

Status of Learning Based Control of Linear Systems

Adaptive control literature since the 1950s

- Searching Google Scholar for "Adaptive Control" gives 4 890 000 hits
- Theory focus on stability and optimal asymptotic performance ►
- Valuable counterexamples

Recent applications of learning theory for control

- Focus is shifted to transient performance and regret bounds
- Usually assumes stabilizing linear controller known
- No robustness bounds for unmodelled dynamics

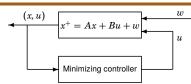
Minimax adaptive control

- Early work by [Didinsky/Basar 1994, Vinnicombe, Megretski 2004]
- Scalar case [Rantzer, IFAC 2020]
- Multivariable case [Rantzer, L4DC 2021]

Outline

- Introduction
- Scalable optimal control
- Minimax adaptive control
 - Problem formulation
 - Solution using Dynamic Programming
- Scalable adaptive control

Game Formulation of H_∞ Control



Find a control law μ that attains the minimum

$$\min_{\mu} \max_{w} \sum_{t=0}^{\infty} \left(|x_t|_Q^2 + |u_t|_R^2 - \gamma^2 |w_t|^2
ight)$$

(with notation $|x|_Q^2 = x^ op Q x$), when x_t, u_t are generated according to

$$x_{t+1} = Ax_t + Bu_t + w_t$$

$$u_t = \mu_t(x_0, \ldots, x_t, u_0, \ldots, u_{t-1}).$$

Optimal control u = -Kx defined by the minimizing u in the Riccati equation $|x|_{P}^{2} = \min_{u} \max_{w} \left\{ |x|_{Q}^{2} + |u|_{R}^{2} - \gamma^{2}|w|^{2} + |Ax + Bu + w|_{P}^{2} \right\}$

Theorem 1: Equivalent Dynamic Game

Optimal controller has the form

$$u_t = \eta(x_t, Z_t)$$

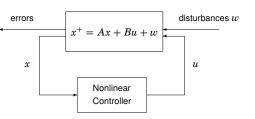
where

$$Z_T = \sum_{t=0}^{T-1} \begin{bmatrix} -x_{t+1} \\ x_t \\ u_t \end{bmatrix} \begin{bmatrix} -x_{t+1} \\ x_t \\ u_t \end{bmatrix}^\top$$

(Compare to statistical sample covariance)

[Rantzer, L4DC 2021]

Problem Formulation



Find a controller that simultaneously keeps the l_2 -gain from disturbances to errors below a given bound for all $(A, B) \in \{(A_1, B_1), \ldots, (A_N, B_N)\}$.

Min-max Dynamic Games

Given a cost function, find a control law $\boldsymbol{\mu}$ that attains the infimum

$$\inf_{\mu} \sup_{w} \left(\sum_{t=0}^{\infty} g(x_t, u_t, w_t) \right)$$

when x and u are generated from w according to the dynamical system $x_{t+1} = f(x_t, u_t, w_t)$ and $u_t = \mu(x_t)$.

Isaacs

Pontryagin Zachrisson

Minimax Adaptive Control

Suppose $Q, R \succ 0$ and let \mathcal{M} be a set of possible (A, B)-pairs. Given a number $\gamma > 0$, find a control law μ that attains the infimum

$$\inf_{\mu} \sup_{w} \max_{(A,B)\in\mathcal{M}} \sum_{t=0}^{\infty} \left(|x_t|_Q^2 + |u_t|_R^2 - \gamma^2 |w_t|^2 \right)$$

when supremum is taken over all solutions to

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t + w_t & t \ge 0 \\ u_t &= \mu_t(x_0, \dots, x_t, u_0, \dots, u_{t-1}). \end{aligned}$$

- y quantifies robustness to unmodeled dynamics.
- In general, nonlinear feedback with memory is needed.
- Early work by [Didinsky/Basar, CDC 1994]

Theorem 2: Gain Bound from Riccati Inequalities

Given $Q \succ 0, R \succ 0$ and $\mathcal{M} := \{ (A_1, B_1), \dots, (A_N, B_N) \} \}$ suppose there exist K_1, \ldots, K_N and P_{ij} with $0 \prec P_{ij} \prec \gamma^2 I$ and

$$ert x ert_{P_{ik}}^2 \ge ert x ert_Q^2 + ert K_k x ert_R^2 + ert (A_i - B_i K_k + A_j - B_j K_k) x/2 ert_{(P_{ij}^{-1} - \gamma^2 I)^{-1}}^2
onumber \ - \gamma^2 ert (A_i - B_i K_k - A_j + B_j K_k) x/2 ert^2$$

for $x\in\mathbb{R}^n$ and $i,j,k\in\{1,\ldots,N\}$. Then $\max_{i,j}|x|^2_{P_{ij}}$ bounds the game value for the **certainty equivalence control law**

$$u_t = -K_{i_t} x_t$$
, where $i_t = rgmin_i \sum_{ au=0}^{t-1} |A_i x_{ au} + B_i u_{ au} - x_{ au+1}|^2$

[Rantzer, L4DC 2021], [Cederberg/Hansson/Rantzer, CDC 2022]

Theorem 2: Excitation/Exploitation

Given $Q \succ 0$, $R \succ 0$ and $\mathcal{M} := \{(A_1, B_1), \dots, (A_N, B_N))\}$, suppose there exist K_1, \dots, K_N and P_{ij} with $0 \prec P_{ij} \prec \gamma^2 I$ and

$$egin{aligned} |x|^2_{P_{ik}} \geq |x|^2_Q + |K_k x|^2_R + \left| (A_i - B_i K_k + A_j - B_j K_k) x/2
ight|^2_{(P^{-1}_{ij} - \gamma^2 I)^{-1}} \ &- \gamma^2 |(A_i - B_i K_k - A_j + B_j K_k) x/2|^2 \end{aligned}$$

 $x \in \mathbb{R}^n$, $i, j, k \in \{1, ..., N\}$. Then $\max_{i,j} |x|_{P_{ij}}^2$ bounds game value. Last term encourages control activity when model uncertainty is large.

Example: Double Integrator with Uncertain Sign

The double integrator can be written as

$$x_{t+1} = \underbrace{\begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{A} x_t \pm \underbrace{\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}_{B} u_t + w_t$$

with the state $x_t = \begin{bmatrix} y_t & y_{t-1} & u_{t-1} \end{bmatrix}^T$. Theorem 2 can be applied with $\mathcal{M} = \{(A, \pm B)\}$. By first solving the Riccati equation for $P_{11} = P_{22}$ and $K_1 = -K_2$, then solving the matrix inequalities for P_{12} , we get

$$P_{11} = P_{22} = \begin{bmatrix} 20.61 & -11.09 & 11.09 \\ -11.09 & 7.83 & -6.83 \\ 11.09 & -6.83 & 7.83 \end{bmatrix} \quad P_{12} = \begin{bmatrix} 155.0 & -84.4 & 84.4 \\ -84.4 & 89.0 & -87.5 \\ 84.4 & -87.5 & 89.0 \end{bmatrix}$$
$$K_1 = -K_2 = \begin{bmatrix} 1.786 & -1.288 & 1.288 \end{bmatrix} \quad \gamma = 19$$

The adaptive controller has gain between $\sqrt{\|P_{12}\|} = 16.8$ and $\gamma = 19$.

Outline

- Introduction
- Scalable optimal control
- Minimax adaptive control
- Scalable adaptive control

Is the Minimax Adaptive Controller Scalable?

Important large-scale systems have optimal controllers where local computational complexity is independent of network size.

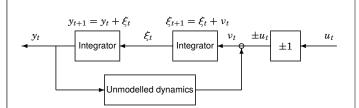
But the minimax adaptive state \boldsymbol{Z}_t grows quadratically with network size.

Instead, nodes update only parts relevant for estimation of local dynamics!

Node 7 updates sample covariances of states, inputs in nodes 7 & 4.
 Node 2 updates sample covariances of states, inputs in nodes 1-4.

Then, complexity remains independent of network size!

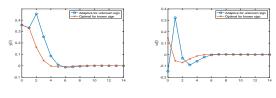
Example: Double Integrator with Uncertain Sign



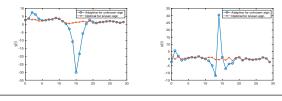
No linear controller can stabilize a double integrator with unknown sign. Minimax adaptive controller first estimates sign, then plays H_∞ game.

Example: Double Integrator with Uncertain Sign

Without disturbances:



With white noise disturbances and sudden input gain sign change:



H_∞ Optimal Static Control on Networks

Problem:

Given a graph $(\mathcal{V}, \mathcal{E})$ and

$$\dot{x}_i = a_i x_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}) + w_i$$
 $i \in \mathcal{V}$

find control law u = Kx that minimizes the H_{∞} norm of the map from w to (x, u).

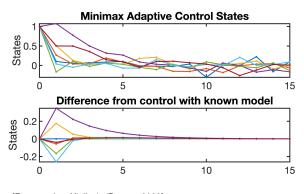
Solution:

An optimal control law when $a_i < 0$ is given by

$$u_{ij} = x_i/a_i - x_j/a_j \qquad (i, j) \in \mathcal{E}.$$

What if the dynamic parameters a_i are not known?

Example: Adaptive Control of Water Network



[Renganathan/Kjellqvist/Rantzer 2022]

Summary

- Important large-scale systems have sparse optimal controllers
- Minimax optimal adaptive controllers have finite state involving sample covariance matrix
- Riccati type inequalities verify rigorous gain bound
- Optimal adaptive controller scales linearly with network size
- Many natural generalizations

