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Learning and Reasoning
both needed
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® System | - thinking fast - can do things like 2+2 = ? and recognise , ,\;yax
objects in image s

® System 2 - thinking slow - can reason about solving complex
problems - planning a complex task

® alternative terms — data-driven vs knowledge-driven, symbolic vs
subsymbolic, solvers and learners, neuro-symbolic...

® A lot of work on integrating learning and reasoning,
neural symbolic computation to integrate logic /
symbols reasoning with neural networks

see also arguments
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, erc
Bengio, Le Cun, Kaut%, |



Thinking fast

MAIN PARADIGM in Al
Focus on Learning
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Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied in
Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)

erc



Integrating learning and
reasoning

PROBABILITY

NEURAL

How to integrate these three paradigms in Al ?
L erc



Neural Symbolic Computation:

g

* Neural symbolic computation is the area combining logic /
symbolic reasoning and neural networks

Lerc



Key Message 1

StarAl and NeSy share similar problems
and thus similar solutions apply

. WARNING

TALK MAY NOT COVER ALL of
NESY

PART 1 of the talk

See also [De Raedt et al., IJCAI 20]



Neural Symbolic Computation:
state-of-the-art

LOGIC
NEURAL

e Most NeSy approaches : inject the logic/knowledge into
neural networks, and let the neural network do the rest

* Downside : relies only on neural networks -> the power of
reasoning, explanation and trust is (at least partly) lost
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Key Message 2

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

PART 2 of the talk — illustration with DeepProbLog [NeurlPS 2018]
and DeepStochLog [AAAI 2022]

------
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Key Message 1

StarAl and NeSy share similar problems and

thus similar solutions apply

There are two basic types of
(uses of) logic,
graphical models, and
neural symbolic models

Statistical Relational
Artificial lnt(-."igcnn'

Krisriam '&mvéns




Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.
facts :

burglary = true
earthquake.
hears_alarm_john.

alarm :— earthquake.

alarm :— burglary.

calls_mary :—alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.



Logic Programs

as in the programming language Prolog
Propositional logic program

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :— earthquake.
rule:

alarm :—burglary. cails_mary =true IF alarm = true AND hears_alarm_mary = true

calls_mary :— alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.



Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)

burglary.

.- calls_mary.
hears_alarm_mary. B

l

:- alarm, hears_alarm_mary.

earthquake. l
hears_alarm_john. .- earthquake, hears_alarm_m

l :- burglary, hears_alarm

alarm :— earthquake. - hears_alarm_mary.

- hears_a}arm_mary.
alarm :— burglary.

[ M

calls_mary :—alarm, hears_alarm_mary. i

calls_john :—alarm, hears_alarm_john.

A proof-theoretic view::
£Here



Logic as constraints

as in SAT solvers
Propositional Iogic MOdel / POSSible WOrId

IFF AND

calls(mary) < hears_alarm(mary) A alarm { burglary,

hears_alarm(john),
calls(john) < hears_alarm(john) A alarm |
alarm,

OR .
alarm < earthquake v burglary calls(john))]

the facts that are true
in this model / possible world

A model-theoretic view:::
LErc



Statis tlull Rdntnonal

Artificial In nb e

Two types of probabilistic graphic "
models and StarAl systems

(_Friends(A,B)

nnnnnnnnnnn

0.1 ::burglary.

Friends(AA) . Smokes(A) - Smokes(B) _ Friends(B,B) -

0.05 :: earthquake.

alarm :— earthquake.

Cancer() ) Cancer(B)
— " Friends(BA) o

alarm :— burglary.
0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs Markov Logic

ProblLog
_ undirected
dlre_cted Markov Net
Bayesian Net model theoretic

key representatives




Two types of Neural

Statistical Relational

Loz de Raede

Krisriam Kenting
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Just like in StarAl

Logic as a kind of neural Logic as the regularizer
(reminiscent of Markov Logic
program Networks)

directed StarAl approach and
logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl




Logic as a neural program

directed StarAl approach and logic programs

e KBANN (Towell and Shavlik Al] 94)

* Turn a (propositional) Prolog program into a
neural network and learn

Key A
A - B, Zo /O\
—_ ﬁ _ , ﬁ B Z
B C, D B B"". conjunction -
B - E, F, G'o B, - C, Do /\ L‘/‘
Z :— Y, not X. B’ - E, F, G. unnegated B’ B"’ v oo
Y i— S, T. 7 - Y, not X. dependency b\ /ﬂ /6\ .
Y - S, T. “hegated | C D E F G S T
dependency c — Step ]




Logic as a neural program

directed StarAl approach and logic programs

ADD LINKS — ALSO SPURIOUS ONES HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentlonedfc
19



Lifted Relational Neural Networks

directed StarAl approach and logic programs

® Directed (fuzzy) NeSy

® similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

® Of course, other kind of (fuzzy) operations for AND,
OR and Aggregation (cf. later)

Fact neurons Atoms meurons

parent(star,aida) ——— parent(star.aida) tule neurons
P | . ' — Aggregation neurons
,/" \ - p— ( ’ - ‘ i P foal(star) | l"L ! ‘ :
/ \ L~ \ Al horse(a:da) 3 horse(aida) AT | i
| parext( AB) ] LA __;(hon%('(l?I — )\ bnl('.»\}’: LS I - fm"-l(f‘-ar.' . Atom neuron
\ / \ - — - Y —
~ parent(star,cheyenne) F% parcnt(sta_r,clmycnnc) _. foal(star)
LR, " ) ‘- ' o -4. fO&l(Stal') woe” . -
P ' | . | — N i -
,‘/ . \ N ,/_\ D . £ ,\., horse(chevenne) “2__| horse{cheyenne) ! .
(sibling(A,B) |( A )|horse(B) | ==>)( bal(A) | | foal (star)
\ / "»,v,—' ~ ;\ ) 4 ’ | *

‘\ / \'/ \‘__5 A_/ . . N , .
T— sibling(star,dakotta) }—' sibling(star,dakotta) L B
_ | : | * foal(star)
S

horse(dakotta) L - h:)rm\.(d.lkcttil- R

0 [Sourek, Kuzelka, et al JAIR]




directed StarAl approach and logic programs

Neural T heorem Prover

Towards Neural Theorem Provlng at Scale
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the logic Is encoded in the network

how to reason logically ? e

[Rocktéschel Riedel, NeurIPS 17; Minervini et al.] s



Statistical Relational
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Two types of Neural

Just like in StarAl

. . Logi ]
Logic as a kind of neural OogIc as the regular 1zer
(reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

22



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(_15131 N\ x99 N xg)\/
(_15131 N\ L9 N\ _15133)\/

(5131 N\ —XZo N _ng)

figures and example from Xu et al., ICML 2018

23



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied

(1 — .2131)(1 — 5132)333—-
(1 — 2131)5172(1 — 563)——
331(1 — 2132)(1 — 5133)

basis for SEMANTIC LOSS

(weighted model counting)

24



Logic as a regularizer

undirected StarAl approach and (soft) constraints
Semantic Loss:

® Use logic as constraints (very much like
“propositional MLNs)

® Semantic loss

SLoss(T) o< —log Z H Di H (1 —pi)

® Used as regulariser

Loss = T'raditional Loss + w.SLoss

® Use weighted model counting, close to

egw StarAl 25



Logic lensor Networks

undirected StarAl approach and (soft) constraints
P(z,y) — A(y), withG(z) = vand G(y) = u

GIFP(v,u) =+ A(u)
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Semantic Based Regularization

undirected StarAl approach and (soft) constraints

I wd Pald) > A(d) Evidence Predicate
Fp = vdvd Rid,d)= ((A(d) A A(d)) v (—A(d) A -Ad')) Groundings
(0 = {dy.da} Pa(dy) =1
Rid,,d;) — 1
Oulput

Output Layer _LID

\ “\

Ly

Propesitional Layer Trp (Md1 da), Fal(dy), falda))

4 v g v WY
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the logic is encoded in the network
how to reason logically ?

Diligenti et al. AlJ
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y I tatistical Relatio
Artificial Intelligence

Leogic, Probabitity.

urid Comptaitation

o

m I 1 1 Lz de Racde

Krisriam Kenting

‘ Seirsam Nataaan
y y I

Just like in StarAl

Loq . Logic as the regularizer
ogic as a kind of neural .. :
(reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Conseqguence :
the logic Is encoded in the network

the ability to logically reason is lost g
logic is not a special case e




Key Message 1

StarAl and NeSy share similar problems and
thus similar solutions apply

What do the humbers mean !

Statistical Relational

. .
Three possible choices:
. Artificial Intelligence
Lo gic, Lyt Pt
of ¢ Kriasin Kemog
Probability &
| ol plicy s

Just like in StarAl ierc

29



Key Message 2

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Our approach: “an interface layer (<> pipeline)
between neural & symbolic components”

will be illustrated with DeepProblLog
See also [Manhaeve et al., NeurlPS 18; arXiv: 1907.08194]

PROBABI

(S

Part 2 of the talk — illustration with DeepProbLog [NeurlPS 2018]
and DeepStochLog [AAAI 2022]
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Two types of probabilistic
models

e Based on a random graph model
e Bayesian Nets and ProblLog
e Based on a random walk model

* Probabilistic grammars and Stochastic Logic Programs
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DeepProblLog

DeepProblLog = Probability + Logic + Neural Network

DeepProbLog = ProbLog + Neural Network

Related work in NeSy

Logic is made less expressive
Logic is pushed into the neural network

Fuzzy logic

Language semantics unclear

32

DeepProblLog

Full expressivity is retained
Maintain both logic and neural network

Probabillistic logic programming

Clear semantics



PART 2

FROM o @@ ") Problog
FROM TO DeepProbLog
\/

a logic programming perspective



PART 2 A

From Prolog to
ProbLog

QBABI



Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)
burglary. .
hears_alarm(mary). - Ialls(mary).

:- alarm, hears_alarm(mary).

earthquake. l
hears_alarm(john). .- earthquake, hears_alarm(ma

l .- burglary, hears_alarm(|

alarm :— earthquake. - hears_alarm(mary).

- hears_a*arm(mary)

alarm :— burglary. !

[ M

calls(mary) :— alarm, hears_alarm(mary). [

calls(john) :— alarm, hears_alarm(john).

A proof-theoretic view::
£Here



Probabilistic Logic Programs

as In the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

Probabilistic facts

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

Key Ildea (Sato & Poole)
the distribution semantics:

unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability



Probabilistic Logic Programs

as In the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

Two proofs (by refutation)

.- alarm
:- burglary. .- earthquake.
P=0.1 l P=0.05 l
[] []
Probability of one proof: H Pf

fifacteProof



Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program Disjoint sum problem

0.1 :: burglary. .- alarm

0.3 ::hears_alarm(mary). / \

0.05 ::earthquake.

. :- burglary. .- earthquake.
0.6 ::hears_alarm(john).
P=0.1 l P=0.05 l
alarm :— earthquake. 1
alarm :— burglary.
Probability of one proof: H Pf
fifacteProof

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john). P(alarm) = P(burg OR earth)
= P(burg) + P(earth) - P(burg AND earéh{;
=/= P(burg) + P(earth)



Probabilistic Logic Program
Semantics

earthquake. [Vennekens et al, ICLP 04]

0.05: :burglary. re .
probabilistic causal laws

0.6::alarm :- earthquake.

0.8::alarm :- burglary.
g y earthquake |].0

alarm no alarm

0.6 0.4

burglary no burglary burglary

05 0.95\, no burglary

no alarm alarm no alarm

0.2

alarm

P(alarm)=0.6%0.05%x0.8+0.6x0.05%0.2+0.6%0.95+0.4%x0.05%0.8

39



Probabilistic Logic Program
Semantics

. : Bayesian Network
Propositional logic program

0.1 :: burglary. burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

ProbLog has both (directed) probabilistic graphic models,




Flexible and Compact Relational

ModeJ_th_Etedlgimg Grades

s
“"Program” Abstraction:
e S, Clogical variable representing students, courses

* the set of individuals of a type is called a population
e Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:
« for every student s, there is a random variable Int(s)
* for every course ¢, there is a random variable Di(c)
for every s, c pair there is a random variable Grade(s,¢)
B¢B* all instances share the same structure and parameters®
Paadl, Kersting, Natarajan, Poole: Statistical Relational Al

C




Probabilistic Logic

Programs

0.4 ::int(S) :- student(S).
0.5 :: diff(C):- course(C).

S

student(john). student(anna). student(bob).
course(ai). course(ml).  course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::¢r(S,C,b);0.2::¢r (S,C,c) :-
0.1:gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-
student(S), course(C),
not int(S), not diff(C).
0.3:gr(S,C,c); 0.2::gr(S,C,f) :-
not int(S), diff(C).

g&rsting, Natarajan, Poole: Statistical Relational Al

int(S), diff(C).




ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent(S):- student(S), not(grade(S,C1,G),below(G;,a)), grade(S,C2,a).

0.4 ::int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john). student(anna). student(bob).
course(ai). course(ml).  course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::¢r(S,C,c) :- int(S), diff(C).
0.1:gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-
student(S), course(C),
not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :- not int(S), diff(C).

g&rsting, Natarajan, Poole: Statistical Relational Al



Grading Va <
Shows relational structure
grounded model: replace variables by constants | : | :
[ _int(sl) \ ' [ diffc))
T 0.94 M Obsetved Value: A J—— T 0.50 I
Works for any number of students / classes (for 1000 F 006} | § ) AT oo
students and 100 classes, you get 101100 random [ ints2)_ N (g Ze2e)
. . T 0.06) — o |
variables); still only few parameters F 0.94 A S (eiff)
F0.04 . \ -
N . gr(s1.¢2) A — r 8'2‘82.
. . nts3) ) Observed Value: B \ eEm
With SRL / PP TossHN | / :
F 032k ;) > 2.3 { G"(C.li), )
" LA grisd,c w7 1T 022
. Observed Value: B 7
build and learn compact models, TR N - Fo7s )
T 0320 & g
. o .‘l’ U.’j&- L o 9'(‘3'\52[' : ;’ le‘(qd). .
from one set of individuals - > other sets; AN served value | 8:3=
reason also about exchangeability, 9;; o Y ansagd) D\
A 0.49 - . 9
) B 025 Obsetved Value: B S 3;”:
ild even more complex models, \c o026l ) | coswm )

drporate background knowledge

#rsting, Natarajan, Poole: Statistical Relationdd Al



ProblLog applications
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Travian: A massively multiplayer
real-time strategy game

Can we build a model
of this world ?
Can we use it for playing
better ?
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Activity analysis
and tracking

(2 #15 \ ® Track people or objects over !’1

@

time! Even if temporarily
{1-0-1} #2.0 & hidden?

>(§Q ® Recognize activities!?

Infer object properties!?

[Skarlatidis et al, TPLP 14;

L [Persson et al, IEEE Trans on
Nitti et al, IROS |3, ICRA 14, Cogn. & Dev. S)’S. 19:

ML) T6] JCAI 20]

47



Learning relational affordances

NS

similar to probabilistic Strips
(with continuous distributions)

Learning relational
affordances
between

two objects

(learnt by experience)

Moldovan et al. ICRA 12, |3, |4;Auton. Robots |8

S1 1. 0

I
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Probabilistic Sub-network
network generation inference

B . I
/ Interaction network I O O g y

Sl 9
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o ?&»{ Tt iy &:—4}/ &:-V . < i i
i o ]
X A<\ ¢ %1/,
*

. . % Inferred
&,_ —V _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide

variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
\ a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network 1s used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

e Causes: Mutations * Interaction network: _
o All related to similar 30063 nodes Goal: connect causes to effects
N through common subnetwork
phenotype * Genes * = Find mechanism

» Effects: Differentially expressed < Proteins
genes * 16794 edges DTPr
: : . : : . oblLog

27 000 cause effect pairs . Il\JAr?cI;ee(;tuei?r: interactions | pproximate inference

* Techniques:

49 R




&« C' [ hitns://dtai.cs.kuleuven be/proniog/

Home
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.‘ To.aid in the interpretation of gene lists, PheNetic was built:on top of ProblLog.

. ®@000O0

Introduction.
Probabilistic logic programs are logic programs in which some of the facis are annotated with probabilities.

FroblLcg s a tool that allows you to intuitive'y bu ld pregrams that do not only encode complex interactions between a large sats of heterogenous compenents bl
uncertainties that are prasant in real-life situations.

The engire ackles severa' tasks such as computing the marg nals given evidence and learning from (partial) interpratations. Problog is a sute of efficent algorithms
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Doolean formula. This allows us to reduce the inference tasks to well-s
weignted model countirg, which can be solved using state-cf-the-art methode known from the graphical medel and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

FroblLog makes it easy to express comolex, prcbabilistic models.

@.3::stress(X) :- person(X).
0.2::influences(X.,Y) :- person(X), person(Y).

smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokas(Y).

1BABI

Y
50




PART 2 B

From ProblLog to
DeepProbLog




Neural predicate

Qutput distribution

Neural
F»

® Neural networks have uncertainty
in their predictions

® A normalized output can be Key Idea DeepProbLog
interpreted as a probability

distribution unify the basic concepts in logic

and neural networks:

® Neural predicate models the

output as probabilistic facts
PROBABI

neural predicate ~ neural net

an interface between logic and
neural nets

No changes needed in the
brobabilistic host language

SRR
-----
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The neural predicate

The output of the neural network is probabilistic facts in
DeepProblog

Example:
:: digit(X,Y).
Instantiated into a (neural) Annotated Disjunction:

0.04::digit(l,0) ; 0.35::digit(H,1) ; ... ;

0.53::digit(l,7) ; ... ; 0.014::digit(l,9).

¥




DeepProbLog exemplified:
MNIST addition

Task: Classity pairs of MNIST digits with their sum

ElBis
O
Ed ES 11

Benefit of DeepProblLog:
 Encode addition in logic

e Separate addition from digit classification

nn(mnist net, [X], Y, [0 ... 9] ) =:: (X,Y).
addition(X,Y,Z) :- (X,N1), (Y,N2), Z is N1+N2.
Examples:

addition( El,H ,8), addition(l] 2 ,4), addition(Ed B ,11), ..



DeepProbLog exemplified:
MNIST addition

Task: Classity pairs of MNIST digits with their sum

ElBis
O
Ed ES 11

Benefit of DeepProblLog:
 Encode addition in logic

e Separate addition from digit classification

nn(mnist net, [X], Y, [0 ... 9] ) =:: (X,Y).
addition(X,Y,Z) :- (X,N1), (Y,N2), Z is N1+N2.
addition(E],B,8) :- digit(Ej}N1l), digit(p§,N2), 8 is N1 + N2.
Examples:

addition(,.,8), addition(ﬂ = ,4), addition( ,,11),



MNIST Addition

® Pairs of MNIST images, labeled with sum

® Baseline: CNN

Loss Accuracy
: : : | — —— 1.0
® (lassifies concatenation of both Images 1y """ Deepbioblog .
into classes 0 ...18 S P N T
20| |/ \"’\ al e
’ w.\ yd 0.6
® DeepProblLog: 15| | Wﬁ

F 0.4
1.0

® CNN that classifies images into 0 ... 9 | WMWWW}WMWM 0.2

® i 0.01 , - | | pProl
Two lines of DeepProbIog code 0 5000 10000 15000 20000 25000 30000

[terations

® Result:
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Example

Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

Eg ( ’ ’8)

Could be done by a CNN: classify the
concatenation of both images into |9 classes

EINMECIA-REN-~

1OWEVEr.

(G
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Multi-digit MNIST
addition with MNIST

number ([ | , Result , Result) .

number ( [HI1T],Acc, Result) :— o8 Aecursd
digit(H, Nr ), Acc2 1s Nr +10*Acc , 2.5 /_,,‘/‘n.. """ DaspProoLog | -
number ( T , Acc2 ,Result ) . 20 |
number (X,Y) :— number (X,0.Y) . sl 0.6
s L0 |’ -
multiaddition(X, Y, 7 ) :— | |
number (X, X2 ), el v
number (Y, Y2 ), o 5 5000 10000 15000 20000 25000 30000
718 X2+Y?2 . rerations

(b) Multi-digit (T2)

\ X )

e

AT )
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PROBABI

=

Noisy Addition

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.
1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).
addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,Nl), digit(Y,NQ), Z is N1+N2.
(a) The DeepProbLog program.
Fraction of noise

0.0 0.2 0.4 0.6 0.8 1.0
Baseline 93.46 87.85 82.49 52.67 8.79 5.87
DeepProbLog 97.20 95.78 9450 9290 46.42  0.88
DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0415 0.618 0.803 0.985

%

Table 3: The accuracy on the test set for T4.



Inference & Learning




ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

4. Evaluate the arithmetic circuit

0.1 :: burglary.
0.5 :: hears_alarm(mary).

calls(mar
0.2 :: earthquake. (mary)
0.4 :: hears_alarm(john). <>
alarm :— earthquake. hears_alarm(mary) A (burglary v earthquake)

alarm :— burglary.
calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).



ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1.

Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3.
4. Evaluate the arithmetic circuit

Compile the formula into an arithmetic circuit (knowledge compilation)

OR | 6.14 calls(mary)

AND _@_;_0_4__\

AND | o.06 | \ AND [ 6.7 -
J J

hears_alarm(mary) A (burglary v earthquake)



Gradient Semiring

nn(mnist net, [X], Y, [0 ... 9] )

(X,Y).
addition(X,Y,Z2) :- \
(X 4 Nl ) 4 0.5, @
(Y,N2) [0.6,0.2,0.1,0.8]
4 4
Z is N1+N2. 0.48, 0.02,
[0.6,0,0,0.8]| ® ® |0,0.2,0.1,0]
The ACs are differentiable /Y\
and there is an interface [digit(ﬂ,@) } [digit(m,n } [digit(ll,‘l) } [digit(ll,@) ]
with the neural nets o0l oy Goel 10,061  [0.0.1.0]

we use the “gradient” semi-ring) ﬁ L}
L

-‘.vc.:

f earleaes
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PROBABI

(s

Experiments
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Program Induction/Sketching

In Neural Symbolic methods
® Rule Induction — work with templates
P(X) :- R(X,Y), Q(Y)
® and have the “predicate” variables / slots BQ, R determined by the NN
® Simpler form, fill just a few slots / holes
Approach similar to ‘Programming with a Differentiable Forth Interpreter ['1 04
® Partially defined Forth program with slots / holes
® Slots are filled by neural network (encoder / decoder)

[ )
PROBABI

NG =o / J,Z‘qkb_ im Rocktaschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreteﬁéﬁ?’%jérc

Fully differentiable interpreter: NNs are trained with input / output
examples
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Example DeepProblog

neural predicate

hole(X,Y,X,Y):-
(X,Y,0).

hole(X,Y,Y,X):-
(X,Y,1).

bubble sort

Sorting: Training length Addition: training length

Test Length 2 3 4 S 6 2 1 8
. _ § [ 1000 1000 4922 - _ 1000 1000 1000
=Y drial o ol YT
04 [Bosnjak et al., 2017] 64 | 1000 1000 2065 - _ 1000 1000 1000
ecoProbLoe § | 1000 1000 1000 1000 1000 | 100.0 1000 100.0
P £ 64 100.0 100.0 100.0 100.0) 100.0 100.0) 10001 100.0

(a) Accuracy on the sorting and addition problems (results for 94 reported by Bosnjak et al. [2017]).

bubble([X],[],X).

bubble([H1,H2IT],[X1IT1],X):-
hole(H1,H2,X1,X2),
bubble([X2IT],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
bubble(L,L2,X),

bubblesort(L2,[XIL3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

PROBABI

Training length — 2 3 4 5 (&)
&1 on GPU 428 1605 - - -
A4 on CPU 6ls 3905 - - -
DeepProhl.og om CPUJ s 14 32s  1l4s  2455s

(b) Time until 100% accurate on test length 8 for the sorting problem.

Table 1: Results on the Dillerentiable Forth experiments
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A
l.'...erc
Vess
‘eltan
'-‘.’o'.‘..‘ v
cawttagalls

“Alatreat,

SR L

..



Tasksl1]
e Sorting

o Sort lists of numbers using Bubble sort
o Hole: Swap or don’t swap when comparing two numbers

e Addition

o Add two numbers and a carry
o Hole: What is the resulting digit and carry on each step
o (Note: not MNIST digits, but actual numbers)

e \Word Algebra Problems

o E.g. "Ann has 8 apples. She buys 4 more. She distributes them equally
among her 3 kids. How many apples does each child receive?
o Hole: Sequence of permuting, swapping and performing operations on

the three numbers

k, Tim Rocktaschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter. .......




SlmpllfledPoker

A
* dealing with uncertainty v
e jgnore suits and just with A, J, Q and K
* two players, two cards, and one community card
* train the neural network to recognize the four cards
* reason probabilistically about the non-observed card
* |earn the distribution of the unlabeled community card
e 0.8:poker(|QV,Q{, A, K], loss) poker([Q0, Q(, AO, K], A, Loss).
in 6/10 experiments
Distribution Jack Queen King Ace
‘,v Actual 0.2 0.4 0.15 0.25 “Hare
Learned 0.203 +0.002  0.396 4= 0.002 0.155 & 0.003  0.246 =+ 0.002

Table 8: The results for the Poker experiment (T9).



Neural T heorem Prover

Towards Neural Theorem Proving at Scale

Fxampls Knowledgs Rase: g E 1.0
’L fztherO£f(ABE, HOMER). L

2. | pr-en-0Of | HOMER, BART).
3 grandfatherCi(X,Y) -

nerJilAL

par=ntJE(L Y

&5 P oY ) P oY Xiase b 0.3 31 fathernf{X. 7)
E Z‘p E X“D K E o~ 32 pareat0E(Z,Y)
”
'l.""
fathercCft ABE I A
LR R LA AL L AR L L L L N -I"
7 :ll.lllllll“-.'-
' “V s V
~n P Xfazz | Xtape | P
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1 [ [ T
XAs : Oa XA SE : o.gﬁ Xfase : Qgﬁ XIAHE : Oa -
Yt FATL YMaw ] v Ymavre v FATL YMap L] b
ZMmonMexn : ’ ZNOWMrR : ZMmART : e : A0
1 O v Oa + On . Oge
N, VL v Jan v

PROBABI

A visual depiction of the NTP' recursive computation graph construction, applied to a toy KB (top left). Dash-separated
Nenote proof states (left: substitutions, right: proof score -generating neural network). All the non-=A 1L proof states are
) obtain the final proot success (depicted mn Figure 2). Colours and indices on arrows correspond to the respective KB rule

69 Minervini Bosnjak Rocktédschel Riedel



Soft Unification

® NTP :“grandpa” softly unifies with “grandfather”, as embeddings are close

® DeepProblog : define

softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).

softunification(X,Y) returns | if X and Y unify

—||ex — eyl|
otherwise returns exp( 2 )
21

grandPaOf(X,Y) :- softunification(grandPaOf,R), R(X,Y).

70



PART 2c

From PCFGs to
DeepStochlLog




One NeSy Recipe

1. Take a symbolic (logic / rule based) representation
2. Turn the 0/1 True/False in Fuzzy or Probabilistic Interpretation
3. Interpret neural networks as logical predicates/functions
4. (The harder part): inference and learning

For instance:
map an MNIST image to a number
m(El) = 2
m as a neural network
mp(B,2) =0.93 as a neural predicate
(with a fuzzy/prob. interpretation)

Lerc



DeepStochlLog

Little sibling of DeepProblLog [Winters, Marra, et al AAAI 22]
Based on a different semantics

e probabilistic graphical models vs grammars

 random graphs vs random walks

Underlying StarAl representation is Stochastic Logic Programs (Muggleton,
Cussens)

e close to Probabilistic Definite Clause Grammars, ako probabilistic unification
based grammar formalism

e again the idea of neural predicates

Scales better, is faster than DeepProblLog

ralavteg
so t a%p
o S uby,
Hess
el
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X N
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Neural Definite Clause Grammar



CFG: Context-Free Grammar

E \|

E E, P, N
P :u_l_":

N :llO":

N :ul":

N [119"]

Useful for:

- Is sequence an element of the specified language?
-What is the “part of speech”™tag of a terminal

- Generate all elements of language



PCFG: Probabilistic Context-Free Grammar

0.5 E N -
0.5 E E, P, N 075
E P N
1.0 P | PR ] 0.5
, ' ) E P N
§ 0.1 \| (40" ] 0.5 1 0.1
S[0.1 N LA N 1| 01
§ 5 0.1
£l0.1 N [“9"] , + 3 + 3
) Probability of this parse = 0.50.5*0.5*0.1*1*0.11*0.1
Useful for: - 0.000125

- What iS the mOSt |.Ik€ly parSE fOr thIS Sequence Of terminalS? (useful for ambiguous grammatrs)
- What is the probability of generating this string?



DCG: Definite Clause Grammar

e(N) n(N) e(13)
e(N) e(Nl), p, n(N2),

{N N1 N2} e(>) p n(8)
p :ll_l_":

e(2) p n(3)

n(O) :IIOII:
n(l) :lll": n(2)
n(9) [119"] 2 + 3 + 8

Useful for:

- Modelling more complex languages (e.q. context-sensitive)

- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification)
- Extra inputs & outputs aside from terminal sequence (through unification of input variables)



SDCG: Stochastic Definite Clause Grammar

0.5 e(N) n(N) e(13)
0.5 e(N) e(N1l), p, n(N2), o>a

{N N1 N2} e(>) p n(8)
1.0 P [ 4] 0!5

e(2) p n(3)
0.1 n(0) 40" 0.5 1 0.1
0.1 n(l) [P n(2) ! 0.1
0.1
0.1 n(9) [“9"] 2 N . N :
Probability of this parse = 0.50.5*0.5*0.1*1*0.11*0.1

Useful for: - 0.000125

- Same benefits as PCFGs give to CFG (e.g. most likely parse)
- But: loss of probability mass possible due to failing derivations



NDCG: Neural Definite Clause Grammar (= DeepStochLog)

0.5 e(N) n(N) 6(13)
0.5 e(N) e(N1l), p, n(N2), 0
{N N1 N2} e(d) 2 p n(8)
.. e(2) p n(3)
number nn,[X],[Y],[digit] n(y) [X]
0.5 1 number nnlz| =8
digit(Y) member(Y,[0,1,2,3,4,5,6,7,8,9]) 3] -

n ( 2 ) 1 number nn =3
number_nn =2
2 - B - [&
Probability of this parse =

User[for 05*05*05* number nn =2 e number nn E|=3 i num
- Subsymbolic processing: e.g. tensors as terminals

- Learning rule probabilities using neural networks

ber nn (8] = 8



DeepStochLog NDCG definition

ml[Ill'"IIm]I[Oll°"IOL]I[Dll°"lDL] nt gll coo J gn

Where:

nt IS an atom

dys ..y g, dl€ goals (goal = atom or list of terminals & variables)
I,,..,I and0O,,..,0. arevariables occurringing;, .., g, and are the inputs and

outputs of m
D,,..,D; are the predicates specifying the domains of O, ..., 0,

m is a neural network mapping I,,..., I to probability distribution over O, ..., O, (=over

cross product of D,, ..., D;)



DeepStochLog Inference



Deriving probability of goal for given terminals in NDCG

Proof derivations d(e(l)JEi] ) then turn it into and/or tree
e(1) P, — N‘fD
e(E1), [+], n(E2) {1 is E1+E2} P, ~— Al:lD
n(E1) [+] (E2) {1 is E1+E2} _’OR‘
B+1, n(E2). {1 is e+52} [ﬂ+] n(E2), {1 is 1+E2} P, (fd=0) — AND]  [AND P (= 1)
ol /1§ i1 is 0+1} 1ol /1§ %1 is 1+0} P, ~— AI\IID AriiD — P,

B-a 1oy /] S / ERVICN| / SX0)



And/Or tree + semiring for different inference types

Probability of goal

Pc(derives(e(1),[H, +, H§) = 0.1141

o5 — A)‘GD
05— AYD
U
0.96 A,/fl_l-\.“ 0.04
P, (= 0) ~— AXD AYO — p (B 1)
®5 ~— A)I() A)lﬁ) — Q5

.= p. (=0

0.98 0.02

Most likely derivation

dmax(e(1), [@, +, | ) = argmaxgeq)-( B+ ]PG(d(e(l))) =[0,+,1]

®5 A)fo
o> ‘—_A%(D_
.

0.96 e

0.04

— p.(BFF )

p, (= 0) [ AxD AYD
1 ]

@5 ~—1 AYO AYO

1 !

o=  p, (=0

0.98 0.02



Inference optimisation

Inference is optimized using

1. SLG resolution: Prolog tables the returned proof tree(s), and thus creates forest

— Allows for reusing probability calculation results from intermediate nodes

Table 6: Q4 Parsing tine in seconds (T2). Comn-
parison of the DeepStochLog with and without
tabling (SLD vs SLG resolution ).

Lengths  # Answers No Tabling Tabling

1 10 0.067 0.060
J 95 (.031 0.096
) 1066 J.78 095
7 10536 G042 1095

d 65298 1494.23 23226

11 116517 tineont 1996 09

1. Batched network calls: Evaluate all the required neural network queries first

— Very natural for neural networks to evaluate multiple instances at once using batching
& less overhead in logic & neural network communication



Research questions

01: Does DeepStochlLog reach state-of-the-art predictive performance
on neural-symbolic tasks?

02: How does the inference time of DeepStochLog compare to other
neural-symbolic frameworks and what is the role of tabling?

03: Can DeepStochlLog handle larger-scale tasks?

04: Can DeepStochlLog go beyond grammars and encode more general
programs?



Mathematical expression outcome

T1: Summing MNIST numbers
with pre-specified # digits

S3g 4

T2: Expressions with images
representing operator or
single digit number.

A TE B S B
*v- 19

Method ] 3

NGS 902 1.6 K87 H1.0 91.7 1.3 204+ 37.2
DeepProbLog 9083+ 1.3 85.6=1.1 timeout timeout
DeepStochLog 9083 L 1.0 863119 921L£14 948109

lable 1: The test accuracy (%) on the MNIS'T addition (T1).

Number of digits per number (N)

Methods ] 2 3 1

NeurASP

O7T.34+0.3 93.94+0.7 timeont Limmeont,

Deepl’robLog  97.2 L 0.5 95.2 L 1.7 timeout timeout
DeepStochLog  97.9+0.1 96.4£0.1 945+ 1.1 92.7x0.6

Table 2: The accuracy (V6) on the HWE dataset (T2).

Fxpression length

—
5 i



Performance comparison

Table 7: Inlerence times in milliseconds [or DeepStochiLog, DeepProbLog and NeurASP on task T'1
for variable number lengths.

Numbers Length | 2 3 4

DeepStochLog 1.3+0.9 2304 4.04+0.4 5.7 1.8
DeepProbLog 13.5£3.0 36,005 199.7x14.0 timeout
NeurASP 9.2+141 85.7X£226 158.2x17.7 (imeoul




Classic grammars, but with MNIST images as terminals

T3: Well-formed brackets as input
(without parse). Task: predict parse.

[ol/Telol o] (/]

= parse = () (()())

T4: inputs are strings akblcm

.Predict 1 if k=l=m,

(I/]o]o]2] =]
[7To]2[o]2]°

Table 3:

['he parse accuracy (A

Maximum expression length
Method 10 11 13

99.4 £ 0.5
100.0 £ 0.0

99.2 £ 0.8
100.0 £ 0.0

DeepProbLog 100.0 %= 0.0
DeepStochLog  100.0 4+ (0.0

Table 4: The accuracy (70) on the a”b"c¢™ dataset (T4).

Expression length
Method 3-12 3-15 3-18

DeepProbLog 99.8 £ 0.3
DeepStochLog  99.4 4 (0.5

timeout timneout

99.2+04 93.83+£0.2

on the well-formed parentheses dataset (T3).



Natural way of expressing this grammar knowledge

brackets dom(X) member (X, ["(",")"1)
bracket nn, [X], Y, brackets dom bracket (Y)
[X]
B S S, S
S bracket (" ("), s, bracket(")")

S bracket (" ("), bracket(")")



All power of Prolog DCGs (nere: anbren)

letter(X) :- member(X, [a,b,c])
0.5 s(0) akblem(K,L,M),
{K L; L M; M K},
{K 0, L 0, M 0}
0.5 s(1) akblcm(N,N,N).
akblcm(K,L,M) rep(K,A),
rep(L,B),
rep(M,C),
{A B, B c, C A}
rep(0, _) [].
mnist, [X], C, letter rep(s(N), C) [X],

rep(N,C)



Citation networks

T5: Given scientific paper set with only few labels & citation
network, find all labels

Table 5: Q3 Accuracy (%) ol the classilica-

tion on the test nodes on task TH

Method Citescer Cora

ManiReg 60.1 59.5
sSemilomb 59.6 59.0
LP 45.3 68.0
DeepWalk 43.2 67.2
ICA 6.1 5.1
GCN 70.3 81.5

DeepProblog timeout  timeout,
DeepStochLog 65.0 69.1




Word Algebra Problem

T6: natural language text describing algebra problem, predict outcome

E.g. "Mark has 6 apples. He eats 2 and divides the remaining among his 2 friends. How many apples did each friend get?”

Uses ‘empty body trick” to emulate SLP logic rules through SDCGs:

m, [I1,0sI0],[01s0r051,[DyyeerDy] nt []

Enables fairly straightforward translation of DeepProblLog programs for a lot of tasks

DeepStochLog performs equally well as DeepProblLog: 96% accuracy



Challenges

e For NeSy, DeepProblLog and others

e scaling up (in DeepProbLog — now has both approximate and exact
inference — an A”* like algorithm to find the best proofs [Manhaeve KR 21])

e which models and which knowledge to use
e real life applications

e peculiarities of neural nets

e dynamics / continuous

e This is an excellent area for starting researchers / PhDs

ralavteg
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One NeSy Recipe

1. Take a symbolic (logic / rule based) representation
2. Turn the 0/1 True/False in Fuzzy or Probabilistic Interpretation
3. Interpret neural networks as logical predicates/functions
4. (The harder part): inference and learning

For instance:
map an MNIST image to a number
m(El) = 2
m as a neural network
mp(EBl,2) =0.93 as a neural predicate
(with a fuzzy/prob. interpretation)

Lerc



Statistical Relational

Artificial ]nll'.“igr.nn'
DRk

Legic, Probabitity

wrie! Comefeactration

Lz de Taede

Krisriam Kenring

Seirsam Natasan

Lad Poole

Shvmmir Lrcrinss ov Aoy,

StarAl and NeSy share similar problems
and thus similar solutions apply

Part 1 of the talk

See also [De Raedt et al., IJCAI 20]



Key Message 2

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Our approach: “an interface layer (<> pipeline)
between neural & symbolic components”

will be illustrated with DeepProblLog
See also [Manhaeve et al., NeurlPS 18; arXiv: 1907.08194]

PROBABI

(S

Part 2 of the talk — illustration with DeepProbLog [NeurlPS 2018]
and DeepStochLog [AAAI 2022]

vet,
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