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Energy Management in Smart Grid

Ø Consider a utility company and 𝑛 players, which can produce and consume energy.
Ø On day 𝑡, player 𝑖 requests some units of energy from the utility company (action). The

company sets the price as a function of aggregate demand and the available energy.
Ø As the harvested energy depends on the stochasticity of the weather conditions, the

stored energy (state) of player 𝑖 at the end of day 𝑡 follows a stochastic process.
Ø The players want to adopt consumption policies to maximize their aggregate payoffs

despite not being able to observe others' states/actions.



Multiagent Wireless Communication

Ø A set of users (players) sending messages to a common receiver over a wireless medium.
Ø At time 𝑡, player 𝑖 looks at its state that is its buffer of size           and decides whether to 

send a packet with some power. 
Ø After that player 𝑖 receives more packets based on some distribution from higher level. 
Ø Players want to adopt policies to maximize their success transmission rates over time. 

Receiver



Stochastic Games

A policy for player 𝑖 is a stationary policy if the probability of choosing action     at time 
𝑡 depends only on the current state   , and is independent of the time 𝑡, i.e., 

A policy profile is called a Nash equilibrium if                                      
for any 𝑖 and any policy     . It is called an   -NE if                                            for any       . 

Ø Stochastic games always admit a NE among stationary policies. (Shapley 1953) 
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Stochastic Games with Independent Chains

A policy for player 𝑖 is a stationary policy if the probability of choosing action     at time 
𝑡 depends only on its current state    , and is independent of the time 𝑡, i.e., 

Ø Stochastic games with independent chains always admit a stationary NE.

q We assume that the joint transition probability                can be factored into independent 
components                                               where                   is the transition model for 𝑖.



A Dual Formulation
Ø Following of a stationary policy by player 𝑗 induces a Markov chain over with

corresponding stationary distribution , i.e., .

Ø For any player 𝑗, let us define to be the occupancy probability measure that is
induced over its state-action set by following the stationary policy , that is

Ø Therefore, we can write the payoff functions in terms of occupancy measures as



A Dual Formulation
Ø Moreover, the set of feasible occupancy measures for player 𝑗 can be written as the

feasible points of the following polytope:

Definition: The virtual game is an 𝑛-player static game, where the payoff and the 
action set for player 𝑖 are given by                                                                  and     .

Lemma 1: (Altman 1999) 
Given any MDP and any occupation measure     over its set of state-action, one can 
define a corresponding stationary policy 

such that following policy     in that MDP induces the same occupation measure as 
over the state-action set             .



Stochastic game with 
independent chains 

Policy space

It can be played repeatedly

Static virtual game

Occupation actions 

It can be played only once

Dual formulation

Lemma 1

Proposition
Finding a stationary NE for      without any assumption on the reward functions is 
PPAD-hard.                       No hope for scalable learning algorithms!

Ø We restrict our attention to the cases where players’ reward functions allow the 
existence of scalable learning algorithms.

Ø Using the equivalence between the stochastic game and the virtual game, we 
focus on finding a NE for the virtual game.

Ø We show how to repeatedly play over      and use the collected information in the 
virtual game to guide the learning dynamics to a NE.



Description of the Algorithm 

o The algorithm proceeds in different episodes (batches), where each batch contains 
a random number of time instances.

o The occupation measure of player 𝑖 at the beginning of batch 𝑘 is denoted by     ; 
during batch 𝑘, player 𝑖 chooses actions according to the stationary policy      
corresponding to     .

o A batch continues for a random number of time instances until each player 𝑖 has 
visited all its states     at least once.

o Using the collected samples during batch 𝑘, player 𝑖 constructs an (almost) 
unbiased estimator      for the gradient of its virtual payoff function                .

o The estimator      is then used in a dual-averaging oracle with an appropriately 
chosen step-size/regularizer to obtain a new occupation measure        .





Assumption: A virtual game is called socially concave if i) there are positive 
constants              such that                        is a concave function of , and ii) for any 
player 𝑖 and any fixed     , the payoff function                  is a convex function of       .

Ø Any 2-player game
Ø Linear resource allocation games
Ø Linear Cournot games 
Ø TCP congestion control games 
Ø …

Theorem 1  
Given          , suppose that each player 𝑖 follows Algorithm 1 using a sequence of 
step-sizes that satisfy                          and where                           . 
If with positive probability the sequence of occupation measures generated by 
Algorithm 1 converges to some point , then the stationary policy      
corresponding to the limit point      is a stationary   -NE.  

How can we ensure convergence?



If we take                          for some          , with probability at least            , 
is an   -NE for any

Theorem 2  
Assume that the virtual game is socially concave and the sequence of step-sizes    
satisfy                          and . Given , if all players follow 
Algorithm 1, the average occupations                              , where                         , 
will be an   -NE almost surely, as  . 

Theorem 3  

Let                    and assume that each player follows Algorithm 1. Under the same 
assumptions as in Theorem 2, with probability at least           , the average 
occupancy      is an   -NE for every 𝑘 that satisfies

Corollary



Can we go beyond Social Concavity?

Definition: An occupation profile     is called a stable NE for the virtual game 
if                                                 with equality if and only if                 where                    

is the vector of players' payoff gradients.

Theorem 4  
Assume that the set of NE of the virtual game  is stable. If each player follows 
Algorithm 1, under the same assumptions as before, almost surely the 
sequence of occupancy measures     generated by the players converges to the 
set of stable    -NE policies.

Remark: One can use the above theorem to obtain high-probability polynomial 
convergence rates. However, the convergence rates in this case are weaker in 
some sense compared to the case of social concavity.



Thank You! 

Conclusions:

Ø We studied a subclass of stochastic games in which players have their own 
independent chains while they are coupled through their payoff functions. 

Ø By establishing an equivalence between stationary NE policies in such games and 
NE points in a virtual game, we developed a scalable learning algorithm if

• the underlying virtual game is socially concave
• the underlying virtual game admits a stable NE.

Future directions:

q In general, there are strong computational lower bounds for developing scalable 
learning algorithms in 𝑛-player stochastic games.

q Stochastic games provide natural frameworks for modeling competition under 
uncertainty. What other classes of stochastic games admit scalable learning algorithms? 

q One approach is to rely on mean-field approximations to simplify the learning task 
by allowing the players to focus on learning the mean-field trajectory of actions/states.


