA AD-Jacobian
=) - — Interpolating CASA AD-$v~{T}J$ seeding
Quadrature CASA user-Jacobian
Quadrature CASA AD-Jacobian
-------------- Quadrature CASA AD-$v™~{T}J$ seeding
— - Numerical Differentiation

Gradient
calculations on
a stiff PDE,
varying dt

Rackauckas, Christopher, et al. "A comparison of
automatic differentiation and continuous sensitivity
analysis for derivatives of differential equation
solutions." 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 1-8.

Runtime (s)

10

Sensitivity Scaling on Brusselator

101.5 102.0 102.5 103.0

Number of Parameters

Methods with Reverse-
mode vjp seeding + hew

adjoints give 3 orders of
magntitude improvement!

The SciML ecosystem is the only one with fully-featured

Universal Differential Equations

Feature SciML (Julia) Sundials (C++) PETSc TS (C++) torchdiffeq Jax
None (one in progress,
Stiff ODEs and DAEs Hundreds of methods tested and Yes (CVODE_BDF and IDA) Yes (Rosenbrock-W None ~200 times slower than

Adjoint Methods

Parallelism

Event handling

SDEs

Delays

tuned on hundreds of problems

11 choices tuned for different
scenarios, including stabilized
checkpointing, differentiate the
solver, reversing adjoint

GPU, MPI, multithreading

Yes

Lots of methods, including
stabilized, methods for stiff
equations, high strong order,
high weak order

All ODE methods

Stabilized checkpointing,
no AD integration, no chaos
compatibility

GPU, MPI, multithreading

Yes

None

None

methods, BDFs, etc.)

Discrete sensitivity
analysis,

no AD integration, no chaos
compatibility

GPU, MPI, and
multithreading

Yes

None

None

Requires reversing the
ODE or differentiate the
solver (tracing)

GPU

None

torchsde, only diagonal
noise (or order 0.5),
requires reversing the
SDE

None

SciPy according to the
author!)

Requires reversing the ODE

GPU

None

None

None

The performance difference in UDEs is not small

when the right solvers and adjoints are chosen

These ODEs are non-stiff ODEs from astrodynamics, chemical kinetics,

numerical weather prediction, etc. and include scalarized operations Relative time to solve
Number of ODEs 3 28 768 3,072 12,288 49,152 196,608 786,432
DifferentialEquations.jl 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x
DifferentialEquations.jl dopri5 1.0x 1.6x 2.8x 2.7x 3.0x 3.0x 3.9x 2.8x
torchdiffeq dopri5 4,900x 190x 840x 220x 82x 31x 24x 17x

Geometric Brownian Motion of size 4
Spiral Neural ODE (from original Neural ODE paper) The SDE is solved 100 times. The summary of the results is as follows:

e DiffEqFlux defaults: 7.4 seconds e torchsde: 1.87 seconds

e DiffEqFlux optimized: 2.7 seconds e DifferentialEquations.jl: 0.00115 seconds

* torchdiffeq: 288.965871299999 seconds Note: performance is not necessarily indicative of
large “pure” neural equations

Keeping Neural Networks Small Keeps Speed For Inverse Problems

DeepXDE (TensorFlow Physics-Informed NN)

Problem: parameter estimation Best model at step 57000:

of Lorenz equation from data train loss: 5.91e-83

Ontin (0,3) test loss: 5.86e-03

y.2) test metric: []
6
'train' took 362.351454 s
0 DiffEqFlux.jl (Julia UDEs)
opt = Opt(:LN_BOBYQA, 3)

0 lower_bounds!(opt,[2.0,208.8,2.8])

upper_bounds!(opt,[11.8,38.08,3.0])
min_objective! (opt, obj_short.cost_function2)
xtol_rel!(opt,le-12)

maxeval! (opt, 160680)

@gtime (minf,minx,ret) = NLopt.optimize(opt,LocIniPar)

01

©.032699 seconds (148.87 k allocations: 14.175 MiB)
(2.7636309213683456e-18, [10.0, 28.0, 2.66], :XTOL_REACHED)

Note on Neural Networks “Outperforming” Classical Solvers

Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang, Paris Perdikaris

Ordinary and partial differential equations (ODEs/PDEs) play a paramount role in analyzing and simulating complex dynamic processes across all corners of science and engineering. In
recent years machine learning tools are aspiring to introduce new effective ways of simulating PDEs, however existing approaches are not able to reliably return stable and accurate
predictions across long temporal horizons. We aim to address this challenge by introducing an effective framework for learning infinite-dimensional operators that map random initial
conditions to associated PDE solutions within a short time interval. Such latent operators can be parametrized by deep neural networks that are trained in an entirely self-supervised
manner without requiring any paired input-output observations. Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained
model using each prediction as the initial condition for the next evaluation step. This introduces a new approach to temporal domain decomposition that is shown to be effective in
performing accurate long-time simulations for a wide range of parametric ODE and PDE systems, from wave propagation, to reaction-diffusion dynamics and stiff chemical kinetics, all at a

fraction of the computational cost needed by classical numerical solvers.

Note on Neural Networks “Outperforming” Classical Solvers

Numerical solver

DeepONet

10°
ODEs solved

Oh no, we're doomed!

using ModelingToolkit, OrdinaryDiffEq, StaticArrays

@variables t y.(t) ya(t) ys(t)
paramecers kj |'(1 kg
D = Differential(t)

Wait a second?

eqs = [D(y1) ~ -Ka®ya+ks™y2*ys;
D(yz2) ~ kai*yi-ka*y2"2-k3*y,*y;
3(?3) ~ kz:yz 2]

sys = ODESystem(eqs, t)

~ \,.. o 4 ot
Numerical solver prob = ODEProblem{false}(sys,SA[y.=>1f0,y,=>0f0,y3;=>0f0], (0f0,500f0),
DCCPONCt SA[ky=>4F-2,k,=>3f7,k3=>1f4],jac=true)

N = 1000

Julia: Laptop CPU y1s = rand(Float32,N)
DeepONet: Tesla V100 GPU ys2s = 1f-4 .* rand(Float32,N)

y3s = rand(Float32,N)

function prob_func(prob,i,repeat)
remake(prob,p=SA[y1s[i],y2s[i],yss[1]])

Julia’s numerical

solver is faster by :
7.000x lve(monteprob,Rodas5(),EnsembleThreads(),trajectories=1000)
’

monteprob = EnsembleProblem(prob, prob func = prob func, safetycopy=false)

@time solve(monteprob,Rodas5(),EnsembleThreads(),trajectories=1000)

Wait a second?

) A
- ®= = Numerical solver //
DeepONet g
///
A
/
/
w
/
ol
’
/
/
=
7 Julia’s numerical

w solver is faster by

7,000x

10° 104
O Ived

Similar story on Fourier
Neural Operator results!

How come so far off?

Time (s)

Code Optimization in Machine Learning vs Scientific Computing

Which Micro-optimizations matter for BLAS1?

10730 L
19735 b
1740 L
154 b
10750 L
10755 |

10—6.{]

la—ﬁ.‘i L

1070

w’E T

mybroadcastturbo!

10" 10°
N

Mutation and
Memory management: 10x

10

Manual SIMD: 5x

10

10°

107

10

10—4.5 L
“
GJ -
£ 10
E

~7.5 |

10°

50 |

55 L

6.0 |

6.5 |

70 L

Scientific codes
O(n) and O(n"2)
operations

Which Micro-optimizations matter for BLAS2?

* (OpenBLAS)
mul! (OpenBLAS)
mygemvavx!
*gpu

mul! gpu

10

: .
10% 10°

Time (s)

10

Which Micro-optimizations matter for BLAS3?

—1.5 _

10720 F i

10
10
10

107

10
10
10

10°
10
10 &

10

~25 |
~35 |
—4.5 |

—5.0 L

—55 |

mul! gpu
75— op

3.0 |

4.0 |

6.0 |

*
65 | mul! (OpenBLAS}
mygemmturbo!
70 L — ’ * gpu

10* 10° 10°

N
Big O(n"3) operations?
Just use a GPU
Don’t worry about overhead
You're fine!

Simplest code is ~3x from optimized

Time (s)

I T T T
D‘ DI DI DI DI DI DI DI DI D‘
P T T B B L R R

What happens when you specialize computations?

Which Micro-optimizations matter for BLAS1?

Scientific codes
O(n) and O(n"2)
operations

mybroadcastturbo!

.= gpu

10740 o

Mutation and

Memory management: 10x |

10—5.0 -

Manual SIMD: 5x

Time (s)

10—6.5 L
10—7_0 -

lO—T.S L

10739 F

10780 L

10°

Which Micro-optimizations matter for BLAS2?

* (OpenBLAS)
mul! (OpenBLAS)
mygemvavx!

* gpu

mul! gpu

.
10°

SimpleChains.jl
Doing small network scientific
machine learning in Julia on CPU
5x faster than PyTorch on GPU
(10x Jax on CPU)

Details in the release blog post

Only for size ~100 layers and
below!

What happens when you specialize computations?

Moral of the Story SimpleChains.jl
General computations are generally Doing small network scientific
less optimized machine learning in Julia on CPU

5x faster than PyTorch on GPU
Physics-informed neural networks
are an extremely general solver... (10x Jax on CPU)
QED
Details in the release blog post
Differentiable simulation scales
extremely well, if and only if you Only for size ~100 layers and
work on the implementation issues below!
which arise in every equation type.

SciML Open Source Software
Organization
sciml.ai

DifferentialEquations.jl: 2x-10x Sundials, Hairer, ...

DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
ModelingToolkit.jl: 15,000x Simulink

Catalyst.jl: >100x SimBiology, gillespy, Copasi
DataDrivenDiffEq.jl: >10x pySindy

NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
NeuralOperators.jl: ~3x original papers (more optimizations
required)

ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention...

If you work in SciML and think optimized and maintained implementations
of your method would be valuable, please let us know and we can add it to

tha Aallana

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

SciML 0SS Org is Impacting Many Modeling and Simulation Applications

175x acceleration for Pfizer's quantitative
systems pharmacology team via automated GPU
acceleration

RECURSAT Demo
Results

¢ Not meeting tip-off requirement
about the spacecraft y-axis due to
high center of mass offset along -z
direction g1

2020: American Conference on Pharmacometrics
(ACoP) Quality Award

(deg/s)

‘000 005 010 015 020

00 0D0 005 010 015 020 0 01
time (s}

time (s}

05 010 01
time (s)

Separation Velocity

SLC3A2 & T

———| BOKi —(BDK

ll _TTCA—V

BDK — BCKDH
1

Leucine +— BCAT —| KIC e Plasma KIC

Modeling Spacecraft Separation Dynamics in Julia — SIAM CSE 2021
Jonathan Diegelman, NASA Launch Services Program and A.l. Solutions [

Oral KIC

15,000x acceleration over Simulink using Julia's ModelingToolkit.jl https://juliacomputing.com/case-studies/pfizer/

Conclusion

Bridging computational science and machine learning helps improve all aspects of discovery

Faster Drug Development -~ More efficient batteries
Neural A

» % surrogate

t) ~d K (t)
t) La(t)
[e J>x0 Neural
DAEs X diff.eq.
Carnegie | 5 &

moderno

messenger therapeutics Mellon FUELS

DFT A-CGCNN — -—

T=5Lnm

Energy Efficient Buildings Climate modeling for improved agriculture
ﬂi) ?;’: %epn::c; Foundational Al
== ® AgSci ML &
] ® Federated leaming &
® Game theory and
MITSUBISHI ﬁ Compressor Expansign g e, v Government
Speed Valve Position % ® S ARL

ELECTRIC I

& Eb ”
Use Inspired Al
Changes for the Better 1~ . cpsahekngen
Evaporator L$ I -EDDMapS
Fan Speed

CLIMATE MODELING ALLIANCE

& Global: UN

| -

Machine Learning Surrogates as Approximate Transformations

Run Transformations

[

_ ——Codegen—p-

i ' ' ing JuliaSi
If you build a machine learning method that outputs using Juilasim

differential-algebraic equations, then it qualifies as an

“« . 17} . - ODES 't e
approximate” stable transformation 2YS ystem(...)

prob = ODEProblem(sys, u@, tspan, p)

Take in a differential equation and the outputs to surrogatize over param_space = [...]
Create a new differential equation system that is approximately the surralg = LPCTESN(1eee, output function = (u,t) -> u[1:3])

same input/output mapping (dimensionality reduction) sim = DEProblemSimulation(prob, reltol = le-12, abstol = 1le-12)
Represent that system as an MTK model

odesurrogate = JuliaSimSurrogates.surrogatize(

Because it’s approximate, it needs user-intervention. sim,param_space,
. . surralg,100
We developed the continuous-time echo state network as a surrogate)

method which is robust to stiffness and has these properties.

newsys = ODESystem(odesurrogate)

Continuous-Time Echo State Networks: Avoid Gradients and Use an Implicit Fit

One way to visualize: reservoir computing Another interpretation: Semi-Neural ODE
Fix a random dynamical process and find a Fix the parameters of the first layer and only
projection to fit the system train the last layer. By doing so, you can

A W transform the training problem into a linear

Wour solve via SVD.

" _
: ’—X U Fix r' = o(Ar + W,x)
v 0 Predict x(t) = W, (t)
J Turns into a linear solve
Input Output Solve the linear system via SVD

(to manage the growth factor)

Reservoir
B Get W,,; at many parameters of the system
uln] X[n] Y[n]
= Wi — 1 W, Wout Predict behavior at new parameters via:
t)y =W, L
Input Reservoir Output x() out(p)r()

Using a Radial Basis Function constructed
from the W, training data

ARPA-E: Accelerated Simulation of Building Energy Efficiency

8,000 ODE Highly stiff
vapor-compression
cycle model

. MITSUBISHI
AV N ELECTRIC

Changes for the Better

Compressor Shaft Power (W)

—— truth e

1100 P
.//-

1050

1000

950

Condenser
Fan Speed

0.75

0.50

0.25

0.00

Speed

Evaporator
Fan Speed

Compressor

Relative error %

Expansion
Valve Position

0 25 50 FE] 100
Time (sec)

50
Time (sec)

75 100

The Julia implementation is 6x faster than Dymola for the full
cycle simulation.

o Dymola reference model: 35.3 s

o Julia (as close to) equivalent model: 5.8 s

o Could be due to details such as the linear solvers, the refrigerant
property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times
between 10x-95x over the Julia baseline. Acceleration
depends on the size of the reservoir in the CTESN. The
surrogate approximates 20 of the observables.

Training set Reservoir size Prediction time Speedup over baseline
size

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

Error is < 5% in all cases.

Total speedup over Dymola: 60-570x

Take Arbitrary Large Models and Automatically Accelerate with CTESNs

1265 ODE model of COPASI simulation: crashed upon reading (“not responding”)

spatial cell signaling in « MATLAB SBMLToolbox: 870s to read, 1.13s to simulate
Arabidopsis « Julia vanilla: 60s to read, 0.6s to simulate
« Julia surrogatized simulation: ~instant to read, 0.062s to simulate

Wus In;iucers

'- - 4 Fig. 1. A schematic of the expression domains of CLAVATAI, CLAV-
ATA3 and WUSCHEL. The solid arrows indicate the regulatory

(indirect) interactions and the dashed arrows show the movement
of the CLV3 protein.

Julia vanilla outperforms MATLAB’s SBMLToolbox

CTESN predictions at new parameters have < 5% error, are

Output dimension 8 Relative Error over Time almost instant to read and 100x faster to simulate
| 12 ool
Lo | (Julia SBML reader is incomplete: full Jacobians right now
os | and no e-graph simplification. Probably ~10x performance
10 left on the table)

0.6

0.4
)5

0.2

J0 0.0

= W S Total speedup: 100x vs MATLAB SBMLToolbox

The Transformed Models are Just Components: Compose As Normal

Neural Network

~

100x Faster

= Simulation ‘

P ¥
A |
A |
\
-

Embed Surrogates

lEIectricaI
Energy e
Desired [?ngis
Dryness Heating Heat v . .
———»]: Controller Elements Clothes > Accelerate large (100,000 ODE) simulations
(Input) (Qutput) . e o .
without retraining by using an accelerated HVAC
- component inside of different building models
Sensor -

Feedback Loop

Large Building Models 100K Equations, 80x Acceleration

Room 33 Surrogate: T_air - Test Parameter Relative Error Room 5: intWall - Test Parameter

Rooms Training Reservoir Prediction Speedup
TESN
Disturbe set size size time over
290 1 d baseline voos |
1 100 200 0.2597 s 77X —
280 - 0.004 | //
3 100 200 0.413s 80x J
270 + 0.002 /
/'/’- -
260 | ‘ ‘ . . D 0 D D 0.000 |~ : . | |
Room 5 Surrogate: intWall - Test Parameter
Relative Error Room 33: T_air - Test Parameter R . Twallle . Twallle . Twallle . Twallle 10 pv
Tairl Tair2 Tair3 Tair4 | .-.‘ E?E?ﬁ
0.00015 ¢ l é‘;ESN
250 GT
/] | a
‘ I" I‘]] (]] 11 ",
| s — — — — 200 F .
[150 \\
/ | ° . Twallle U Twall [e) . Twall el . Twall e
0.00005 | f i ‘I' Tair5 Tair6 Tair7 Tair8 \\
I '.‘ l 100 + e e e —————
! 0 2.50x10° 5.00x10° 7.50%10° 1.00x10°
0.00000 ./: < * * <

0 2.50%107 5.00%10° 7.50%10° 1.00x10°

Scalable building model with equipment Total speedup over original : 80x

Surrogatization as Machine Learned Approximate Transformations

Training Data Preparation Build Surrogate
Native
Julia
Us:ﬂrTE‘?fei T Solve with I hraining data . .
¥ 7| Transiormatons [——%| Dfferentlal | [gonoraton The training data source for a CTESN surrogate does not need
to come from ModelingToolkit, it can come from any
OR timeseries data source.
User Moge iU based Training CTESNSs on timeseries data sources gives a process
odelica ompile to training SU”O ate . . . R .
sl Lo : that merges translation to ModelingToolkit with acceleration!
Sources that we have been experimenting with:
* Functional Markup Units (FMUs) (Dymola, Simulink)
S Gompie to « SPICE models for electrical circuits (NgSpice, Xyce)
: Ji====ony or use wit i sons=cesasay .
Corsimuation extemal software S « Various PDE tools (COMSOL, Abaqus, etc.)
OR
Use natively in a Julia simulation |———— Surrogate

Simulation or Co-simulation

Temperature (K)

Heat (J)

Room Air Temp.

340x Acceleration of a Global Optimization by Surrogatizing an FMU

Relative Error % over time

Compressor Shaft Power

Relative Error % over time

3
302 rrogate
0.03 1200
300
298
—_ 2
6 0.02 E 1100
296 | pul
Q
=
294 2 1
a
292 1000 1
0.01
290 |
288
900
0.00 0
186.00 188.25 18850 18875 189.00 188 .00 18825 188 50 18875 18900 188.00 18825 18850 18875 189.00188.00 188.25 188.50 18875 189.0(
Time (days) Time (days) Time (days) Time (days)
Total heat dissipation outside Relative Error % over time Refrigerant Sat. Temp. Relative Error % over time
Surrogate | & 020
Truth
288
12000
<
6 —
o 015
285
10000 2
[l
o
[T
a =3
E 282 030
8000 [t
|
: 279 0.05
6000
|
= pa— T 276 1R
4000 000 '
188.00 188.25 188.50 18875 189.00188.00 188.25 18850 18875 189.0¢
Time (days) Time (days] 188 00 18825 18850 18875 18900 188.00 188.25 188.50 18875 189.00

Time (days)

Time (days)

Loss

-44

-46

-48

-5.0

Surrogate converges 2 orders of magnitude faster

FMU
Surrogate

10°

10!

10?
Time (sec)

10°

104

Use Cloud Resources to Smartly Burst Compute and Amortize Time

Burst the compute to fully parallelize the simulations of the
surrogatization, making that step of the process
approximately the cost of a single simulation

Using this kind of setup, the true time cost to the user to run
the acceleration is roughly ~5x-10x* the simulation time

This Process Can Be Bundled Up As an FMU->FMU Accelerator

“m JuliaSim FMU Surrogates Library

1

Upload FMU

Supported files:fmu

8 LoAaD E» EXPORT C' RESET

Algorithm

Algorithm *

Reservoir Size

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5001

Number of Sample Points

0 y 500 600 700 800 900 1001

Julia

JuliaHub

Contact Us

By moving the model
transformation process to
the runtime itself,
ModelingToolkit can be
used as a transformation
and compilation system by
other front ends.

Other talks at the Modelica
conference also exploit this
feature.

One Part of Performance: Improved Linear Solvers

New numerical linear algebra stack, S
designed for ML, outperforms MKL on
modern high-end AMD CPUs

Roadmap to Julia BLAS and
LinearAlgebra | Chris Elrod |
JuliaCon2021

GFLOPS
s

Size: (17,17)

RecursiveFactorization: MedianGFLOPS = 3.053

MKL: MedianGFLOPS = 2.047 -

OpenBLAS: MedianGFLOPS = 2.509

Size: (486, 486)

RecursiveFactorization: MedianGFLOPS = 61.48 https://github.com/YingboMa/RecursiveFactorization.jl/pull/28
MKL: MedianGFLOPS = 44.45

OpenBLAS: MedianGFLOPS = 30.56

The Limitations of Tracing Representations:

Quasi-Static Models

epreentable 8x Representable Not representable, not quasi-static
function f(x) f(x) = IfElse.ifelse(x<3,3*x"2,-4*x)
for i in 1:3 function factorial(x)
Quasi-Static: out = x
Is the computation input while x > 1
value independent?
X -=1
out *= x
function f(x) ML model representations in Jax, end
TE % < 3 Tensorflow, etc. use quasi-static
representations for model optimizations. ~ OUT

— .
=

end

return -

Useful Algorithms That Are Not Optimized By Jax, PyTorch, or
Tensorflow

Chanlhackial (facntkusla A~s

https://www.stochasticlifestyle.com/useful-algorithms-that-are-not-optimized-by-jax-pytorch-or-tensorflow/

Final Note: Using Compilers and Transformations Beyond Differentiation

— oo
non
]
33
+ 1+

®
® ®

N

uo = [@ £ @, m/6@ £ 0.01]
tspan = (©.0, 6.3)

function pendulum(du, u, p, t)

8 = uf1]
dé = u[2]
du[1] = d®
du[2] = -(g/L)*®
end
Table 1: Hessian sparsity construction for a prop = ODEProblem(pendulum, us, tspan)
program taking as input a vector of length 4. sol = solve(prob, Tsit5(), reltol = le-6)
The 4 x 4 sparsity pattern for each intermedi-
ate value is shown. The provenance polyno-
mial has the same hessian sparsity pattern. u = uo[2] .* cos.(sgrt(g/L) .* sol.t)
code fragment __polynomial _ sparsity Compiler-Based Intrusive Uncertainty Quantification
deg2rad(x[1]) =1 %
log(x[1]1) x3 Hj—j
x[1] + x[4] T+ 1y E
x[1] * x[4] Ty %
Figure 1: Spar51Fy pattern of t‘he lJacoblan of the q = x[11/x[4] 2,22 E
Brusselator code in Listing 1 with input and output 5 E
tensors of size 6 x 6 x 2 = 72. asin(q)*x[3] (z17%)T3

Generalizing Automatic Differentiation to Automatic Sparsity, Uncertainty,
Stability, and Parallelism, StochasticLifestyle.com

Automatic Sparsity Detection

https://www.stochasticlifestyle.com/generalizing-automatic-differentiation-to-automatic-sparsity-uncertainty-stability-and-parallelism/

Julia's Modeling and Simulation Advantage Extends to the Symbolic Realm

ModelingToolkit, Modelica, and Modia: The Composable Modeling Future in Julia

Chris Rackauckas

@RI Fredrik Bagge Carlson 8:02 PM

¥ 4! Started out a simple computation using SymPy today and noticed that it took a
while. Spent the time | was waiting for SymPy to return to read the docs for
Symbolics.jl, reimplemented the same thing using Symbolics and 20 minutes
later | had the answer, before SymPy was done. The same computation using

Symbolics.jl took

1.552 ms (18755 allocations: 424.75 KiB)

(admittedly, after the time-to-first simplify of about 5 seconds 9)
Symbolics.jl may be a bit rough around the edges, but sure looks promising!

2370x speedup over SymPy on real-world robotics application
https://github.com/JuliaSymbolics/SymbolicUtils.jl/pull/254

Symbolics:

julia> x = setup(vis, 3); @time M = mass_matrix(x);
3.721925 seconds (7.73 M allocations: 462.482 MiB, 2.41% gc time, 99.20% compilation time)

julia> for n in 3:7; x

0.006976 seconds
0.007024 seconds
0.007367 seconds
0.007341 seconds
0.007315 seconds

SymPy:

(79.
(80.
(81.
(82.
(82.

= setup(vis, n); @time M = mass_matrix(x); end

61 k allocations:
71 k allocations:
56 k allocations:
07 k allocations:
66 k allocations:

3.028 MiB)
3.072 MiB)
3.106 MiB)
3.131 MiB)
3.157 MiB)

julia> x = setup(vis, 3, true); @time M = mass_matrix(x);

16.333147 seconds

(31,

julia> for n in 3:7; x

2.899745 seconds
4.737822 seconds
9.462235 seconds
16.858959 seconds
17.311054 seconds

(78.
(78.
(78.
(78.
(78.

71 M allocations:

1.870 GiB, 2.18% gc time)

= setup(vis, n, true); @time M = mass_matrix(x); end

61 k allocations:
61 k allocations:
61 k allocations:
61 k allocations:
61 k allocations:

2.414 MiB)
2.414 MiB)
.414 MiB)
.414 MiB)
.414 MiB)

Reason for Julia's Advantage?
Engineering a Community

SciML’'s Common Interface:
One consistent interface for all numerics
Symbolic modeling for all forms
Automated inverse problems and adjoints

Composes across the whole package
ecosystem

Fully embraces generic programming

Uses and embraces the work of other
developers

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

Youtube: Differential Equations in 2021

Every improvement by every package
developer feeds into one pipeline

The SciML Common Interface, Oversimplified

Symbolic-Numeric

High Level Model Internal Package Handling

Representation
i it.j SymbolicUltils.jI
> S eyatem | [ButOn» i Wetatheory,i
4 AbstractAlgebra.jl

Transforms Into

% ChainRules.jl —
Rules

ModelingToolkit.jl A2 DiffEqSensitivity.jl

—> Built On
ODESystem With Support By
I
Zygote.jl T
Add Loss Built On ReverseDiff. Internally Handled By
ForwardDiff.jl |
Tracker.jl

Enzyme.j|
ModelingToolkit.jl . .
OptimizationSystem — DiffEqFlux.jl

Automatic Differentiation By

Generate Numerical Form

v

LoopVectorization.jf
RecursiveFactorization.jl
Pardiso.ji

Flux.ji
—Interface For—p-EVEIIO QiYL N])
Optim.ji

GalacticOptim.j|
OptimizationProblem

NonlinearSolve.j!

Internally Uses LinearSolve.j!

v

Built On

OrdinaryDiffEq.ji
Interface For—s Sundials.jl - SparseDiffTools.j!
ODEinterface.jt FiniteDiff.ji
LSODAJI ...

DifferentialEquations.jl
ODEProblem

	Bildnummer 1
	Bildnummer 2
	Bildnummer 3
	Bildnummer 4
	Bildnummer 5
	Bildnummer 6
	Bildnummer 7
	Bildnummer 8
	Bildnummer 9
	Bildnummer 10
	Bildnummer 11
	Bildnummer 12
	Bildnummer 13
	Bildnummer 14
	Bildnummer 15
	Bildnummer 16
	Bildnummer 17
	Bildnummer 18
	Bildnummer 19
	Bildnummer 20
	Bildnummer 21
	Bildnummer 22
	Bildnummer 23
	Bildnummer 24
	Bildnummer 25
	Bildnummer 26
	Bildnummer 27
	Bildnummer 28
	Bildnummer 29
	Bildnummer 30
	Bildnummer 31
	Bildnummer 32
	Bildnummer 33
	Bildnummer 34
	Bildnummer 35
	Bildnummer 36
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	Bildnummer 40
	Bildnummer 41
	Bildnummer 42
	Bildnummer 43
	Bildnummer 44
	Bildnummer 45
	Bildnummer 46
	Bildnummer 47
	Bildnummer 48
	Bildnummer 49
	Bildnummer 50
	Bildnummer 51
	Bildnummer 52
	Bildnummer 53
	Bildnummer 54
	Bildnummer 55
	Bildnummer 56
	Bildnummer 57
	Bildnummer 58
	Bildnummer 59
	Bildnummer 60
	Bildnummer 61
	Bildnummer 62
	Bildnummer 63
	Bildnummer 64
	Bildnummer 65
	Bildnummer 66
	Bildnummer 67
	Bildnummer 68
	Bildnummer 69
	Bildnummer 70
	Bildnummer 71
	Bildnummer 72
	Bildnummer 73
	Bildnummer 74
	Bildnummer 75
	Bildnummer 76

