

Getting personal with epigenetics: Towards machine-learning-assisted precision epigenomics

Giovanni Visonà

Category	Epigenetic Regulators	Function	FDA-Approved Drug
Writers	DNMT1, 3A, and 3B	Methylates cytosines on DNA, and mutation can lead to aberrant methylation	Azacitidine, decitabine
	EZH2	Methylates histone H3K27	Tazemetostat
	DOT1L	Methylates histone H3K79	
	KMT2A–D, SETD2, NSD1	Methylate histone lysines	
	EP300, CREBBP	Acetylate histone lysines	
Erasers	TET2	Is the first step in cytosine demethylation; is inhibited by 2-hydroxyglutarate (2-HG)	Azacitidine, decitabine
	IDH1, IDH2	Mutated protein produces 2-HG from isocitrate that inhibits TET2 and lysine demethylases	Ivosidenib, enasidenib
	HDAC1–3, 8 HDAC6	Deacetylase removes acetyl groups from histone lysines	Vorinostat, belinostat, panobinostat, romidepsin
	KDM1A, KDM6A (UTX)	Demethylates histone lysines	

Bates, Susan E. "Epigenetic therapies for cancer." New England Journal of Medicine 383.7 (2020): 650-663.

ROADMAP EDIGENOMICS PROJECT	e-Seq	Seq	b				Seq	-Seq	put me3	me3	el	e3		e3	2		2	20ac	2ac	Sac	Dac	S	BC	ac		e2	ы С	mel	mez	mel			Di la	me2	ac ac	el	h	
	sulfite	PIP-	R-Se	ßS	Vasel	ы	RNA-		K271	3K36i	%44m	%4m	3K9ac	3K9m	K27		A7	BKI	BKI	BK1	BK2	3K14	3K18	3K23	%4ac	X4m	3K568	K79	8K/91		tK5a0	HK12	tK91	3K23I	BK5	%9m	111	
	Βİ	ž	Ξ	뛾	6	리	E	5 3	키끌	Ξ	뀌	뀌	뀌	뙤	뛰	2 3	리크	Ξ	Ξ	Ξ	되	뙤	뙤	뙤	뙤	뙤	뙤	비	Ξļ	Ŧ	키	티코	17	lΞ	Ξ	뀌	ΞĮ	
ADRENAL-Fetal																																						
BRAIN																																						
BRAIN-Fetal																																						
BREAST																																						
ES CELLS																																						
ES-derived cells																																						
Exocrine-Endocrine																																						
FAT-Adult																																						
GI-Adult																																						
🗉 GI-Fetal																																						
GU-Adult																																						
HEART-Adult																																						
HEART-Fetal																																						•
Hematopoietic Stem																																						
CD34, Primary Cells																																						
CD34, Mobilized Primary Cells																																						
CD34, Cultured Cells																																						
IPS CELLS																																						
KIDNEY-Fetal																																						
LUNG-Adult																																						
LUNG-Fetal																																						
MUSCLE-Adult																																						
MUSCLE-Fetal																																						
PLACENTA-Fetal																																						
REPRODUCTIVE-Adult																																						
REPRODUCTIVE-Fetal																																						
SKIN-Fetal																																						
SPLEEN-Fetal																																						
STROMAL-CONNECTIVE																																						
THYMUS-Fetal																																						
White Blood																																						

Can we leverage machine learning to **fill the gaps**?

Epigenetic modifications are **cell-type specific**

EPI-LOGOS

Previous work: ChromImpute

Trains ensembles of **regression trees**

Significant performance improvement compared to all previous methods

Ernst, Jason, and Manolis Kellis. "Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues." Nature biotechnology 33.4 (2015)

Previous work: PREDICTD and Avocado

Durham, Timothy J., et al. "PREDICTD parallel epigenomics data imputation with cloud-based tensor decomposition." Nature communications 9.1 (2018) Schreiber, Jacob, et al. "Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome." Genome biology 21 (2020)

What is **attention**?

https://jalammar.github.io/illustrated-transformer/

Scaled Dot-Product Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Tested on the Roadmap dataset (chromosome 21), eDICE outperforms ChromImpute and PREDICTD on almost all metrics

0.8

0.6

0.4

0.2

0.0

This problem is not unique to eDICE. eDICE - Assay-level Performance Fg MSE - 100 sy N.Tracks eDICE - Assay Performance by Function Value Bg MSE Fg MSE 0.15 13×19mei H28K15ac WBK53C HAYBac H284223C H3K1882C HRAKSac 428K2208C HARGISC 134278 13K23aL 13tame. .13tame 0.10 2 0.05 Bg MSE Assay N.Tracks 0.15 pval = 4.7e-01pval = 7.2e-08alue v.10-Fg Corr AUPRC MACS 1284220ac H28K15ac 13KAmel 128K22ac 13tame: H3K188c HRAKSac HZBK5ac HAK91ac 434272 13K23aL .13×Tome 13Kome 1.0 1.0 0.5 0.5 ay N.Tracks J. N.Tracks J. U.O. Fg Corr Value 0.0 pval = 1.1e-15pval = 1.1e-19Assay ' Repressive Activating Repressive Activating 0.0 13tamet HABKLISSE HZBK5ac 13×19mei HAKBac AROmei H3KAmez 43KAme3 . 128K22ac 43×1882 . XBK1203C 13427ac HRAKSac HAKOlac 13tomes 134232 AUPRC MACS N.Tracks 200 Value Value Assay 0.0 0 The discrepancies are possibly due to H3KAmei H3KAMe3 43436me3 DNase 43K23ac 428K223c H34188 H2A458C H284208C H3KAme2 H3K21ac H3K9me3 . ANQOMET H2A.2 H284158C H28K58C H3Klomet H3K98C HAK91ac HAKBOC biases in the sequencing of

Imputations work better on some assays.

heterochromatin-associated marks.

EPI-LOGOS

EPI-LOGOS

The processing pipeline is affected by multiple sources of bias: small number of replicates, low quality control samples, different sequencing platforms.

Identifying meaningful differences between biological samples is crucial to progress our understanding of the regulatory mechanisms of the genome H3K9ac Tissue-specific Peak - Replicates E025_1 E025_92 E025 93 E052_1 E052 2 E052_3 Tissue-specific Peak - Reference P-value tracks Observed E025 The use of multiple replicates Imputed E025 **Observed E052** is fundamental for robust Imputed E052 analysis

We simulate pseudo-replicates for two tissues using parameters estimated from the imputations. (Next iteration will explicitly predict the variance of the signal)

Mean gene expression level (log10 scale)

Image from https://bioramble.wordpress.com/2016/01/30/why-sequencing-data-is-modeled-as-negative-binomial/

Binding affinity scores for the imputed replicates reflect the pattern found in the measurements.

This differential analysis retrieves most of the meaningful differences between sets of replicates. (PPV ~70%)

> 310 855 444 Diff. Peaks in Measurements Diff. Peaks in Imputations

Differentially Enriched Peaks - E025 and E052

EPI-LOGOS

Instead of predicting data from reference epigenomes, can we make personalised predictions?

Q Filter the experiments included in the matrix: Showing 1519 results Enter search term(s) 📰 Report Download List $\text{ASSAY} \longrightarrow$ BIOSAMPLE **TF ChIP-seq Histone Ch** ENCDO845WKR ð POLR2AphosphoS5 ong read RNA-seq ENCDO793LXB microRNA counts small RNA-seq microRNA-seq total RNA-seq DNAme array ENCDO451RUA ď2 DNase-seq H3K36me3 RAMPAGE H3K4me1 H3K4me3 ATAC-seq H3K27ac **POLR2A** ENCDO2710UW WGBS EP300 Q4 CTCF transverse colon sigmoid colon upper lobe of left lung stomach

Epigenomes from four individuals (ENTEx)

We compare to two baselines: averaging over tissues (AVG), and averaging over individuals (TrackAVG)

TrackAVG

eDICE generalisation to unseen cell type

By construction, TrackAVG does not contain personalised information. We examined the performance of the imputations after masking out the shared regions.

0.0

0.2

0.4

0.6 AVG

0.0

0.2

0.4

0.6

TrackAVG

H3K9me3

1.0

0.8

EPI-LOGOS

H3K9me3

1.0

0.8

The transfer learning process allows generalisation to unseen tissues

EPI-LOGOS

Acknowledgements

- Alex Hawkins-Hooker, UCL
- Tanmayee Narendra, University of Tübingen
- Mateo Rojas-Carulla, Lakera Al
- Bernhard Schölkopf, Max-Planck Institute for Intelligent Systems
- Gabriele Schweikert, University of Dundee

Thank you for your attention

Bin-wise Tissue Occupancy

Systematic dataset shifts, differences between assays, and hidden confounders are difficult challenges for personalised imputation

Performance of AVG Baseline 0.8 ٠ 9.0 AUPRC MACS ٠ . 0.2 ٠ AVG (Roadmap) AVG (ENTEx) 0.0 H3K27ac H3K9me3 H3K36me3 H3K4me1 H3K4me3

Global embeddings capture tissue similarity and general epigenetic mark function

Self-Attention opens up possibilities for **interpretation** of the model

Percentage of attention

$$p_h(\alpha) = \sum_{g \in G} \sum_{a \in A} w_{a\alpha}^{(g,h)} / \sum_{g \in G} \sum_{a \in A} \sum_{a' \in A} w_{aa'}^{(g,h)}$$

	Global Percentage of Attention - Chromosome 21																							
Attention Head 1	2.1%	5.0%	3.4%	1.8%	2.6%	2.1%	2.3%	2.7%	1.6%	5.9%	2.4%	7.5%	11.3%	0.9%	7.2%	6.5%	7.1%	2.3%	3.1%	3.3%	12.9%	2.9%	2.0%	1.2%
Attention Head 2	0.9%	6.1%	1.5%	2.4%	1.5%	1.4%	0.9%	2.4%	1.8%	1.6%	0.8%	20.9%	15.5%	2.9%	5.9%	0.6%	4.4%	1.4%	1.1%	0.6%	16.9%	1.2%	5.8%	1.5%
Attention Head 3	4.0%	4.6%	3.7%	3.6%	3.5%	3.5%	3.5%	4.5%	4.1%	4.5%	3.8%	4.4%	4.4%	3.9%	4.4%	4.5%	5.3%	3.9%	4.6%	5.0%	4.2%	3.8%	4.6%	3.5%
Attention Head 4	5.8%	4.1%	3.5%	3.3%	2.5%	2.5%	3.6%	3.1%	5.1%	4.2%	6.5%	3.4%	3.1%	4.0%	5.3%	6.2%	6.3%	3.1%	4.6%	8.0%	3.0%	2.8%	2.9%	3.0%
	ONase	H2A.2	HANDBE HA	842208c 4	28K723c 4	284158c	A2BH58C	13that	13418 ³⁶ v	131238c	H3P218C H2	akalme3 H?	K36me3	H3thac H	3Karnet H	3KAMPE2 H	3Karne3 H3	flomet H?	K19mez	H3498C 4	3Kome3 Ha	Romet	HAYBac V	HA1918C

How does this portion of attention **shift within functional regions** of the genome?

$$d_h^{(R)}(\alpha) = \frac{p_h(\alpha)|_{G \equiv R} - p_h(\alpha)}{p_h(\alpha)}$$

	Attention Shifts - Gene																							
Attention Head 1	-0.4%	2.1%	1.0%	1.0%	1.5%	2.1%	0.3%	0.3%	0.6%	-0.1%	0.1%	1.3%	-4.0%	0.6%	-0.5%	-1.7%	0.7%	-4.0%	-8.3%	0.6%	5.4%		-0.2%	1.2%
Attention Head 2	-2.1%	3.0%	2.1%	2.4%	2.6%	3.1%	2.0%	3.4%	2.5%	1.9%	-6.0%	0.8%	-13.9%	3.8%	-7.3%	-3.1%	-1.2%	4.8%	-10.0%	-6.4%	11.6%	-9.4%	2.0%	2.6%
Attention Head 3	-0.2%	1.1%	-1.1%	-1.0%	-1.7%	-1.2%	-1.2%	0.3%	-0.8%	1.0%	-0.6%	0.5%	0.8%	-0.6%	0.3%	0.4%	1.8%	-0.7%	0.3%	1.8%	-0.3%	-0.9%	0.8%	-1.3%
Attention Head 4	-2.0%	-1.8%	0.2%	0.3%	0.3%	-0.0%	0.8%	1.4%	0.9%	0.1%	-1.0%	-1.2%	0.5%	1.3%	-0.3%	-1.4%	-1.5%	6.4%	1.7%	0.4%	-1.9%	-0.1%	0.4%	0.7%
$_{\iota}(\alpha)$	$\frac{1}{2^{46^{6^{6}}}} e^{i2^{6^{1}}} e^{i2^{6^{1}}} e^{i2^{6^{1}}} e^{i2^{6^{1}}} e^{i2^{6^{1}}} e^{i2^{6^{6^{6}}}} e^{i2^{6^{6^{6}}}} e^{i2^{6^{1}}} e^{i2$																							
A	22.40		0.8%	2.6%	10 40/	12.99/	0.5%	0.6%	4.2%	E 20/	E E0/	12.49/	24.2%	2.7%	0.2%	E7 10/	26.0%	6.0%	12.2%	22.19/	20.4%	11 19/	4 79/	0.99/
Attention Head	-22.49	0 -33.8%	9.8%	2.0%	12.4%	12.8%	0.5%	0.6%	-4.2%	5.3%	-3.5%	12.4%	24.3%	-2.1%	-0.2%	-57.1%	-20.9%	0.0%	-13.3%	-22.1%	29.4%	11.1%	-4.7%	0.8%

Attention shifts are **consistent with the literature**