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How bacteria generate beneficial phenotypic heterogeneity
through mixed positive/negative feedback loops

Cellular systems Sigma factors govern Sigma factors B and V
are noisy bacterial stress response behaves differently
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Biological systems are noisy
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Noise is caused by e.g. randomness in (diffusion based) reactions.



Cellular noise is phenotypically important
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Bacterial Chemotaxis Cell Differentiation

Several decisions are based on noise-induced randomness.



Bulk measurements obscure single-cell dynamics

Single-cell distribution

Cell population Bulk measurement

Single-cell measurements may reveal population heterogeneity.



Bacteria activate o-factors in response to stress

Bacteria

Stress
response

These then activate the stress response genes.
We will use them as a system to study cellular noise.



Bacteria often have several different o-factors

A stress is sensed - A o-factor is activated - Stress response genes are activated

Lysozyme Stress IAnother lysozyme response gene }

Each activates in response to a specific stress.



Most o-factors circuits have a similar structure
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The o-factor activates both its own production, and that of an anti-o-factor.
This creates a mixed positive/negative feedback loop.



We measure o-factors activity through fluorescent markers
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Cellular fluorescence corresponds to o-factors activity.



We measure o-factors activity using single-cell fluorescent microscopy
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Using image analysis, time trajectories are created.



o-factor B (GB) responds to environmental stress
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It displays a stochastic pulsing behaviour (in the presence e.g. ethanol).

Park et al. (2018) Cell Systems



This creates population heterogeneity, allowing adaption to an uncertain future

Heterogeneous Population

No Stress| Stress
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If stress wipes out the non-expressers, the expressers can repopulate the colony.



o-factor V (GV) regulates the lysozyme stress response

ILysozyme
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RsiV |Cell wall protection

It activates genes for cell wall protection and repair.



v

o' responds through a heterogeneous activation behaviour

Lysozyme addition
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The time to activation is heterogeneous across an isogenic population.



v

We can model the oV circuit

Svstem Network

ILysozyme Stress

Model Reactions

s Production

= Binding

= Dissociation

= Degradation/Release

o % oV + RsiV
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Our chemical reaction network model is based on the circuit's reaction events.




The model recreates the heterogeneous response

Lysozyme addition
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oV act

Stochastic reaction network interpretation (Gillespie's algorithm) is used to implement
noise.



Our model predicts a memory of previous stresses
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ivity

oV act

The reactivation (after a stress holiday) is homogenous, not heterogeneous.



We validate the prediction experimentally
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Each validation step increase our confidence in the model.



Both the oP and ¢V circuits' contain a mixed positive/negative feedback loop

Input

Can this motif reproduce the two distinct response behaviours?



We model a general o-factors circuit

The negative feedback is subject to a time delay.

System noise is accounted for by making simulations stochastic.



The model depends on only three parameters:

e S: The strength of the self-activation loop.
e D: The strength of the self-deactivation loop.
e 7: The length of the self-deactivation delay.
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The system's behaviour is determined by these three properties.

(The model is a one-variable stochastic delay differential equation)



For every parameter set, we get a specific response behaviour

(S,D,7) = (5,1,5)

(S,D,1) = (5,5,5)
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We have found all the possible response behaviours of the system

No Activation Stochastic Pulsing Oscillation Stochastic Anti-Pulsing Homogeneous Activation
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Heterogeneous Activation Stochastic Switching Stable Bistability Single Response Pulse Intermediate Activation

P

(An automated algorithm is used to classify parameter sets)




We can map these behaviours across parameter space

No Activation Stochastic Pulsing Oscillation Stochastic Anti-Pulsing Homogeneous Activation
Heterogeneous Activation Stochastic Switching Stable Bistability Single Response Pulse Intermediate Activation
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We can map these behaviours across parameter space

T=1.0

No Activation Stochastic Pulsing Oscillation Stochastic Anti-Pulsing Homogeneous Activation
Heterogeneous Activation Stochastic Switching Stable Bistability Single Response Pulse Intermediate Activation
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(t = length of self-deactivation delay)



We can map these behaviours across parameter space

T=1.0

1.5D
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(D = strength of self-deactivation, Tt = length of self-deactivation delay)



We can map these behaviours across parameter space

K T=1.0
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No Activation Stochastic Pulsing Oscillation Stochastic Anti-Pulsing Homogeneous Activation
Heterogeneous Activation Stochastic Switching Stable Bistability Single Response Pulse Intermediate Activation
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)




We can map these behaviours across parameter space
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)




We can map these behaviours across parameter space
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)




We can map these behaviours across parameter space
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)




We can map these behaviours across parameter space
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)




We can map these behaviours across parameter space

T=1.0
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)



We can map these behaviours across parameter space

T=1.0 T=4.0
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)



We can map these behaviours across parameter space

T=1.0 T=4.0
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(S = strength of self-activation, D = strength of self-deactivation, Tt = length of self-
deactivation delay)




Real systems can be located on our map

oV: Heterogeneous activation

n oB: Stochastic pulsing
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This makes predictions on their system-properties.

(Here, P should have a higher D = strength of self-deactivation than GV)



The model predicts a behavioural transition as the parameter S is varied

heeared|

) \wj
No Activation Stochastic Pulsing Oscillation Stochastic Anti-Pulsing Homogeneous Activation

B

This transition should be observable in the 6™ system (which contains stochastic pulsing).



We can modulate this parameter in the real circuit
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This confirms that o undergoes the predicted transition.

An increase in IPTG corresponds to an increase in S. For each level of IPTG, three repeats
are shown.



We can classify model and experiment behaviours as S is varied
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A similar transition occurs in both systems.



Goal

e Build system as a tunable synthetic regulator.
e Can be used in synthetic organisms.

Summary

e Biological systems are noisy.
e Cellular noise can generate population heterogeneity.
e Single-cell measurements and models are required to detect this.
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Thank you

Cellular systems Sigma factors govern Sigma factors B and V
are noisy bacterial stress response behaves differently
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Our model is a two-variable Stochastic Differential Equation

S.o)" . = =
T =+ = a)n(+(aD)-A)n+1 o +7nnoisei(Z,P)
42 = 1(0 — A) + 1)-noisex(Z, p)

It depends on only 6 parameters:

e S: The degree of system self-activation e v(: The base production of the o-factor

* D: The degree of system self-deactivation e pn: The degree of system cooperativity
e 1: The length of the time delay e 11: The noise amplitude

(The final terms are functions determining the degree of noise)
(The variable A models the time delay)



By simulating the model we can observe its behaviour

Here it exhibits a Stochastic Pulsing behaviour.

(A single simulation displayed in phase space and over time)
(Nullclines are drawn in red and blue)



