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The Challenge of Modern Control: Scalability

[Source: geospatial.blogs.com]

Control challenges:
More producers. Variable capacity. Limited storage. Flexible components.

Towards a Scalable Theory of Control

What do we need?

I Scalable Synthesis

I Scalable Verification

I Scalable Modeling

I Scalable Objectives
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Thermal Networks in a Renewable Energy System

From [Mathiesen, Drysdale, Lund, Paardekooper, Ridjan, Connolly, Thellufsen, Jensen, Aalborg University 2016]:

Fairness Problem in District Heating
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(b) Indoor Temperatures

[Problem mentioned in recent annual report by Stockholm Exergi]

Load Coordination

minimize
δ

max
i
pγiδ ip Min. max deviation

subject to δ = q̂− q Actual flows q differ from demands q̂
q ∈ Q Actual flows should be feasible

Use building models to choose γi for fair temperature deviations
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(a) Traditional
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(b) Load Coordination
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(c) Optimal

[Agner/Kergus/Pates/Rantzer, Smart Energy, March 2022]

Wind Farms Need Control

Picture from http://www.hochtief.com/hochtief_en/9164.jhtml

Most wind farms today are paid to maximize power production. Future
farms will have to curtial power at contracted levels.

New control objective:
Minimize fatigue loads subject to fixed total production.
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Minimizing Fatigue Loads

Single turbine control:
Minimize tower pressure variance subject to linearized dynamics with
measurements of pitch angle and rotor speed.

Optimal controller: uloc
i (t)

Wind farm control:
Minimize sum of all tower pressure variances subject to
fixed total production of the farm:

∑m
i=1 ui = 0

Optimal controller: ui(t) = uloc
i (t) − 1

m
∑m

j=1 uloc
j (t).

[D Madjidian, L Mirkin, A Rantzer, IEEE Trans. on Automatic Control 2016]

Controller Structure

C

Linear quadratic control ofm identical systems and a constraint∑m
i=1 ui = 0 gives an optimal feedback matrix with two parts:

I One is localized (diagonal).
I The other has rank one (control of the average state).

Simulations with Real Wind Data
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[Data from Vestas wind farm collected within EU project AEOLUS]

Dynamic Buffer Networks

I Producers, consumers and storages
I Examples: water, power, traffic, data
I Discrete/continuous, stochastic/deterministic
I Multiple commodities, human interaction

H∞ Optimal Static Control on Networks

Problem:
Given a graph (V,E) and

ẋi = aixi +
∑

(i, j)∈E
(ui j − u ji) + wi i ∈ V

find control law u = Kx that minimizes the H∞ norm of the map from w
to (x, u).

Solution:
An optimal control law when ai < 0 is given by

ui j = xi/ai − x j/a j (i, j) ∈ E.

[Lidström/Rantzer, ACC2016]

Structure Preserving Static Feedback

Problem
Consider the system ẋ = Ax+ Bu+ w with A symmetric and Hurwitz.
Find a state feedback controller u = Kx that minimizes the H∞ norm of
the map fromw to (x, u) in the closed loop system ẋ = (A+ BK)x+w.

Theorem
A solution is given by u = K∗x where K∗ = BT A−1. The minimal value
of the norm is

√
q(A2 + BBT)−1q.

Proof idea
K∗ = BT A−1 minimizes the static gain. Other frequencies are better off.

Optimal Network Control with Edge Integrators

2 1 3

PI control

actuator

x1x2

u12 − u21u12 − u21

PI control

actuator

x3x1

u13 − u31u13 − u31

x1 u14 − u41

Given a graph (V,E), let P(s) be the transfer matrix from u to x given by
ẋi = aixi +

∑
(i, j)∈E(ui j − u ji), i ∈ V with ai < 0. Then K̂(s) is a

separate PI controller for each graph edge:{
żi j = k(xi/ai − x j/a j)
ui j = zi j − xi/a2

i + x j/a2
j

(Works if the graph is a tree!)
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I Scalable adaptive control
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Status of Learning Based Control of Linear Systems

Adaptive control literature since the 1950s
I Searching Google Scholar for “Adaptive Control” gives 4 890 000 hits
I Theory focus on stability and optimal asymptotic performance
I Valuable counterexamples

Recent applications of learning theory for control
I Focus is shifted to transient performance and regret bounds
I Usually assumes stabilizing linear controller known
I No robustness bounds for unmodelled dynamics

Minimax adaptive control
I Early work by [Didinsky/Basar 1994, Vinnicombe, Megretski 2004]
I Scalar case [Rantzer, IFAC 2020]
I Multivariable case [Rantzer, L4DC 2021]

Problem Formulation

Nonlinear
Controller

x+ = Ax+ Bu+ w

-

� �
�

x u

errors disturbances w

Find a controller that simultaneously keeps the l2-gain from disturbances to
errors below a given bound for all (A, B) ∈ {(A1, B1), . . . , (AN , BN)}.
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Min-max Dynamic Games

Given a cost function, find a control law µ that attains the infimum

inf
µ

sup
w

(
∞∑

t=0
�(xt, ut, wt)

)

when x and u are generated from w according to the dynamical system
xt+1 = f (xt, ut, wt) and ut = µ(xt).

Isaacs Bellman Pontryagin Zachrisson

Game Formulation of H∞ Control

Minimizing controller

x+ = Ax+ Bu+ w��

-

�(x, u) w

u

Find a control law µ that attains the minimum

min
µ

max
w

∞∑

t=0

(
pxtp2Q + putp2R −γ 2pwtp

2)
(with notation pxp2Q = xsQx), when xt, ut are generated according to{

xt+1 = Axt + But + wt

ut = µt(x0, . . . , xt, u0, . . . , ut−1).

Optimal control u = −Kx defined by the minimizing u in the Riccati equation

pxp2P = min
u

max
w

{
pxp2Q + pup2R −γ 2pwp2 + pAx+ Bu+ wp2P

}

Minimax Adaptive Control

Suppose Q, R 0 0 and let M be a set of possible (A, B)-pairs. Given a
number γ > 0, find a control law µ that attains the infimum

inf
µ

sup
w

max
(A,B)∈M

∞∑

t=0

(
pxtp2Q + putp2R −γ 2pwtp

2)

when supremum is taken over all solutions to

xt+1 = Axt + But + wt t ≥ 0
ut = µt(x0, . . . , xt, u0, . . . , ut−1).

I γ quantifies robustness to unmodeled dynamics.
I In general, nonlinear feedback with memory is needed.
I Early work by [Didinsky/Basar, CDC 1994]

Theorem 1: Equivalent Dynamic Game

Optimal controller has the form

ut = η(xt, Zt)

where

ZT =
T−1∑

t=0


−xt+1

xt
ut




−xt+1

xt
ut



s

.

(Compare to statistical sample covariance)

[Rantzer, L4DC 2021]

Theorem 2: Gain Bound from Riccati Inequalities

Given Q 0 0, R 0 0 and M := {(A1, B1), . . . , (AN , BN))},
suppose there exist K1, . . . , KN and Pi j with 0 ≺ Pi j ≺ γ 2 I and

pxp2Pik ≥ pxp
2
Q + pKkxp2R +

∣∣∣∣(Ai − BiKk + A j − B jKk)x/2
∣∣∣∣
2

(P−1
i j −γ 2 I)−1

−γ 2p(Ai − BiKk − A j + B jKk)x/2p2

for x ∈ Rn and i, j, k ∈ {1, . . . , N}. Then maxi, j pxp2Pi j bounds the
game value for the certainty equivalence control law

ut = −Kit xt, where it = arg min
i

t−1∑

τ=0
pAixτ + Biuτ − xτ+1p

2.

[Rantzer, L4DC 2021], [Cederberg/Hansson/Rantzer, CDC 2022]
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Theorem 2: Excitation/Exploitation

Given Q 0 0, R 0 0 and M := {(A1, B1), . . . , (AN , BN))},
suppose there exist K1, . . . , KN and Pi j with 0 ≺ Pi j ≺ γ 2 I and

pxp2Pik ≥ pxp
2
Q + pKkxp2R +

∣∣∣∣(Ai − BiKk + A j − B jKk)x/2
∣∣∣∣
2

(P−1
i j −γ 2 I)−1

−γ 2p(Ai − BiKk − A j + B jKk)x/2p2

x ∈ Rn, i, j, k ∈ {1, . . . , N}. Then maxi, j pxp2Pi j bounds game value.

Last term encourages control activity when model uncertainty is large.

Example: Double Integrator with Uncertain Sign

Integrator

Unmodelled dynamics

Integrator ±1� � � �
6

-

d ut±utν tξ tyt
ξ t+1 = ξ t + ν tyt+1 = yt + ξ t

No linear controller can stabilize a double integrator with unknown sign.

Minimax adaptive controller first estimates sign, then plays H∞ game.

Example: Double Integrator with Uncertain Sign

The double integrator can be written as

xt+1 =


2 −1 1

1 0 0
0 0 0




︸ ︷︷ ︸
A

xt ±


0

0
1




︸︷︷︸
B

ut + wt

with the state xt =
[
yt yt−1 ut−1

]s. Theorem 2 can be applied with
M = {(A,±B)}. By first solving the Riccati equation for P11 = P22
and K1 = −K2, then solving the matrix inequalities for P12, we get

P11 = P22 =


 20.61 −11.09 11.09
−11.09 7.83 −6.83

11.09 −6.83 7.83


 P12 =


 155.0 −84.4 84.4
−84.4 89.0 −87.5

84.4 −87.5 89.0




K1 = −K2 =
[

1.786 −1.288 1.288
]

γ = 19

The adaptive controller has gain between
√
qP12q = 16.8 and γ = 19.

Example: Double Integrator with Uncertain Sign

Without disturbances:
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With white noise disturbances and sudden input gain sign change:
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H∞ Optimal Static Control on Networks

Problem:
Given a graph (V,E) and

ẋi = aixi +
∑

(i, j)∈E
(ui j − u ji) + wi i ∈ V

find control law u = Kx that minimizes the H∞ norm of the map from w
to (x, u).

Solution:
An optimal control law when ai < 0 is given by

ui j = xi/ai − x j/a j (i, j) ∈ E.

What if the dynamic parameters ai are not known?

Is the Minimax Adaptive Controller Scalable?

Important large-scale systems have optimal controllers where local
computational complexity is independent of network size.

But the minimax adaptive state Zt grows quadratically with network size.

Instead, nodes update only parts relevant for estimation of local dynamics!

I Node 7 updates sample covariances of states, inputs in nodes 7 & 4.
I Node 2 updates sample covariances of states, inputs in nodes 1-4.

Then, complexity remains independent of network size!

Example: Adaptive Control of Water Network

[Renganathan/Kjellqvist/Rantzer 2022]
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Summary

I Important large-scale systems have sparse optimal controllers
I Minimax optimal adaptive controllers have finite state involving

sample covariance matrix
I Riccati type inequalities verify rigorous gain bound
I Optimal adaptive controller scales linearly with network size
I Many natural generalizations

Thanks

Pauline Kergus Fethi Bencherki Richard Pates
Felix Agner Martin Heyden Taouba Jouini

Emil Vladu Carolina Bergeling Zhiyong Sun Venkatraman
Olle Kjellqvist Johan Grönqvist Renganathan
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